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COMPLEMENTARITY PROBLEM AND DUALITY 
OVER CONVEX CONES 

BY 

ABRAHAM BERMAN 

ABSTRACT—The complementarity problem is defined and 
studied for cases where the constraints involve convex cones, thus 
extending the real and complex complementarity problems. 

Special cases of the problem are equivalent to dual, linear or 
quadratic, programs over polyhedral cones. 

1. Introduction. A nonempty set S<^ Cn is 
(a) a cone if x e S9 A>0=>Àx e S 
(b) a convex cone if it satisfies (a) and x e S, y e S=>x+y e S 
(c) a polyhedral (convex) cone if there is a positive integer k and a matrix 

A e Cnxk such that S=ARk+ 
The polar, S*, of a nonempty subset S<= Cn, is defined by 

5* = {y G Cn; x e S => Re(y, x) > 0} 

The polar S* is a closed convex cone. A set S is a closed convex cone, if and only 
if S = (£*)*. The polar of a polyhedral cone is a polyhedral cone. 

In this paper we study the following 
Complementarity Problem over Cones: Let P and Q be convex cones in Cn, 

j e C n a n d ¥ e CnXk. Find a vector z such that 

(1) zeP, q+MzeQ 

and 

Re(z, q+Mz) = 0. 

For a real vector q and a real matrix M and P=P* = Q=R" the problem reduces 
to the Real Complementarity Problem of Cottle and Dantzig [9]. For complex q 
and M, 

(2) P = { z | | a r g z | < y } , y e Rn, 0<y<?e 

(where e is the real vector whose elements are ones) and 

e = P* = {z | |argZ |^^e-y), 

the problem reduces to the Complex Complementarity Problem introduced by 
McCallum [16]. 

19 

https://doi.org/10.4153/CMB-1974-004-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1974-004-9


20 A. BERMAN [March 

Notice that in these special cases, P and Q are polyhedral cones. There are two 
cases when the Complementarity Problem (over cones) has a trivial solution. The 
first is when q e Q and then z = 0 solves the problem. The second is when there exists 
z eP such that Mz=—q9 where such a z is the solution of the complementarity 
problem. The existence of such a z is guaranteed in case MP is closed, if Re(#, y)<0 
whenever j satisfies MHy eP* . See e.g. [3, Theorem 2.4]. 

The purpose of this paper is to study the complementarity problem in the non-
trivial cases. 

In Section 2, the consistency of (1) is characterized and unboundedness of its 
solutions set is related to cone-copositive matrices defined by Haynsworth and 
Hoffman. 

In Section 3, pairs of dual, linear and quadratic, programs over polyhedral cones 
are shown to be equivalent to special cases of the complementarity problem over 
cones where P and Q are polyhedral and g = P * . 

For such a pair of polyhedral cones it is shown in Section 4 that if (1) is con­
sistent and M is positive semi definite then the complementarity problem has a 
solution. 

2. Non-emptiness and unboundedness of the constraints set. We start by charac­
terizing the consistency of (1). 

THEOREM 1. Let MeCnxn, P and Q be convex cones in Cn such that Q—MP 
is closed, qeCn and ZQ={z\z eP, q+Mz G Q}. Then the set ZQ is non-empty if 
and only if 

(3) y G g*, -MHy eP*=> Re(<?, y) > 0. 

Proof. Follows from the main theorem in [3] or from Theorem 1 in [4], by 
replacing T by Q, S by P, b by q and A by — M. • 

For P given by (2) and g = P * , Theorem 1 reduces to Theorem 4.2.2 of [2]. 
The following conditions are necessary and sufficient for a nonempty con­

straints set Zq to be unbounded. 

THEOREM 2. Let Zq^ 0. Then the following are equivalent: 
(a) The set ZQ is unbounded. 
(b) Z0={z \zeP,MzeQ} ^ 0 . 

Proof. (a)=>(b). By (a) there exist z^O and zx such that (a') z±+z0 e P , and 
(a") q+Mzi+XMzç e Q for every A>0. (&')=>z0 e P, for suppose z0 $ P then there 
exists xeP* such that Re(x, z0)= —1 and Re(x, z1+Az0) = Re(x, zx)—X which 
for X big enough contradicts (a'). Similarly (a")=>Mz0 e Q so that 0 ^ z 0 e Z 0 which 
proves (b). 

(b)=>(a). Let 0^z 0 e Z 0 and z1eZq. Then z±+Xz0 e P , q+M(zx+Xz^) e g , so 
that ZX+AZQ eZa for every /l>0, proving (a). • 
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Notice that Theorem 2 is a (non polyhedral) generalization of the well known 
fact that a polyhedral set is bounded if and only if its corresponding polyhedral 
cone consists only of the origin. 

The interior of P* is given algebraically by 

int P* = {y G P* | 0 ^ p e P => Re(p, y) > 0} 

A cone S is pointed if S n (—S)=0. A cone P is pointed if and only if int P*j& 0 

THEOREM 3. Let P and Q be pointed cones. Then the set ZQ is unbounded if and 
only if it is non-empty and the system 

(4) y e Q*9 -MHy e int P 

has no solution. 

Proof. By Theorem 2, the non-empty Zq is unbounded if and only if Z0 contains 
a nontrivial vector, that is, there exists 0^z0 G P such that Mz0 e Q. This is equiva­
lent by Corollary 1.4 of [5] to the inconsistency of 

(4') y e int Q*9 -MHy G int P* 

which, in turn, is equivalent to the inconsistency of (4), since Q is pointed. 
The definition of a copositive matrix was introduced by Motzkin in [17], namely, 

M G Rnxn is copositive if x>0=>XTMx>0. 
This was generalized by Haynsworth and Hoffman [13]. Following them, a 

matrix M G Cnxn will be called copositive with respect to a cone P <= Cn, if 
ZGP=>RQZHMZ>0. 

THEOREM 4. Let M be copositive with respect to a pointed cone P and Q=P*. 
Then the system (4) has no solution. 

Proof. Suppose j is a solution of (4). Theny^O and ReyHMHy=ReyHMy<0 
contradicting the copositivity of M with respect to P. • 

Choosing P as in (2), o r P = P ^ and g = P * , one gets Theorem 4.5.5 and Lemma 
4.5.6 in [16] and their real counterparts in [8], respectively. Notice that in both 
cases P and Q are pointed. 

3. Duality in linear and quadratic programming over polyhedral cones. In this 
section and in the next one the discussion will be confined to the case where 
g = P * and the cones are polyhedral. In this section it will be shown that for 
appropriate choice of M, q and P the complementarity problem over cones is 
equivalent to dual programming problems over cones as is the case for the real 
and complex complementarity problems e.g. [19] and [16]. 

Duality in quadratic programming is described in the following theorem. 

THEOREM 5. (Abrams and Ben-Israel [2].) Let B G CnXn be a positive semi-definite 
matrix, A G Cmxn, bGCm, c G Cn and let SaCn, T^Cm be polyhedral cones. 
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Consider the pair of problems: 

(Q.P) minimize P(x) = Re(ixHBx+cHx) 

s.t. Ax-be T 

xeS 

(Q.D) maximize g(u, y) = Re(—%uHBu + bHy) 

s.t. \Bu-AHy+ceS* 

yeT* 

Ifx° is an optimal solution to {Q.P), then there exists a vector y° such that (x°, y°) 
is an optimal solution to (Q.D.). Moreover, f(x°)=g(x°,y°). 

If(u°,y°) is an optimal solution to (Q.D.) then there exists a vector x°,for which 
Bx°=Bu°9 such that x° is an optimal solution to (Q.P.). Moreover, f(x°)=g(u°, y°). 

• 
Special cases of Theorem 5, include the real version of Dorn [10] and the complex 

version of Hanson and Mond [12]. 
When B=0, the problems become linear: 

(L.P) minimize Re cHx 

s.t. Ax-be T 

xeS 

(L.D) maximize Re bHy 

s.t. c-AHyeS* 

The duality theorem becomes Theorem 2 of [6], where special cases are the 
classical duality theorem of real linear programming and its complex version due 
to Levinson [15]. 

THEOREM 6. Consider the complementarity problem with 

'xl 

P = S x T * , Q = p * = S*xT. 

A solution of this problem solves the pair of problems (Q.P) and (Q.D) and vice-versa. 

Proof. With the choice of M, q, z and P as above, the complementarity problem 
becomes : 

Find xeS,yeT* such that c+Bx-AHy e 5*, -b+Ax e T, and 

(5) Re(cHx + xHBx-xHAHy-bHy+xHAHy) = Re(cHx — bHy+xHBx) = 0. 

Notice that the constraints that x and y have to satisfy, are those that x and 
(u=x, y) have to satisfy in the pair of the quadratic problems. 

M = -A11 

0 z = 

https://doi.org/10.4153/CMB-1974-004-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1974-004-9


1974] COMPLEMENTARITY AND DUALITY 23 

Let x° and (x°, y°) be optimal solutions of (Q.P) and (Q.D). Then by Theorem 5, 
Re(cHx°+x0Bx0l2)=Re(bHy0-x0Bx°l2), which imply (5), so that x° a n d / solve 
the complementarity problem. 

On the other hand let (x, y) be a solution of the complementarity problem. 
Then x and (x, y) are feasible solutions of (Q.P) and (Q.D) respectively and satisfy 
(5), and f(x)=g(x,y). 

Let S be a feasible solution of (Q.P). We now show that f(s)>f(x) and thus x is 
a feasible solution of (Q.P). First, notice that 

(6) RQ(CHS+SHBX) > Re yHAs > Re bHy 

The left side of (6) follows from c+Bx—Ay e S* (x and y being solutions of the 
complementarity problem) and s e S (being a feasible solution). The right side 
follows from As—beT and y e T*. 

The positive semi definiteness of B implies 

(7) %sHBs+$xHBx > Re sHBx 

(7) and (6) imply 

(8) \sHBs+\xHBx > Re(bHy-cHx)+RQ(cHx-cHs) 

Substituting (5) into (8) one gets 

Re$sHBs+cHs) > Re(%xHBx+cHx) 

which was to be shown. 
By Theorem 5, the value of the dual problem is equal to that of the primal. By 

(5) g(x, y)=f(x) and thus (x, t) is an optimal solution of (Q.D). • 
The complementarity problem equivalent to (L.P) and (L.D) is the same as the 

one in Theorem 6, with B=0. 

4. Solvability of the complementarity problem. The real and the complex com­
plementarity problems were shown to have a solution (if Zq^ 0 ) for given families 
of matrices M, e.g. [7], [14]. This may be extended to the problem over cones 
using the Kuhn Tucker conditions for nonlinear programming over cones, e.g. 
[1]. Here we shall apply Theorem 5 to prove the existence of solutions for positive 
semi definite matrices M. Thus extending Theorem 4.5.1 of [16]. Notice that for 
positive semi definite M, ZQ is unbounded if it is not empty, since copositive matrices 
(with respect to a cone) are positive semi definite. 

THEOREM 7. Let M be positive semi definite {not necessarily hermitian) matrix, 
P a polyhedral cone and Q=P* in the complementarity problem for which the con­
straints set Za is non empty. Then the problem has a solution. 

Proof. Consider the related quadratic program. 

(Q) Minimize/(z) = Re(z, q+±(M+MH)z) 

s.t. zeP,q+MzeP*. 
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To prove the theorem it suffices to show that (Q) has a solution f and / ( f )=0 . 

The fact that (Q) has an optimal solution z is guaranteed by the complex version 

(Theorem 4.3.6 in [16]) of the Frank Wolfe Theorem [17]. To show t h a t / ( i ) = 0 , 

consider the dual of (g): 

Maximize g(w, y) = RQ(—%uH(M+MH)u—qHy) 
s.t. 

(9) (M+MH)u-MHy+q e P* 

(10) yeP 

From (9) and (10) it follows that 

(11) g = Rc(2yHMu-yHMy+qHy) > 0. 

Also the positive semi definiteness of M implies : 

02) -g(u,y)>g 

since 

- g O , y)-g = Re(qHy+uHMu-2yHMu+yHMy-qHy) 

= RQ(uHMu+yHMy—2yHMy) 

= Rç(u-y)HM(u-y) > 0. 

By (11) and (12) the maximum of g(u,y) is nonpositive and by Theorem 5, 

f(z)=maxg(u,y). The constraints of the quadratic program imply t h a t / ( f ) > 0 

and so / ( f )=0 which completes the proof. • 
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