To the Editor, The Mathematical Gazette
Dear Sir.-The point made by Mr. Dunn at the end of his article "Tessellations with Pentagons" (Gazette Lv, No. 394 (December 1971), pp. 366-9) about the reversal of the basic condition for a pentagon to be a tessellating cell by having " 2 of the angles adding up to 360° and the other 3 to $180^{\circ \prime \prime}$ is interesting. Outlined below is a method of constructing such a pentagon, which will necessarily be re-entrant.

Fig. 1

Draw any re-entrant par-hexagon $A B C D E F$ (that is, a hexagon with three pairs of parallel sides), and produce any pair of parallel sides, $E F$ and $B C$ say, by equal distances inward to points P, Q respectively, as in Figure 1. Join $P Q$.

Because a par-hexagon enjoys point symmetry about its centre O, we have here that $P O=O Q$. We have thus divided the hexagon into 2 congruent pentagons (the one can be obtained from the other by a halfturn about O), which can now be used to tessellate a plane. It will be noticed that because $E P$ and $B Q$ are parallel,

$$
\angle F P Q=\angle P Q C ;
$$

therefore, in the pentagon $A B Q P F A$,

$$
\text { reflex } \angle F P Q+\angle P Q B=360^{\circ},
$$

and it is easily seen that the other three angles of the pentagon sum to 180°. (It is well-known that any par-hexagon can be used to tessellate a plane surface.)

All that the above construction really does is to divide the parallel sides $E F$ and $B C$ externally in the same ratio. It is interesting to note that if we divide the parallel sides of any par-hexagon internally in the same ratio, as in Figure 2, we have the first type of pentagons, with 2 adjacent angles supplementary, here angles $F P Q$ and $B Q P$. The pentagons so formed are (i) re-entrant or (ii) convex according as the par-hexagon is re-entrant or convex.

Fig. 2

It should also be noted that as P and Q travel round the sides of the par-hexagon, provided always that the line segment $P Q$ is wholly contained within the hexagon, a whole class of pentagonal cells is generated, each of which can be used for tessellation.

Yours faithfully,
Cameroon College of Arts, Science and Technology,
P. Nsanda Eba Bambili, Mezam Division, N.W. Cameroon
[Mr. Eba also draws attention to Mr. Dunn's second class of tessellating pentagons, of which a specimen is reproduced below. In the original article it is stated that " each hexagon is made up of four pentagons, two of which are mirror images of the other two ". Mr. Dunn points out that he here uses the description " mirror images" to describe pentagons related by an opposite isometry, but not of course by a single reflection. His point is that this tessellation includes congruent non-regular asymmetrical pentagons (I and III in the figure) and the same pentagons " turned over" (II and IV), not just rotated in the plane. He remarks " I think this is fairly unusual ". Mr Eba adds that I and III are obtained from each other by half-turn about the centre of the hexagon (marked with a cross in the figure), as are II and IV. The construction of this tessellation can be recommended as an instructive and entertaining exercise.

The fundamental pentagon: $a=a^{\prime}, b=b^{\prime}$ and $x+x^{\prime}=180^{\circ}$.

Tessellation of pentagon forming a pattern of interlocking hexagons.

Finally, we are grateful to Mr. Eba for pointing out that the statement in the last line of $p .368$, that the pentiamond has " all the sides equal " is, of course, incorrect; actually, three of the sides are 1 unit in length and the other two are 2 units each. D.A.Q. 1

GLEANINGS FAR AND NEAR

The following comments on relative motion were made at the trial of Reginald Tom Hinks for the murder of his father-in-law on lst December, 1933, and are quoted by F. Tennyson Jesse in "Comments on Cain", 1948.

When Dr. Scott-White, a witness for the defence, said he thought the bruise more consistent with a moving object striking a stationary object than a stationary head being met by a moving object, the learned Judge merely asked "Why?" Dr. Scott-White replied: "May I put it this way? Would you rather I hit you on the head with an ink-pot or would you rather fall on the ink-pot?" To which the learned Judge replied: "So long as the strength of the blow is the same I don't think it would matter."
(per Mr. A. B. Manning)

