Vol. 43 (1991) [137-140]

NEW CRITERIA FOR MEROMORPHIC
 STARLIKE UNIVALENT FUNCTIONS

B.A. Uralegaddi and C. Somanatha

This paper establishes new criteria for meromorphic starlike univalent functions of the form

$$
f(z)=\frac{a_{-1}}{z}+\Sigma_{k=0}^{\infty} a_{k} z^{k},\left(a_{-1} \neq 0\right)
$$

Further property preserving integrals are considered.

1. Introduction

Let Σ denote the class of functions of the form $f(z)=\left(a_{-1} / z\right)+\sum_{k=0}^{\infty} a_{k} z^{k}$, ($a_{-1} \neq 0$), regular in the punctured disk $E=\{z: 0<|z|<1\}$.

Define

$$
\begin{aligned}
& D^{0} f(z)=f(z) \\
& D^{1} f(z)=\frac{a_{-1}}{z}+2 a_{0}+3 a_{1} z+4 a_{2} z^{2}+\ldots \\
& D^{2} f(z)=D\left(D^{1} f(z)\right)
\end{aligned}
$$

and for $n=1,2,3, \ldots$

$$
\begin{align*}
D^{n} f(z) & =D\left(D^{n-1} f(z)\right) \tag{1.1}\\
& =\frac{a_{-1}}{z}+\Sigma_{m=2}^{\infty} m^{n} a_{m-2} z^{m-2}
\end{align*}
$$

In this paper we shall show that a function $f(z)$ in Σ, which satisfies one of the conditions

$$
\begin{gather*}
\operatorname{Re}\left\{D^{n+1} f(z) / D^{n} f(z)-2\right\}<-\alpha,|z|<1,0 \leqslant \alpha<1 \text { and } \tag{1.2}\\
n \in N_{0}=\{0,1,2, \ldots\} \text { is univalent in } 0<|z|<1 .
\end{gather*}
$$

More precisely it is proved that for the classes $B_{n}(\alpha)$ of functions in Σ satisfying (1.2),

$$
\begin{equation*}
B_{n+1}(\alpha) \subset B_{n}(\alpha) \text { holds } \tag{1.3}
\end{equation*}
$$

Since $B_{0}(\alpha)$ equals $\Sigma^{*}(\alpha)$ (the class of meromorphic starlike functions of order α) the univalence of members in $B_{n}(\alpha)$ is a consequence of (1.3). Further property preserving integrals are considered, a known result of Goel and Sohi [2, Corollary 1] is obtained as a particular case and a result of Bajpai [1, Theorem 1] is extended.

In [4] Ruscheweyh obtained the new criteria for univalent functions.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

2. The class $B_{n}(\alpha)$

Theorem 2.1. $B_{n+1}(\alpha) \subset B_{n}(\alpha)$ for each $n \in N_{0}$.
Proof: Let $f(z) \in B_{n+1}(\alpha)$. Then

$$
\begin{equation*}
\operatorname{Re}\left\{D^{n+2} f(z) / D^{n+1} f(z)-2\right\}<-\alpha, \quad|z|<1 \tag{2.1}
\end{equation*}
$$

We have to show that (2.1) implies the inequality

$$
\operatorname{Re}\left\{D^{n+1} f(z) / D^{n} f(z)-2\right\}<-\alpha
$$

Define a regular function $w(z)$ in the unit disk $\Delta=\{z:|z|<1\}$ by

$$
\begin{equation*}
D^{n+1} f(z) / D^{n} f(z)-2=-\frac{1+(2 \alpha-1) w(z)}{1+w(z)} \tag{2.2}
\end{equation*}
$$

Clearly $w(0)=0$.
The equation (2.2) may be written as

$$
\begin{equation*}
D^{n+1} f(z) / D^{n} f(z)=\frac{1+(3-2 \alpha) w(z)}{1+w(z)} \tag{2.3}
\end{equation*}
$$

Differentiating (2.3) logarithmically and using the identity (easy to verify)

$$
\begin{equation*}
z\left(D^{n} f(z)\right)^{\prime}=D^{n+1} f(z)-2 D^{n} f(z) \tag{2.4}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\frac{\left(D^{n+2} f(z) / D^{n+1} f(z)\right)-2+\alpha}{1-\alpha}=\frac{2 z w^{\prime}(z)}{(1+w(z))(1+(3-2 \alpha) w(z))}-\frac{1-w(z)}{1+w(z)} \tag{2.5}
\end{equation*}
$$

We claim that $|w(z)|<1$ for $z \in \triangle$. Otherwise there exists a point z_{0} in $|z|<1$ such that $\max _{|x| \leqslant\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1$. From a well-known result due to Jack [3], there is then a real number $k \geqslant 1$ such that

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right) \tag{2.6}
\end{equation*}
$$

From (2.5) and (2.6) we obtain

$$
\frac{\left(D^{n+2} f\left(z_{0}\right) / D^{n+1} f\left(z_{0}\right)\right)-2+\alpha}{1-\alpha}=\frac{2 k w\left(z_{0}\right)}{\left(1+w\left(z_{0}\right)\right)\left(1+(3-2 \alpha) w\left(z_{0}\right)\right)}-\frac{1-w\left(z_{0}\right)}{1+w\left(z_{0}\right)}
$$

Thus

$$
\operatorname{Re} \frac{\left(D^{n+2} f\left(z_{0}\right) / D^{n+1} f\left(z_{0}\right)\right)-2+\alpha}{1-\alpha} \geqslant \frac{1}{2(2-\alpha)}>0
$$

which contradicts (2.1). Hence $|w(z)|<1$ for $z \in \Delta$ and from (2.2) it follows that $f \in B_{n}(\alpha)$.

Theorem 2.2. Let $f \in \Sigma$ and for a given $n \in N_{0}, c>0$, let f satisfy the condition

$$
\begin{equation*}
\operatorname{Re}\left\{D^{n+1} f(z) / D^{n} f(z)-2\right\}<-\alpha+\frac{1-\alpha}{2(1-\alpha+c)} \text { for } z \in \Delta ; \tag{2.7}
\end{equation*}
$$

then $F(z)=\left(c / z^{c+1}\right) \int_{0}^{z} t^{c} f(t) d t \in B_{n}(\alpha)$.
Proof: From the definition of F we have

$$
\begin{equation*}
z\left(D^{n} F(z)\right)^{\prime}=c D^{n} f(z)-(c+1) D^{n} F(z) \tag{2.8}
\end{equation*}
$$

and also

$$
\begin{equation*}
z\left(D^{n} F(z)\right)^{\prime}=D^{n+1} F(z)-2 D^{n} F(z) \tag{2.9}
\end{equation*}
$$

Using (2.8) and (2.9) the condition (2.7) may be written as

$$
\begin{equation*}
\operatorname{Re}\left(\frac{D^{n+2} F(z) / D^{n+1} F(z)+(c-1)}{1+(c-1) D^{n} F(z) / D^{n+1} F(z)}-2\right)<-\alpha+\frac{1-\alpha}{2(1-\alpha+c)} \tag{2.10}
\end{equation*}
$$

We have to prove that (2.10) implies the inequality

$$
\operatorname{Re}\left\{D^{n+1} F(z) / D^{n} F(z)-2\right\}<-\alpha
$$

Define a regular function $w(z)$ in the unit disk $\Delta=\{z:|z|<1\}$ by

$$
\begin{equation*}
D^{n+1} F(z) / D^{n} F(z)-2=-\frac{1+(2 \alpha-1) w(z)}{1+w(z)} \tag{2.11}
\end{equation*}
$$

clearly $w(0)=0$.
The equation (2.11) may be written as

$$
\begin{equation*}
D^{n+1} F(z) / D^{n} F(z)=\frac{1+(3-2 \alpha) w(z)}{1+w(z)} \tag{2.12}
\end{equation*}
$$

Differentiating (2.12) logarithmically and simplifying we obtain

$$
\begin{align*}
& \frac{D^{n+2} F(z) / D^{n+1} F(z)+(c-1)}{1+(c-1) D^{n} F(z) / D^{n+1} F(z)}-2 \tag{2.13}\\
& =-\left[\alpha+(1-\alpha) \frac{1-w(z)}{1+w(z)}\right]+\frac{2(1-\alpha) z w^{\prime}(z)}{(1+w(z))(c+(2-2 \alpha+c) w(z))}
\end{align*}
$$

The remaining part of the proof is similar to that of Theorem 2.1.

Remarks. (i) A result of Goel and Sohi [2, Corollary 1] turns out to be a particular case of the above theorem when $a_{-1}=1, n=0$ and $\alpha=0$.
(ii) For $a_{-1}=1, n=0, \alpha=0$ and $c=1$ the above theorem extends a result of Bajpai [1, Theorem 1].

Theorem 2.3. $f \in B_{n}(\alpha)$ if and only if $F(z)=1 / z^{2} \int_{0}^{z} t f(t) d t \in B_{n+1}(\alpha)$.
Proof: From the definition of F we have

$$
D^{n}\left(z F^{\prime}(z)\right)+2 D^{n} F(z)=D^{n} f(z)
$$

That is,

$$
\begin{equation*}
z\left(D^{n} F(z)\right)^{\prime}+2 D^{n} F(z)=D^{n} f(z) \tag{2.14}
\end{equation*}
$$

By using the identity (2.4), (2.14) reduces to $D^{n} f(z)=D^{n+1} F(z)$. Hence $D^{n+1} f(z)=D^{n+2} F(z)$.

Therefore

$$
D^{n+1} f(z) / D^{n} f(z)=D^{n+2} F(z) / D^{n+1} F(z)
$$

and the result follows.

References

[1] S.K. Bajpai, 'A note on a class of meromorphic univalent functions', Rev. Roumanie Math. Pures Appl. 22 (1977), 295-297.
[2] R.M. Goel and N.S. Sohi, 'On a class of meromorphic functions', Glas. Mat. 17 (1981), 19-28.
[3] I.S. Jack, 'Functions starlike and convex of order α ', J. London Math. Soc. (2) 3 (1971), 469-474.
[4] S. Ruscheweyh, 'New criteria for univalent functions', Proc. Amer. Math. Soc. 49 (1975), 109-115.

Department of Mathematics
Karnatak University
Dharwad - 580003
India

[^0]: Received 15 March 1990

