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1. Introduction

The notion of generalized Witt algebras appears as a natural generalization of the
well-known Witt algebra in [27]. Since that article only a few main properties of
generalized Witt algebras have been studied. In positive characteristics complete
classification of such algebras over an algebraically closed field is known, some
simplicity criteria is obtained and the automorphism group is determined ([18, 25]).
In zero characteristic, generalized Witt algebras are known as centerless higher
rank Virasoro algebras ([15, 24]). In this case complete classification of pointed
Harish—Chandra modules over such algebras is given ([24]), automorphism group is
determined, all finite-dimensional subalgebras are described and some realization
by differential operatorsis constructed ([15]). In fact, almost nothing is known about
non-pointed weight modules over such algebras. At the same time representation
theory of the Witt algebra and Virasoro algebra is very well developed, although
there are a lot of interesting unsolved problems (see [3—4, 11-13, 19, 23]).

During the last decade a number of papers devoted to different generalizations
of generalized Witt algebras have appeared (the history of this question is due to
Kaplansky [9]) which can be found in [8, 10, 16-17, 22, 26]. Most of those algebras
are very difficult and nothing but existence and simplicity is known about them.

The aim of this paper is to define and study some analogue of Verma modules
([14]), Verma type modules and generalized Verma modules ([6—7]) over general-
ized Witt algebras over complex field. All the results obtained in the paper remain
valid over an arbitrary algebraically closed field of zero characteristics. Moreover,
some of them take place even for higher rank Virasoro algebras (universal central
extension of generalized Witt algebras). We also describe a support of special kind
irreducible weight modules over generalized Witt algebras generalizing Futorny
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theorem on a support of irreducible module over classical simple complex finite-
dimensional Lie algebras ([14]).

The paper is organized as follows: in Section 2 we collect all necessary prelim-
inaries. In Section 3 we give some inner characterization of Cartan subalgebra. In
Section 4 we prove a Futorny-like theorem which describes a support of simple
weight module over generalized Witt algebras of strictly finite type (see Section 2
for precise definition). In Section 5 we study Verma modules over generalized Witt
algebras and obtain complete information about their structure in Theorem 3. In
Section 6 we classify all non-standard Borel subsets associated with generalized
Witt algebra and obtain information on a structure of corresponding Verma-type
modules (Theorem 4 and Theorem 5) and generalized Verma modules (Theorem 6
in Section 7).

2. Notations and preliminary results

Let C denote the complex numberg,denote all rationalsZ denote all integers
andN denote all positive integers.

Consider an additive subgroup C C of finite rankn € N. Let & denote a
C-space with the basg,, x € P. For arbitraryz, y € P define

[Bx, ey] = (y - $)8$+y7 (1)

Clearly this operation can be extended®iby linearity. One can see that (1)
defines or® a structure of Lie algebra, moreoverjs simple infinite-dimensional
Lie algebra as soon &3 is non-trivial. Following [27] we will call& generalized
Witt algebra of ranka.

Denote bysH = (ep) the Cartan subalgebra @f. We will call elements: € P
roots of 8. A C-space(e,) corresponding to a roat € P will be called root
subspace.

Let V' be as-module. For\ € C define

Vi ={veV:ieqw = Av}.

Every non-zero vectar € V), will be called a weight vector of weight
Every non-zero subspaég will be called a weight subspace corresponding to
a weight\. A moduleV will be called a weight module provided

V= v

A€eC

Let V' be a weight module. We will write supp for the set of all weights of
V. We will say that a weight modul¥ is of strictly finite type if

sup dimV, < oo.
A € suppV
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For an element

g = Z gz€z €6
reP

we will denote by supp the set{z € P: g, # 0}.

Itis easy to verify that any irreducible module having a weight vector is a weight
module and that all submodules and quotients of a weight module are also weight
modules.

Consider the universal enveloping algebfés). Trivially, every &-module is
also anlU (&)-module and vice-versa. 30(®) is a®-module with natural action.

Forg e U(®) we will write H(g) = s if [eo, g] = sg.

For the rest of the papew will denote the classical Witt algebra with the

standard basge; }icz and Lie brackets given by

e ej] = (5 — 1)eit-

EXAMPLE 1. The easiest example of generalized Witt algebrevhich is not
isomorphic ta?y can be obtained faP = {a + biia,be Z}.

3. Cartan subalgebra

Ouir first goal is to give an invariant definition of the Cartan subalggbra
Consider the adjoint representation@&diefined by ad; - « = [g, a] for every
g,a €,

LEMMA 1. Let & be a generalized Witt algebra. An elemeuth is semisimple
(i.e. possess an eigenbadeand only ifh € 6.

Proof. Every h € $y can be written in the fornk = ceg for somece C. By
definition of & we have

adh - e; = [h,ey] = cleo, e5] = cxey

for everyz € P and thush is semisimple.
To prove the necessity we consider some linear otden abelian groupP.
Then for everye, y, z € P holds

r<y=zrz+z<y-+z.

For everya € 6, a £ § at least one of the following conditions holds:

(1) T Ens]tl,lgpa ‘ g 07

(2) meng%pax ¢ 0.
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Consider the first case (one can rewrite the same arguments for the second one).
Letb € & be an element such that

mn y< min zx, min y < 0.
y € suppb T € Suppa y € suppb

It follows immediately that

mn z< min y
z € supp[a,b] y € suppb

and we obtainja, b] # \b for any A € C. Thus ad: is not semisimple. O

It follows from [15] that there is continuum many of pairwise non-isomorphic
generalized Witt algebras for each finite rank- 1.

4. Irreducible &-modules with finite-dimensional weight spaces

In this section we obtain a weak analogue of Futorny theorem on support of
irreducible weight module over generalized Witt algebra. The original theorem
([7]) states that:

THEOREM 1.Let & be a classical simple finite-dimensional Lie algebra and
be an irreducible weight--module. Then eithér” has a semiprimitive element or
suppV has the following form

suppV = A+ > mia,

n; €Z,o; €M
where)\ € suppV andw denotes a base of standard root systers of

We present the following analog of this result for irreducible weight modules
over generalized Witt algebras:

THEOREM 2.Let V' be an irreducible module of strictly finite type over gener-
alized Witt algebras (& # 23). Then eitheisuppV = X + P for somel € C or
suppV = P\{0}.

To prove this theorem we need the following key lemma:

LEMMA 2. For A€ C, A # 0 let M()\) be Verma module over Witt algebga
with highest weighA. Denote byLL()\) its unique irreducible quotient. Then

sup dimL(\), = oco.
€ SUppL(A)
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Proof. Denote byv, some primitive generator df/ (A) and by N the maximal
submodule ofV/ ()).

If M(X) is irreducible(N = 0) we have dimM (\)y_x = P(k), whereP(k)
denotes the classical partition function ([1]). Thus

sup dimM(X), = oo.
€ SuppM (X)

Suppose now thalv # 0. According to [19, Theorem A] there can be two

possibilities:
(1) N ~ M(X') for some)’ < . Since for any fixed € N holds

P(k)—P(k—s) > o0, k— o0 2
it follows that

sup  dimL(\), = lim (M(\)x x — M(N)r k)
11 € SUPPL(A) ko0

= lim (P(k) — P(k — s)) = 00

k—o0

and the statement of lemma follows.
(2) A€ {sm, tm } fOor somem € N, where

Sm = —3(3m? +m), tm = —5(3m% —m).
In this case there is an exact sequence:

dm i dm 7 dm
L M (Sgi) D M (i) s L D2,

2 A (sms1) B M (Er1) 2 M(A) —— L(X) = 0

(¢ is a canonical projection and homomorphis#pslefined in [19]).
Let vy € {s,tx} for somek € N. Following [19], we can write the character
formula for L(vy,):

chL(vg) = chM (1) + (=1)F 3 (=1) (chM(s;) + chM(t,)).
>k

It is convenient to rewrite it in the form
ChL(vg) = chM(vk) — ChL(vg41) — Ch M (Ek4a),
where{vyi1,&k+1} = {sk+1, tk+1}. Thus we obtain

ChL(Vk+1) + ChL(I/k) = ChM(Vk) — ChM(f]H_l)
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and it follows immediately from (2) that our statement is true at least for one of the
modulesL(v+1) or L(v). In fact, the statement of lemma is true ffs;) and
L(tq).

On the other hand we have the following equality:

chL(vy) = chM(vg) — chM(sk11) — chM (tg+1)
+Ch M (v42) + ChL(&k+2)
for {vg+2,&k+2} = {Sk+2,tks2}. Thus
ChL(éky2) = chM(sk11) — chM (vg) — chM (v2)
+chM (tg41) + chL(vy).

We can assume that = &;,,. From the above formulae it follows immediately
that in order to prove that dif(¢y 1 2)¢, . ,—s IS Not bounded it is sufficient to show
that for any fixedu, b, ¢ € N such that: < b holds

(P(s) = P(s—b)) = (P(s+¢)—P(s+c—a)) - 00, s—o00.

Let F'(s) = P(s) — P(s —1). One can see thdt(s) is a partition function with
generating function

ﬁ 1
p(z) = -
izzl——xl

Using asymptotic theorem ([1, Theorem 6.2]) we obfaia) ~ C(v/s) "2 exp(M+/s)
for some constants andM. Thus

F(s)

— =1 .
F(s—l)_> , §— 00

It follows immediately that for any fixed, b, c € N such that. < b holds

P(s) = P(s = b) b
P@+c}—P@+c_a)%Q;>L § — 00.

The last observation, together with(s) — P(s — b) — oo, s — oo, gives us
(P(s) = P(s—b)) —(P(s+¢)—P(s+c—a)) 00, §—00
which completes the proof. O

Proof of Theorem 2.et \ € suppV'. Clearly sup/ C A + P.
It is sufficient to show that ang-moduleV such that there i€ suppV’ + P,
b ¢ suppV, b# 0 is not of strictly finite type. Take arbitrary e suppV. Letz =
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b — X. Consider a subalgebr, ~ 20 of & generated by al,, y€ P N Qz.
ThenVi = U(81)V) is a weight®i-module of strictly finite type. It follows
from the Mathieu classification of irreducible modules o¥([13]) that for any
simple weigh®s-moduleM # 0 with finite-dimensional weight spaces one of the
following holds

(1) suppM = p + Z for some weighju;
(2) suppM = Z\{0};

(3) suppM = p + N for some weighjy;
(4) suppM = i — N for some weighj.

Thisimplies tha¥; has as a subquotient some non-trivial simple highest (lowest)
weight module and thus is not of strictly finite type by Lemma 2. This contradiction
proves our theorem. O

5. Verma modules

In this section we construct and investigate the submodule structure of Verma
modules over generalized Witt algebras. From now on we assume that generalized
Witt algebra® considered is not isomorphic 2.

We will call a subsefl” C P a Borel subset provide@ is a subsemigroup,
—TNT =(}and—T UT U{0} = P. In a natural way one can associate with an
arbitrary Borel subséf’ certain linear ordex on P defined as followsa <7 b
if and only if b — a €T. A Borel subsetl’ will be called standard if for any
a,beT, 0 < a < bthere isn €N such thath <y na. By [28] this natural
correspondence between standard Borel subsets and ordétssatisfying the
above condition (Archimed law) is bijective.

With each Borel subsét we associate the following partition of.

S=6rdHBG& 7,

wheres . = {g € &:suppg C £7'}.
Let T be an arbitrary Borel subset. FoE &, h € $, A € H* andz € C set

(a+h)(z) = A(h)z.

In such a way we define a structureldf$H @ &;-)-module onC. The module

M) =U@®) K C

U(HD6¢)

will be called a Verma-type module correspondingtandX. We will call M ()
a Verma module provided is standard.

Obviously there exists continuum many of hon-conjugated standard Borel sub-
sets inP (the reader can find a criterion of isomorphism for such subsets in [28]).
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The standard properties of Verma-type modules (in fact of Verma modules) are
described in the following evident lemma.

LEMMA 3. (1) M () is a weight module witsuppM (\) = AU X —T..

(2) M () has the unique maximal submodNé\) and the unique irreducible
quotientL(\) ~ M(\)/N(A).

(3) If V is a weights-module generated by an elemerduch thativ = A(h)v
forall h € § and&,v = 0O, then there exists a canonical epimorphigmV/ (\) —
V suchthatp(1® 1) = v.

(4) If M (X)) is Verma module then

1, pu=X

dimM(A)M:{OO LEA-T

Submodule structure of Verma modules o¥gr(and over Virasoro Lie alge-
bra) is very non-trivial and completely obtained in [3, 19]. It happens that Verma
modules over generalized Witt algebra have a rather simple structure described in
the following theorem.

THEOREM 3. (1)If A # 0thenM ()\) is irreducible

(2)If A =0thenN(0) = {v e M(0),suppv N0 = (0}, andM (0)/N(0) ~ C.

(3) N(0) is irreducible.

Proof. First of all we will prove the second part of the theorem. In the case
A = 0 there exists, according to Lemma 3, an epimorphis®/ (0) — C, where
Cis a trivial &-module. Hence

N(0) = {ve M()\),suppv N0 =0}

andM (0)/N(0) ~ C.
To prove the first part consider an elemert M (\),, v # 0. We can write it
in the form

k
v =Y aiuwy,
i=1

wherev), denotes a canonical generatodd{ ), a; € C, 1 < ¢ < k and eachy; is
of the formu; = ez ey, . .. Eay,,

Foreveryi = 1,2,...,k denoteP(u;) = {z1,z2,...,Zk, }.

)

Let N = U(®)v. Ourgoalisto provéV = M(\). SetK(l = max k;. Denote

I={ie{l,2,...,k}:ki=K(v)} and P(I)= ] P(u).
i€l

Chooser € P(I) suchthat: < yforeveryx # y € P(I). Thenone canchoose
yeP,z <rvy,y <t zforanyze P(I), z # x such that_,v # 0. Continuing
this procedure, if necessary, we can assume|fhat 1 and OZ suppU (&1)N,,.
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Then in the same way one can choose an elemen® such that_,v # 0 and
K(e_yv) < K(v). We obtain that,v) € N for somez € P and thusy, € N since
A # 0.

The last part follows from the proof of the first part. O

Remarkl. In such a way we construct a family of irreducilddemodules that
depends om + 1 real parameter. To be more formal, ‘almost all’ (in a sense of
Lebesque measure) such parameters define non-isomorphic irreducible represen-
tations (Verma modules) over. Moreover, all such modules possess both finite
and infinite-dimensional weight spaces and are rather simple for calculations.

Remark2. It seems that the modules constructed in this section are a direct
analogue of Verma modules associated with Kac-Moody Lie algebras in spite of
Vermatype modules which will be considered in the next section (see [6]to compare
the situation with Kac-Moody algebras). We also note that a decompositien of
obtained here is not a triangular decomposition in sense of [14] dinisenot
finitely generated.

Remark3. One can easily see that Theorem 3 holds also for Verma modules
over higher rank Virasoro algebras (those are not isomorphic to classical Virasoro
algebra) defined in [15].

6. Modules of Verma type

In this section we investigate a family of modules analogues to Verma type modules
over affine Lie algebra induced from non-standard Borel subalgebra (see [5, 6] for
more details). We also remark that in the affine case the crucial difference between
standard and non-standard Borel subalgebras is a propriety to define a triangular
decomposition of the algebra in sense of [14, 20-21]. As was noted in the previous
section, even standard Borel subalgebras of generalized Witt algebras do not lead
to triangular decomposition and thus the technique of [14] cannot be used in any
case.

The modules of Verma type that are not the Verma modules defined in the
previous section, correspond to non-standard Borel subsets. Their basic properties
are very close to those of Verma modules, but as will be shown, they may have a
more complicated submodule structure.

A non-standard Borel subségtcorresponds to the linear order- on P which
is not Archimed. By [28], we can decompose= P; @ P, — the ordered sum
of two subgroups”, P, C P in such a way that the restriction ef; on P; is
Archimed andP; is convex (i.e. 0< h < b’ andh’ € P, impliesh € P,). This leads
to a description of classes of Verma type modutesdn-standard Borel subsets)
in the lemma below.

We will call a subalgebra’ C ® normal provideds’ is a generalized Witt
algebraandthe sét = {z € P:e, € &'} is convex (i.e. ifax € P for somex € Q
andz € P’ thenaz € P').
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Combining the arguments above we obtain the following classification of classes
of Verma type modules over generalized Witt algebra.

LEMMA 4. (1) There exists a natural one-to-one correspondence between non-
standard Borel subsets and non-Archimed linear orders on the abelian group

(2) There exists a one-to-one correspondence between Borel subsetd
couple of cortege&Py, P, . .., Py), (L1, Lo, . .., Ly, L) consisting of convex non-
trivial subgroupsP; C P suchthatP; C P,_1, P, # P,_1,2 < 1 < k, Archimed
subsemigroupg; of P,_1(Py = P) suchthat,, NP, =0, L, U—L;UP, = P;,_1
and some standard Borel subdebf P,.

(3) A couple of corteges above defines standard Borel subset if and only if
k= 0.

We fix cortege( Py, P, . .., Py, L) corresponding to the sétand putPy = P.

It follows immediately from Lemma 4 that there exists a continuum family of
non-isomorphic non-standard Borel subsets forrany 2. There is also a countable
family of such subsets for = 2 and there are no such subsetsrfor 1.

We will describe the submodule structure of Verma type modules over general-
ized Witt algebra separately in the following two cases

(2) Py £ 2.

To proceed we need the following result.

LEMMA 5. Let M (\) be the Verma type module with a generaigr Set
& = (ez,z€Py), m=01... k.

For everyv € M () there exists: € U (®) such thal # uv € U (&) v).

Proof. To prove this statement it is sufficient to show that for everyg
0,1,...,m — 1 the following assertion is true.

For everyv € U(&;)v), there exists:. € U(g) such thaD # uv € U(&;11)v).

If rank P, 11 < rank P; — 1 one can prove this using the same arguments as in
proof of Theorem 3.

LetrankP, ;1 = rank P; — 1 andv € U(&;)v, be an element of weight. We
can writev in the form

S

v = Zajujwjm, 3)
j=1

whereq; € C, eachw; is a monomial element froi (6;,1) andu; = ez, €z, - ..
€z, for all possiblej such thae,, ¢ U(®;41) foranyt =1,2,...,s;.

Since there is only finite number ef that appears in (3) and; 11 is infinite-
dimensional it follows using the same arguments as in the proof of Theorem 3 that
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for somez € P such thaty + z € XA + P;y1 holdse,v # 0. This completes the
proof. 0

Using Lemma 5, one can easily obtain the following theorem.

THEOREM 4.Let P, # Z,then
(1) M(A) is irreducible if and only ifx # O.
(2) If x=0,thenN(0) = &_rM(0) and M (0)/N(0) ~ C.
(3) N(0) is irreducible
Proof. By Lemma 5 for every O v € M (\) there exista:. € U(&) such that
0 # uwv € U(B%)v). But thed,-moduleU (6, )v, is a Verma module, hence it is
irreducible by Theorem 3 as soonas# 0. Thus so isV/ (). This proves the first
part of the theorem. One can easily reduce the third statement to Theorem 3 in the
same way.
The second statement follows from the universal property/of). O

THEOREM 5.Let P, ~ Z and0 <7 « is a generator of?,. Then
(1) M () is irreducible if and only if
(m? — Da
24
wherem =0,1,2,...

A —

(2) In the case\ = (—(a/24)((6k)% — 1)) for k > 1,
N ~ M ((—%1((% +2)2 = 1))) .

(3) In the case\ = (—(«/24)((6k + 3)2 — 1)) for k > 0,
N ~ M ((—%1((% + 92— 1))) .

(4) In the case\ = (—(«/24)((6k 4 2)2 — 1)) for k > 0,
N ~ M ((—%((6k +102— 1))) .

(5) In the case\ = (—(«/24)((6k + 4)2 — 1)) for k > 0,
N ~ M ((—%1((% + 82— 1))) .

(6) In the case\ = (—(«/24)((6k + 1)?> — 1)) for any u = (—(«/24)((65 *
1)2 — 1)), j > k holds
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M(p) C M(N).

Proof. From Lemma 5 it follows easily that there exists a one-to-one corre-
spondence between submodules\iof)) andU (&)-submodules of the module
My (\) = U(8g)vy. Sinced, ~ 20 we obtain thatM/; ()\) is a Verma module over
the Witt algebra and our result follows from [3, Theorem 1.9, 1.10].

COROLLARY 1.Under the conditions of Theorebrwe have the following reso-
lutions (e is a canonical projection

dj >

di_; di_;
1) L M(sji) © M(tj—;) —
dj_z

e M(sjo1) @ M(tj-1) e M(v)) — L(vy) = 0

forv; € {s;,t;} where
5 = (—%(3j2+j)) L t= (—%(sjz—j)) .

() 00— M(rys2) 2+ M(v,) —— L(v,) — 0

for vs = (—(a/24)((65)%> — 1)), s > 1.
(3 0— M(rys1) e M(v,) — L(v,) — 0

for vs = (—(a/24)((6s + 3)> — 1)), s > 0.
(4) 0— M(6,11) 2% M(y,) = L(z,) — 0

for v; = (—(a/24)((65 +2)2 = 1)), 0; = (—(/24)((65 + 42— 1)), j > 0.
(8) 0— M(ysq1) 2= M(6;) =+ L(3,) — O

for ~, 05 defined above

Proof. Follows immediately from Lemma 5 and [19, Theorem A]. O

PROPOSITION 1Let # Oandz € —T'\ P;. Then

Proof. ConsiderU (&;)-module M (\) defined in proof of Theorem 5. By
Lemma 2

sup  dimLg(X), = oo.
1 € SUppLy (X)
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Thus for everys € N we can choose someand the subspadé C Lj()), such
thatV does not intersect with the maximal submoduléfyf(\) and dimV > s.
It follows immediately that there existse P such that

e,V C M()‘))\+x-
Moreovere,V N N(A\) = 0. Thus
dimL(A)xiz = s. O

Following Proposition 1 and Corollary 1 one can write the character formula
for L(\) using the character for the irreducible quotients of the Verma modules
over Witt algebra ([19]). This completes the submodule structure description of
Verma-type modules over generalized Witt algebra.

For as-moduleV we will denote

FsuppV = {\esuppV : dimV) < oco}.

Note, that in the last cagé’, ~ Z) we obtain a continuum family of irreducibé&-
modulesV for which both F suppy” and supp/\F suppV” and infinite. Obviously
such an effect is impossible for Verma modules. For the analogs in the Kac—Moody
case, see [6].

7. Generalized Verma modules

In this section we construct another classseimodules analogues to generalized
Verma modules over simple finite-dimensional Lie algebras ([7]) and investigate
their irreducibility.
We will call a subsef” C P parabolic ifT" is subsemigroup and7 UT = P.
Analogously to Sections 5 and 6 we have the following interpretation of par-
abolic subsets in terms of partial orders®n

LEMMA 6. (1) There exists a natural one-to-one correspondence between par-
abolic subsets and linear pre-orders on the abelian gréup

(2) There exists a one-to-one correspondence between Borel subsaid
couple of cortegesPy, Ps, ... Py), (L1, Lo,..., L) consisting of convex non-
trivial subgroupsP; ¢ PsuchthatP; C P, 1, P, # P; 1,2 <1 < kand Archimed
subsemigroups; of P,_; (Py = P) suchthatL, NP, =0, L; U—L;,UP; = P;_3.

For a parabolic subsét consider the following subalgebras
&r = (eg:x€ —TNT) and &' = (e,:z€T).

LetV be anirreducibl&;-module. Setting,v = Oforallv e V andz e T\ — T,
we makeV into &1 -module. The module

MV)=U@®) & V
U(eT)
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is called the generalized Verma module associated WigndT'.

Remark4. In the case-T'NT = {0} we get the definition of the Verma-type
module.

Suppose thab is non-trivial.

We will call a generalized Verma moduld (V) finitely-dense provided’ is
a non-trivial module of strictly finite type. Such modules seem to be an analog of
the stratified modules over simple finite-dimensional Lie algebras ([2]).

EXAMPLE 2. One can choose the moddlfeto be a non-trivial simple module
from the intermediate series for (see [24]).

It happens that finitely-dense modules have a rather simple structure.

THEOREM 6.Every finitely-dense generalized Verma module is irreducible

Proof. Let M (V') be a finitely-dense generalized Verma module ayef #
ve M (V). Using the same arguments as in Lemma 5, one can show that there
exists an element € U (&) such that G# uwv € V. Thus there exists a one-to-one
correspondence between the submodule® ¢¥) and thed-submodules of/.
SinceV is irreducible so isV/ (V). O

Finitely-dense generalized Verma modules present another class of irreducible
&-modules having many finite and infinite-dimensional weight spaces.
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