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1. Introduction

In [5], Ky Fan proved the following remarkable amenability "invariant subspace"
theorem:

Let G be an amenable group of continuous, invertible linear operators acting on a
locally convex space E. Let H be a closed subspace of finite codimension n in E and XcE
be such that:

(i) H and X are G-invariant;

(ii) (e + H) n X is compact convex for all e e E;

(iii) X contains an n-dimensional subspace V of E. Then there exists an n-dimensional
subspace of E contained in X and invariant under G.

We will refer to this result as "Ky Fan's Theorem".
The origins of this theorem seem to lie in an elementary property of Lorentz

transformations. Let T be a linear Lorentz transformation: so T preserves the quadratic
form <x,x> = x2 + y2 + z2 — c2t2 on R4. Then there exists a three-dimensional subspace V
of (R4 which is T-invariant and is positive (in the sense that <x,x>^0 for all xeV). (For
lack of a reference, we sketch the proof. Suppose firstly that x->Tx = x' is of the form:
x' = y{x-vt), y' = y, z' = z and t' = y(t — vx/c2) where y={l—v2/c2)~112. Then we can take
V to be the subspace given by: x = ct. It easily follows that the desired result is true
when T is a boost, i.e. there exists a spatial rotation or reflection A such that ATA~l is
of the above form ([1, p. 28]). Finally, the result follows for general T, since such a T
can be decomposed into a boost followed by either a time-reversal transformation
(x,y,z,t)-*(x,y,z, —t) and/or a spatial orthogonal transformation ([1, p. 28]).

Infinite-dimensional versions of this result were established in the work of Pontrjagin,
Iohvidov, Krein and Naimark (see [17, 7, 9, 13, 14]) on "7rn-spaces". Indeed, let n ^ l
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and <,> be the indefinite form on l2 given by: (,x,y'y=Yj=iXiyi— £"+
{x = {xi},y = {yt}). Naimark [14] showed: ifG is a commutative group of invertible,
continuous, linear (,}-preserving operators on l2, then there exists a positive, n-
dimensional subspace V of l2 which is invariant for every TeG. In particular, for TeG,
T\v is essentially a unitary operator on a finite-dimensional Euclidean space, and so
Naimark's result provides useful information about the spectrum of T on /2.

In order to relate Naimark's Theorem to that of Ky Fan, we can take E = l2 and
X = {xe/2:<x,x>^0}. However, there is no mention of an H in Naimark's result. (The
authors do not know for which classes of groups G, Naimark's Theorem holds.) The
introduction of H is due to Ky Fan [4], who proved a version of Naimark's Theorem
when G is generated by a single element. In this result, the subspace H is not required
to be invariant.

Ky Fan's Theorem (of the first paragraph) removes the commutative and Hilbert
space restrictions of Naimark's Theorem, replacing these by amenability and the
conditions involving H.

Ky Fan's Theorem raises a number of natural issues which the present paper will
discuss.

(1) In view of the number of hypotheses in its statement, it is clearly desirable to have
available a stock of (hopefully natural) examples to which the theorem applies. Ky Fan
gives an infinite-dimensional example in [5], and we will develop this further in Section
6. However, there are many very natural finite-dimensional examples: these arise from
symmetry properties of elementary groups. Two such examples are discussed in detail in
Section 5.

(2) The Theorem recalls Day's famous Fixed-Point Theorem (see [6, 15, 16]).
However, Day's Theorem and its concomitants all involve an affine group action on a
compact convex set, and a priori, it is not clear how one can regard a family of n-
dimensional subspaces of E as being compact or convex! Condition (ii) suggests that
Day's Theorem is used somewhere in the proof of Ky Fan's Theorem, and indeed Ky
Fan does apply Day's result to a certain set C of maps defined on E/H. We will give
two other concrete realisations of C, which, we think, clarify the situation and are
helpful for removing the finite-dimensionality condition. The first realisation of C is as a
set of projections P.E-*X with kernel H, while the second is as a subset of H", where
H" has a natural G-action.

(3) We will show (see (4.2)) that the finite-dimensionality requirement in Ky Fan's
Theorem can be removed, the n-dimensionality of V being replaced by: V is a
complement of H in X. Curiously enough, the topological requirements are minimal—for
example, the space H need not be closed.

(4) What about the converse to Ky Fan's Theorem? Following Lau [10], let us say
that G has Property Pn (for fixed n ^ 1) if the conclusion of Ky Fan's Theorem holds. So
Ky Fan's Theorem says: ifG is amenable then Pn holds for all n. Lau showed: G is
amenable if and only if P, holds. We will show that: if, for some n, Pn holds, then G is
amenable, so that Pm is equivalent to Pn for all m,n^l. More generally, (4.3) deals with
the case where the co-dimension of H is an arbitrary cardinal.
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(5) What about a topological version of Ky Fan's Theorem in which G is a locally
compact group? Some work in this direction has been done by Lau [10] and Lau and
Wong [11, 12]. We develop this theme in a different direction without finite-
dimensionality restrictions, the main novelty being that the map e-»(c+H)nX is
required to be "continuous" at 0. The latter condition is satisfied in all reasonable cases.

It will be found useful to replace a "Ky Fan system" (E,H,X,G)—a quadruple
satisfying a natural version of (i), (ii) and (hi)—by a reduced Ky Fan system. In the latter
case X = u XH, where XH is the set of //-complements in X. We show in Section 2 that
questions about Ky Fan's Theorem can (normally) be treated by looking at the reduced
case. Intuitively, a general Ky Fan system is just a reduced one with compact convex
"blobs" stuck onto X.

The inspiration for much of the theory presented here came from considering
geometrical examples, and the reader may well find it helpful to have Examples 1 and 2
of Section 5 in mind when reading the paper.

2. Ky Fan and reduced Ky Fan systems

Let F be either U or C, E be a locally convex space over F, and H be a subspace of E.
The subspace H need not be closed in E. A subspace V of E is said to be complementary
to H if V + H = E, V nH = E. Of course, by Zorn's lemma, H always admits a
complementary subspace V, and the dimension of K(the cardinality of a Hamel basis for
V) is independent of V. The family of subspaces of E complementary to V is denoted by
#„(£) or simply by <£H. UX<=E, then

XH = {V:V<=X,VeVH}.

The algebra of continuous linear transformations of E is denoted by B(E).

A quadruple (£, H, X, G), with E, H as above, is called a Ky Fan system if:

(i) X c £ is such that
(a) (e + H) n X is compact convex for all eeE,
(b) XH*<t),

and
(ii) G is a group of invertible elements of B(E) such that

(a) xAr = Xforall xeG,
(b) xH = H for all xeG.

Given such a Ky Fan system (£, H, X, G), let in be the dimension of a complementary
subspace V for H in E. Ky Fan [5] introduced a more general system when m is finite.
Ky Fan assumes that H is closed in E, and replaces (ii)(a) by the weaker requirement
that xXH = XH for all xeG. However, we have preferred the more natural (ii)(a), though
in fact the results of this paper hold with minor modifications when (ii)(a) is replaced by
Ky Fan's original assumption. Ky Fan also allows G to be a semigroup (cf. (4.8)).

The Ky Fan system (£, H, X, G) is called reduced if X = u XH. Reduced systems are
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geometrically "nicer" than general systems, and as we shall see, problems involving Ky
Fan systems usually need only be studied in the reduced case. Examples of Ky Fan
systems will be discussed later in the paper, but the following very elementary example
illustrates how such systems are naturally associated with reduced systems.

Consider the Ky Fan system (E,H,X,G) where E = U2, H = Ux{0}, X is the region
between the curves x=±y2, and G is trivial. Note that {0} *UeXH. In case (b), we
have the same E, H and G but with X = {0} x U. The maximal reduced Ky Fan system
"inside" (E,H,X,G) is (E,H, {0} x U,G), as is obvious from the geometry.

We will show that there is always a unique maximal reduced Ky Fan system inside a
given Ky Fan system (Proposition 2.3).

Our first Proposition is easy but very important.

Proposition 2.1. Let (E,H,X,G) be a Ky Fan system and let VeXH. Then:

(i) for each eeE, (e + H)nV is a singleton {Pv(e)};
(ii) the map Pv of (i) is a linear projection of E onto V and kerPv = H.

Proof. Since V®H — E, the quotient map QH:E->E/H is a linear isomorphism when
restricted to V. Hence (e + H)nV^0 for all eeE. If e + hu e + h2e{e + H)r\V, then
(hl — h2)e(0 + H)n V, and since H, V are subspaces, F(/t1-/i2)cr(0 + H) n V, a compact
set. Hence hl=h2 and (i) follows. Note also that H n V = {0}. We now prove (ii). Let
et,e2eE, Al,A2e¥. Since V is a vector space XlPv(e1) + A2Py{e2)e V. But we also have

Hence Pv is linear using (i). Again by (i), Pj, = Pv. Finally, since H n V = {0}, we have
Pv(H) = {0}, and if (e + H) n F = {0}, then Oee + tf and eeH. So ker Pv = H. •

Let J&?(£) be the algebra of linear transformations of E. The elements of i?(£) are not
assumed to be continuous. Now let H be a subspace of E and define

0>H = {Pe&(E):P2 = P, ker P = H}.

The study of 9>H is motivated by (2.1): the map Pv of (2.1) belongs to 0>H.
We give i£{E) the pointwise topology which it inherits as a subset of EE: so a net

Tt-*T in S£{E) if and only if T5e-*Te for all eeE. Clearly, £P(E) is a locally convex
space.

Proposition 2.2. The set 0>H is a convex, left zero sub-semigroup of S£{E), and is
closed in Jif(E) if H is closed in E.

Proof. Let P,Qe^H, eeE. Since Q(e-Q(e)) = Q, we have e-Q(e)eH = kerP. So
P(e-Q(e)) = 0 and P = PQ. So &>H is a left zero subsemigroup of i£(E). Now let
ae[0,1], R = <xP + (l— a)Q. Since 3PH is a left zero semigroup, we have R2 = <x2P +
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a)e = R. Further, Re e(ae+ / /)+((l-a)e + tf) = e+
H and //cker/?. It follows that ker/? = //. So Re&>H, and 9>H is convex.

Finally, suppose that H is closed in E and {Pt} is a net in 8?H converging to Te££(E).
Then / /cker T and Teee + H for all ee£. It follows that Te0>H and so &H is closed.

•
Proposition 2.3. Let (E,H,X,G) be a Ky Fan system and let Y=KJXH. Then

{E, H, Y, G) is a reduced Ky Fan system.

Proof. (i)(a) is the only non-trivial condition to be checked. Let eeE and Ce=
(e + H)nX, De={e + H)nY. We show first that De is convex. Let el,e2eDe and
ae[0,1]. By (2.1), there exist P,,P2e0>H with PiE)eXH and Pl{e) = ei. By (2.2),
P = txP1+(l — a)P2e0'H. For any feE, the set Cf is convex and contains Pi(/), P2(f)
and hence also contains P(/) = aP1(/) + ( l -a)P2( /) . So P(E)cX. Since Pe3fH, we also
have that P(E) = VeXH. So a£x + (1 -a)e2 = P(e)eV<=Y,andDe is convex.

We now show that De is compact. Let {e + hs} be a net in £)e. Since Ce is compact, we
can suppose that h3->heH. By the preceding paragraph, there exists a net {Pa} in ^ H

such that P^E)eXH and P^e) = e + hi. We can regard {Pa} as a net in the set fl/eE^/'
which is compact in the product topology by Tychonoff's Theorem. Replacing {Pt} by a
subnet, we can suppose that {P*/} converges for all feE. So Pt-*P for some Pe£C(E),
and it is easily checked that Pe9>H and P(E)eXH. So e + hs = Ps(e)-+PeeDe, and De is
compact. •

Corollary 2.4. Tfce following are equivalent for any group G and cardinal m.

(i) There exists a G-invariant subspace Z e XH for every Ky Fan system (E, H, X, G)
with dim E/H = m.

(ii) There exists a G-invariant subspace ZeXH for every reduced Ky Fan system
(E,H,X,G) with

Proof. It is trivial that (i) implies (ii). Suppose, then, that (ii) holds and let
(E,H,X,G) be a Ky Fan system with dim £/// = ««. Now apply (ii) to the reduced Ky
Fan system (E,H,Y,G) of (2.3) to obtain a G-invariant subspace ZeYH<^XH. So (ii)
implies (i). •

Note. The reduced Ky Fan system (E, H, Y, G) of (2.3) is, in a natural way, the
"largest" reduced Ky Fan system "contained in" (E, H, X, G).

3. Reduced Ky Fan systems as compact convex sets

In this section, we will show that a reduced Ky Fan system can be regarded (a) as a
compact, convex set of projection operators, or (b) as a compact convex subset of a
product space H". The two formulations are, of course, closely related, but both points
of view are useful.
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Let G be a group of invertible elements of B(E), H be a G-invariant subspace of E
and &„ be given the pointwise topology as in Section 2. We obtain a natural left action
of G on &„ by setting

(xeG,Pe^H,eeE). Indeed, for such x and P,

so that {xP)2 = xP. Further, since xH = H, it follows that ker(xP) = H, so that
It is easily checked that the map (x, P)-*xP is a left action of G on ^ H . Further, this
action is both affine and continuous. (Recall that by (2.2), 2?H is convex.)

The theorem of this section asserts that there is a natural one-to-one correspondence
between reduced Ky Fan systems (E, H, X, G) and G-invariant, compact, convex subsets
of^V

Now let *n = dim E/H and V be a subspace of E complementary to H. Let B be a
Hamel basis for V: so m is the cardinality |fi| of B. Let HB be given the product
topology. Then HB is a locally convex space. We define a left G-action on HB as follows.
Let reHB and Vr = Span{b + r(b):beB}. Then Vr is a subspace of E complementary to H,
and as H is G-invariant, xVr is also complementary to H (xeG). It follows that there
exists a unique element s(b)eH n (xVr — b) for each beB. We define

xr = s.

Note that in general, (xr)(b) * x(r{b)) for beB (c.f. §5, Example 2). The fact that the map
(x,r)-*xr is a continuous, affine left action of G on //B follows from the proof of the
following theorem.

Theorem 3.1. Let E, H, G and B be as above. Then there exist natural one-to-one,
G-equivariant correspondences between each of the following three sets:

(i) the set of reduced Ky Fan systems (E,H,X,G);
(ii) the set of compact, convex, G-invariant subsets of 3PH;
(iii) the set of compact, convex, G-invariant subsets K of HB.

Proof. Let (E,H,X,G) be a reduced Ky Fan system. For each VeXH, let PyeXH be
the projection in 0>H associated with V (c.f. (2.1)). Let C = {PV: VeXH}. From the proof
of (2.3), C is a compact convex subset of ^H. Since, for VeXH, xeG, PxV=xPv, it
follows that C is G-invariant. Conversely, given a compact, convex, G-invariant subset D
of 0>H, we obtain a reduced Ky Fan system by setting X = \JPeDP{E). This establishes
the correspondence between (i) and (ii).

We now establish the correspondence between (ii) and (iii). We first define a map
<J):HB->^W. For reHB, we define, in the notation preceding the theorem, <b(r) = PVr.
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Since <&(r)(b) = b + r(b), it is easily checked that 0 is affine and is bicontinuous from
HB onto SPH. We now check that <t> preserves the G-action. Let beB, xeG and set
(xr)(b) = k. By definition, {k}=(xVr-b)nH, so that {x-1k}=(Vr-x~1b)nH =
-x-ib+V,n{x-ib + H) = {-x-lb + PVr(x-ib}. Hence k = -b + (xPVr)(b), giving
<&(xr)(b) = b + k = (xPVr)(b), so that <D(xr) = x<D(r). Thus <D preserves the G-action. Thus O
establishes the correspondence between (ii) and (iii).

4. Fixed-subspace theorems

The following proposition enables one to construct new Ky Fan systems from given
ones. In this result, the locally convex space ©£„ is not given the usual direct sum
topology (c.f. [8, p. 21 If.]). Instead, we give ®Ea the relative topology which it inherits
as a subspace of nEx. (The latter space has, of course, the pointwise topology.)

Proposition 4.1. lf{(Ea,Ha,Xa, Ga):aeA} is a family of reduced Ky Fan systems, then
so also are (©£. , ©H«, ®XX, TCGJ, ( B £ . , nHa, nXa, nGJ.

Proof. Let (E,H,X,G) = (®Ea,®Ha,@Xx,nGa). Of course, G acts on E in the
natural way. If e=£?= 1eB ie£, eXieEXi, then since H,nX,={0) for all a, [e + H)nX =
[@i=i(e.i + fijny Clearly (e + H)nX is compact and convex. If for each a,
VxeXHj, then ®VxeXH so that Z H / 0 . It is obvious that xX = X, xH = H for all xeG,
and tha't X = KJXH. SO (E,H,X,G) is a reduced Ky Fan system.

The corresponding result for (nE^nH^nX^nGJ is straightforward to prove using
Tychonoff's Theorem. •

The next Theorem essentially generalises Ky Fan's Theorem and answers a problem
raised in Lau [10]. Our theorem is valid for arbitrary cardinals m, so that the finite-
dimensional requirement needed in earlier work is not required.

Theorem 4.2. Let G be a group and *nbe a cardinal. Then (i) and (ii) are equivalent.

(i) G is amenable.

(ii) For every Ky Fan system (E, H, X, G) with dim E/H = m, there exists a G-invariant
subspace in XH.

Proof. That (i) implies (ii) follows from (2.4), (3.1) and Day's Fixed-Point Theorem.
Conversely, suppose that (ii) holds. Let V be a complex vector space of dimension m

and B be a basis for V. Then V = @beBCb. Give V the relative product topology (as in
(4.1)). Let H be the locally convex space /^(G)* with the weak* topology and let C be
the set of means on G. Then C is a compact convex subset of H.

Let £ be the locally convex space H x V with the product topology. For each ceC,
let Vc = Span{(c,b):beB}, and identify H with Hx{0}, V with {0} x V. We claim that
E=H@VC. Indeed, H®Vc=>Span{(-c,O) + {c,b):beB} = V and so H + VC=>H®V = E.
Also, if w = X?=iA,<c,fe,)6H( = //x{0}), X,eC, fc.eB, then X?=i^ .=0 . so that A,=0
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(l.gi^n), and u>=0. So E = H®VC. Let X = [)ceCVc. The group G acts continuously on
E as follows: for xeG, (h,v)sE, we define x[h,v)=(xh,v), where G has the natural left
action on H = /0O(G)*. (So X/J(0) = K<f>x) where QelJiG) and (t>xelx(G) is given by:
<£x()0 = <£(x)0 (yeG). Note that xVc=Vxc for all xeG, ceC. We claim that {E,H,X,G) is
a reduced Ky Fan system with dim E/H = *n. The only non-trivial condition to be
checked is that (e + H)nX is compact convex for all e e E.

To this end, let eeE. Then e=(ho,vo), where «>o=£"=i^A f°r s o m e hoeH, A,eC,
fcfefi. Obviously, (e + H)n X = (vo + H)nX. Let 2 6 (t>0 + H) n AT. Then zeVC0 for some
coeC, so that there exist h'eH, y^eC, b)eB such that z = v0 + h! = Z™= t {̂CQ,fc}). So
L?=i <W>, = Z7=i 7̂ j> ^ = (Z7=i Vj)c0- Since B is a basis for V, we have z = (£
It follows that

which is compact convex.
Thus we can apply (ii) to the system (E,H,X,G) to obtain a G-invariant subspace

WeXH. We will show that W=VC for some ceC. Let

f "

( . • • = 1

,:A,eC,

Clearly Z is a subspace of E. For any ceC, a typical element of Vc is of the form
Ir - i /*A + (I"=itt)c 0*,eC), and so Z c F t . Let w l £ W Since W<zX = {JC€CVc, we can
find a Cj such that wx is of the form Z?'=i/iA+(Zr=i^i)ci. If Z"=i^' = ^' t*ien w i e ^ -
Suppose now that Z^i/^.^O- We claim that cr is independent of wt. Indeed, suppose
that w 2 6 ( W n ^ 2 ) ~ Z for some c2eC. Then we can write w2 = Y,j=ivP'j + (Z,j=iv'j)c2
where Z;=i v ; ^0 ancl &}s^ After scaling Wj and vv2 (if necessary), we can suppose that
YJ=I

 vj= 1 =2]™=i A*i- Then W is a subspace contained in X, and we have, using (1),

(w, - w2) 6 Z n ( f //A - £ v#-+//) = ( f /i A - Z vifc;
\i=l 7=1 / (.1 = 1 J=l

Since the H-component of w1 — w2 is cx— c2 and Z<=K or, more precisely, {0} x V, it
follows that Cx = c2. So for some c, W<=V,. and since Vc is also complementary to H, we
have W = Vc for some c e C.

Since W is G-invariant, we have Vc=xVc= Vxc for all xeG, so that xc = c for all xeG.
Hence c is a left invariant mean on G, and G is amenable. •

Corollary 4.3. Let G be a group and m,n be cardinals>0. T/ien (i) a«rf (ii) are
equivalent:

(i) Tfcere exists a G-invariant subspace in XH for every Ky Fan system (E,H,X,G)
with dim
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(ii) There exists a G-invariant subspace in XH for every Ky Fan system (E,H,X,G)
with dim E/H = n.

The preceding Corollary does not explicitly involve the amenability of G. We know of
no proof of (4.3) which does not use the amenability criterion of (4.2).

The next two results are generalisations of results of Ky Fan [3, 4]—see also
Naimark [11] and Section 1.

Theorem 4.4. Let V, H be Banach spaces with H reflexive and E be the Banach space
direct sum V@H. Let q:£->(R be given by: q{v + h) = \\v\\ — \\h\\ (vev, heH). Let G be a
discrete, amenable group of invertible elements of B(E) such that:

(i) xH = H for allxeG;

(ii) q(xe) ^ 0 whenever q(e) ^ 0 (x e G, e e E).

Then there exists a complementary subspace W for H in E such that:

(a) xW=W for allxeG:

(b) q{e)^0 foralleeE.

Proof. Let X = {e e E: q(e) ^ 0} and give £ the weak topology. For each e e V, the set
Ge = (e + H)r\X = {e + h:heH, ||/i||g||e||} is obviously convex, and since H is reflexive,
Ce is also compact. It follows that Ce is compact convex for all ee E. Clearly, VeXH

and by (ii), X is G-invariant. So (E, H, X, G) is a Ky Fan system, and the existence of W
follows from (4.3). •

Corollary 4.5. Let K be a closed subspace of a Hilbert space Jf and H = KL. Let G
be an amenable group of invertible elements of B(Jf) which leave H invariant and which
preserve the form <, > of Jf, where

<k + h,k' + h') = (k,kry-(h.h') (k,k'eK, h,h'eH).

Then there exists a G-invariant, complementary subspace W for H in E such that
<w,w>^0/or all weW.

It is well-known that amenability for a locally compact group G is equivalent to a
topological fixed-point theorem. It is natural to enquire if there is a topological version
of (4.2). To answer this, we require the notion of a topological Ky Fan system. The main
novelty is the "continuity at 0" requirement of (d) below. Most "naturally occurring"
examples of Ky Fan systems are, in fact, topological.

In connection with (c), recall (c.f. [8, § 10.7]) that if H is a closed subspace of a locally
convex space E, then a topological complement for H in E is a closed subspace V of E
such that the map (v,h)-*v + h is a topological isomorphism from VxH onto E. (Of
course, if E is Frechet, then being a topological complement for H is equivalent to being
a closed complementary subspace for H. In general, this equivalence is not true.)
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Definition. A topological Ky Fan system is a Ky Fan system (£, H, X, G) such that:

(a) the action of G is separately continuous on £ and jointly continuous on X;
(b) H is a closed subspace of £;
(c) X contains a topological complement for H in £;
(d) the map e->Ce = (e + H)r\X is continuous at 0, i.e. given a neighbourhood U of 0

in £, there exists a neighbourhood l/j of 0 in £ such that Ce<=C0 + U for all
ee l / , .

Note. It would, perhaps, be more natural to require the G-action on E to be jointly
continuous on E. Unfortunately, our Theorem 4.7 depends crucially on using a
topological Ky Fan system for which the G-action on E is not jointly continuous. We
do not know if Theorem 4.7 is still true when (a) is replaced by the stronger joint
continuity condition.

Let (£, H, X, G) be a topological Ky Fan system. The set of topological complements
V of H with V<=X is denoted (with a slight abuse of notation) by XH. The quadruple
(£, H, X, G) is called reduced if X = u XH.

Proposition 4.6. The quadruple (E,H,Y,G) where Y=vXH, is a reduced topological
Ky Fan system.

Proof. Of course, this is the topological version of (2.3). We will be content to sketch
the modifications in the proof of (2.3) required.

Let ^'H = {PeB(£).P2 = P, kerP = / / } . Then (c.f. (2.2)) 0>'H is a convex, left zero
semigroup. Now follow the first part of the proof of (2.3) with ^ H replaced by 0*H. Let
K = {Pe&"H:P(E)eXH}. We then have to show that if {Pt} is a net in K and P6^P in
.£?(£), then PeK. To this end, let U be a neighbourhood of 0 in £. By (d) above, there
exists a neighbourhood U^ of 0 in £ such that CecC0-(-(/ for all eeU^. Since Ce is
compact, Ps(e)eCe for all 5, and as P3-+P, we have P(e)eC0 + t/ for all ee t / j . It
follows that P is continuous. For otherwise, there would exist a net eff->0 in £ and a
continuous seminorm p on £ such that p(Peff)^l for all <r. Let C/=p"1([0,1]) and Ul

be as in (d). Then, using the ea, we can find a sequence {/„} in I/, with nfneUl,
p(P/n)^ 1. But this means that {p(P(«/n))} is an unbounded sequence in the bounded set
p(C0 + U), and we derive a contradiction. So P is continuous as required. It follows that
P(£) is a topological complement for H, and so belongs to XH. So PeK. It then follows
as in (2.3) that De=(e + H) n y = {P(e):PeK} is compact convex for all eeH. It remains
to show that e-*De is continuous at 0. To this end, let V be a circled neighbourhood of
0 in £ with V+V<=U. Let Kj be a neighbourhood of 0 in £ such that Ce<=C0+V for
all e e ^ . Let PeK. Then PeEC0 + K(ee Vv). Let re(0, 1) be such that rCo<zV and
Wl=rV1. Then if w e ^ , w = re, we have P(w) = P(re)erC0+rVci V+ V<=U. So Dwc
U( = D0 + U) whenever we W, and e-*De is continuous at 0.

Theorem 4.7. Let G be a locally compact group. Then G is amenable if and only if for
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every topological Ky Fan system (£, H, X, G), there exists a G-invariant topological
complement for H in X.

Proof. Suppose that the last condition of the theorem holds. We will show that G is
amenable. Let t/r(G) be the space of right uniformly continuous functions on G: so
Ur(G) consists of continuous bounded functions <f>:G->C such that the map x-*<px is
sup-norm continuous. (Recall that <j>x{y) = <p(xy) for all yeG.) We now modify an
argument of Lau [10]. Let E=UAG)* with the weak* topology, H = {ae£:a(l)=0}, C
be the set of means (states) on UXG) and I = u{Cm:meC}. We claim that (E,H,X,G)
is a (reduced) topological Ky Fan system. Firstly, for ee£, the set Ce={e + H)nX =
e(l)C is a compact convex set. Now let U be a neighbourhood of 0 in E. Since C is
compact, there exists k>0 such that aC(=U for 0^|a|<fc. If C/1 = {ee£:|e(l)|<fc}, then
Ce = e(l)CcQ+U = C0 + U for all eeU\. So the map e-»Ce is continuous. It is easy and
well known that the action of G on E is separately continuous. (The action is jointly
continuous on bounded sets.) We now show that the action is jointly continuous on X.
Indeed, suppose that nets Xf-tx in G and eb-*e in X. We can write ei = kimi, e=km for
A4,AeC, md,meC. Then Xjn^\)-+km(\), so that Xt-*k. It follows that eventually {k^nt}
is inside a bounded set, and so x#t-*xe as required. It now follows that (E,H,X,G) is a
topological Ky Fan system, the remaining verifications being trivial.

By hypothesis there exists a mean Cm such that m is G-invariant. It follows that m is
a left invariant mean on Ur(G) so that G is amenable.

Conversely, suppose that G is amenable and let {E,H,X,G) be a topological Ky Fan
system. By (4.6), we can suppose that the system is reduced. Let K = {P e 0"H: P(E) <= X}
as in (4.6). Then K is a G-invariant, compact, convex subset of i?(£) and K a B(E). We
claim that the G-action on K is separately continuous. Indeed, as earlier, the map
P->xP on K is continuous for each xeG. If xd->x in G and PeK, eeE, then, since P is
continuous, we have P(Xjle)->P(x~le) in X. Since the action of G on X is jointly
continuous, it follows that xsP{xJle)-*xP(x~le), so that xtP->xP. Since G is amenable,
there exists a G-fixed point P in K. Then V = P(E) is a G-invariant topological
complement for H in X.

Note. Let N be a closed subgroup of G. The homogeneous space G/N is called
amenable (c.f.[2]) if there exists a left G-invariant mean on the space of bounded
continuous functions <t>:G/N-*C. Using a fixed-point theorem of Eymard, we can prove
the following extension of (4.7): the homogeneous space G/N is amenable if and only if,
for any topological Ky Fan system (£, H, X, G), the set XH contains a G-invariant element
whenever it contains an N-invariant element.

Is there a version of (4.4) for locally compact groups? The main problem is that the
Ky Fan system (£, H, X, G) of the proof of (4.4) is not topological in general.

We now state a semigroup version of (4.4). This will prove useful in Section 6. The
proof is an easier version of (4.4).

Proposition 4.8. Let E be a locally convex space, H be a subspace of E, XaE and
SczB(E) be a left amenable semigroup of invertible operators such that:
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(i) the set s/ of H-complements in X is not empty, and ss/ <= s/ for all s e S;
(ii) sflcfl for alls eS;

(iii) for each eeE, the set Ce=(e + H)nX is compact convex.
Then there exists Ves/ with sF= V for all seS.

5. Finite-dimensional examples

We give two finite-dimensional examples of Ky Fan systems. Many other natural
geometric examples of Ky Fan systems can be constructed using group symmetries.
Both examples below are reduced topological Ky Fan systems (E,H,X,G); we will use
the notations of (3.1) and its proof, as well as some of the notations preceding (3.1).

Example 1. Let E = U3, H = U2 x {0}, G = T, the circle group realised as rotations
about the z-axis, and X be the cone x2 + y2

=z2. Let /c = (0,0,1). An element Te£?(U3)
is in &H if and only if T(Xk + h) = X(k + hT) (XeU,heH), where hTeH is independent of
X,k,h. Obviously, XH is the set of lines in X passing through the origin, and
C = {Te0>H: \hT\^l}. To specify K (c.f. (3.1.(iii))), we take V to be the z-axis with basis
B = {k}. Identifying HB with H, we have, for heH, xeG,

Hn(xVh-k) = U2x {0}) n(x(U(k + h))-k),

and it follows that the G-action on HB = H coincides with the given action on H. Now

K = {heH: PVh eC} = {(x,y) e U2: x2 + y2
 = 1},

and G acts in the obvious way by rotation about the origin and has 0 as a fixed-point.
The invariant line in X is, of course, the z-axis.

Example 2. Let E = U3, H = {0} x U x {0} and X = IR x W where W is the set
{(>>,z)e[R2: — |z|_yg|z|}. We take G = Z2 = {g,e}, where g acts on E by reflecting
through the (x, y)-plane. We take V to be the (x, z)-plane.

Let ex =(1,0,0), e2 = (0,1,0) and <?3 =(0,0,1). Since, for any Ts0>H, we have c , -
Te,e//, it is obvious that the elements T of &H are given by: T(e1) = e1+r1e2, T(e2) = 0,
T(e3) = e3 + r3e2, where (r1,r3)elR2. The planes in X through the origin are all of the
form Ve:z = (tan9)y {n/4g9 = 3K/4). If TePH is such that TE=Ve, then we require
(l.i-i.O), (Q,r3,l)eV$, i.e. ^ = 0 , r3 = cot0. So C consists of all matrices of the form

1 0 0
T= 0 0 a (f lg[-l , l]) .

1

0

0

0

0

0

0

a

1

Now TE = Span{el,e3 + ae2}, and it is obvious that the reH2 for which Vr = TE is:
r = (0, a) (with the obvious bases for H and V). So K = {0} x [ — 1,1]. It remains to
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calculate the resulting G-action on H2:(x,r)-*x.r. Let r = (rl,r2)eH2. Then gVr =
Span{g^+^2) , g(e3 + r2e2)} = Span{ei +r1e2, -e3 + r2e2}. So if s = (sus2)=g.r, then
{ste2} = H r^(gVr-el) = {rle2}, while {s2e2}=H n(gVr-e3) = {-r2}. So g-(rltr2) =
(ri>—r2)- The G-fixed point in K is, of course, (O,0), which corresponds to the
G-invariant plane y = 0 in K3.

6. A class of examples

We will describe a class of semigroups of operators to which (4.8) applies. These will
also yield examples of groups of operators with invariant complementary subspaces. The
motivation for studying this class of examples comes from an example of Ky Fan (c.f.
[4, p. 451]).

Let / be a Hilbert space, K be a closed subspace of Jf and H = Kl. Let
Z = {PeB(JK?):PKcH, PH = {0}}. Let lK, IH be the orthogonal projections from tf
onto K, H respectively, and let

H + Qi:a,beR, a

We shall see below that G is a group of invertible elements of B(J^) and that Z is a
subsemigroup of G. We shall apply (4.8) to the left amenable subsemigroups of Z.

For calculation purposes, we note that Z2 = {0}. Further we can express T =
in the matrix form

T =

where 3tf is regarded as the direct sum K®H. Similarly, T = (kl - r(IH + P)) e Z has the
matrix form

k
-rP k-r

For £,B^C, let £ = ZK + ZH where £,KeK, £HeH. Let <,> be the quadra t ic form on
given by: <<!;,>7> = <£K,>k>-<£H,»7H> (c.f. (4.5)). Let X = -

Proposition 6.1.
(i) The set G is a group of invertible elements of B(J^), and Z is a subsemigroup of

G;
(ii) G is a solvable group;
(Hi) T(X)<zX for all TeZ.

Proof.
(i) Obviously, / e G. Let

i 3'-u a
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be in G. It is elementary that T ~l = (ab) ~x \ b °~|, TS = [ °C ° 1.

Obviously, G is a group.
Now let

=rk °\sj i °i
\-rP k-r\ \-sQ l-s\
i— — I I — "••' _ J

belong to I . So \\P\\, ||Q||gl and /c>r^O, Z>s^O. Then

-rlP-s(k-r)Q (k-r)(l-i

Let k' = kl, r' = k'-(k-r)(l-s). Clearly k'-r'>0 since 0<k-r, 0<l—s, and r'^O
since 0<fc-r^fc, 0<l-s^l. Also, -rlP-s(k-r)Q= -r'Q', where Q'eZ has
norm ^ 1 since Q' is a convex combination of P, Q. So Z is a semigroup.

(ii) Let T, Se G. Then T~ iS~i TS is of the form

oi

and so therefore are all the elements in the commutator subgroup G of G. The
elements of G' commute so that G is solvable of rank 2.

(iii) Let Tel. be as in the above proof: so k>r^0, | |P | |^ l . Let £eX. Then

So

H||2 + r2\\PtK\\2 - 2(k - r)r

-2(k-r)r\\ZH\\\\iK\\

So TIcX
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Proposition 6.2. Let G, Z, X, JV, K, H be as above, and Z' be a left amenable
subsemigroup of Z. Then there exists a positive, T.'-invariant, topological complement for
H in Jf.

Proof. Clearly, H is G-invariant and so Z'-invariant. The space K belongs to set sf
of //-complements in X, and using (6.1.(iii)), we have ss/czs/ for all seZ'. The
condition (4.8.(iii)) is satisfied (c.f. (4.4), (4.5)) (with Jf given the weak topology). So
there exists an //-complement Ves/ with sVczV for all seZ'. Now X is norm closed in
tf, and so r d Since V~ n HcHnX = {0}, we have V=V~, and V is a
topological complement for H in Jf (for the norm topology). •

Notes. It follows from (6.2) that a subgroup of G generated by a left amenable
subsemigroup of Z will also leave invariant some positive topological //-complement.
The question of which subsemigroups of Z are left amenable raises some interesting
issues which the authors have been unable to resolve. We will now briefly discuss these.

Since any abelian semigroup is amenable, the above Proposition applies to all such
subsemigroups of Z—in particular, to singly-generated subsemigroups of Z. If E' is a
subsemigroup of Z, then the subgroup G' of G generated by Z' is solvable (c.f. (6.1.(ii)))
and so amenable. However, it is well known that there are solvable groups (e.g. the
"ax +/?"-group) containing non-amenable subsemigroups. (We will produce an example
of this below.) The semigroup Z' will be left amenable if either of the two conditions
holds:

(a) s - '
(b) Z' is a semidirect product Zt x p Z 2 of left amenable semigroups S,, Z2 with p(t)

surjective for all teZ2. (These results are due to Day and Klawe—a full account
of these is given in Paterson [15].) Unfortunately, we have been unable to use
either of these criteria to produce non-abelian amenable subsemigroups of £'.

In fact, the simple argument below suggests that left amenable subsemigroups of Z
are rather sparse in general. Let M = <£} with /C = C©{0}, // = {0}®C. Then the
elements T of Z are of the form

-rt k-i

Suppose that I ' d is left amenable. By (6.2), the elements of I ' have a common
eigenvalue \$H. If veX, then the elements of Z' are diagonal, and Z' is abelian. If v$K,
then we can suppose v = [a 1]' for some ae<C~{0}. An elementary eigenvalue
calculation shows that TeZ' is either of the form kl (k>0) or of the form

k
a~l k — r

(In particular, U ^ 1.) It follows that Z' is abelian and we have "left amenable=abelian"
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for subsemigroups of X. Since £ is not abelian, £ is an example of a non-amenable
subsemigroup of a solvable group.
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