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Rings with orthogonality relations

G. Davis

The rings of this paper are assumed to have relations of

orthogonality defined on them. Such relations are uniquely

determined by complete 1)0016811 algebras of ideals. Using the

Stone space of these boolean algebras, and following J. Dauns

and K.H. Hofmann, a sheaf-theoretic representation is obtained

for rings with orthogonality relations, and the rings of global

sections of these sheaves are characterized. Baer rings,

/-rings and commutative semi-prime rings have natural

orthogonality relations and among these the Baer rings are

isomorphic to their associated rings of global sections. A

special type of ideal is singled out in commutative semi-prime

rings and following G. Spirason and E. S+rzelecki , in an

unpublished note, a characterization of a class of such rings is

obtained.

1. Orthogonality relations

DEFINITION 1.1. A relation * on a ring R is said to be an

orthogonality relation if

(1) x*y implies y*x ;

(2) 0*x for all x € R ;

(3) x*x implies a: = 0 ;

(U) Xi*y, x2*y implies (xi~x2)*y i

(5) x*y implies (ax) Ay , (xa) *y for all a € R ;

(6) if 1 is a multiplicative identity for R then x*l implies
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164 G. Davis

x = 0 .

Examples of rings with orthogonality relat ions are

(1) commutative semi-prime rings with x*y i f xy = 0 ;

(2) / - r ings with x*y i f \x\ A \y\ = 0 .

DEFINITION 1.2. For i i J , A c R put x* = {y I R ; x*y) ,

A* = D a* , 4** = (4*)* . If A = {x} i s a singleton set then

A* = {#}* will be written simply as a:* , and similarly for x** . A

subset of R of the form A* , A cr R is said to be a polar subset of

/? . The class of all polar subsets of R is denoted by B{R) .

The following properties of polar subsets are easily established:

(1) every polar subset of R is a two-sided ideal;

(2) 0* = R , R* = (0) ;

(3) 0 A* = U A \ for any class {A } of subsets A c R ;
a
 a l a

 aJ a a

(k) A* n A** = (0) for any A cR .

The orthogonality relation * is said to be regular if

x** n y** = (0) implies x*y .

Unless a statement to the contrary is made it will be assumed that all

orthogonality relations discussed axe regular.

1.3. B(i?) y ordered by inclusion, is a complete boolean algebra.

Proof. Using Frink's axioms [2] for a boolean algebra i t i s enough to

see tha t 8(i?) i s a complete lower semi- la t t ice such that for any

A* f B(i?) there i s an (A1)* e 8(i?) satisfying U ' ) * n B* = (0) if and

only i f A* n B* = B* . In fact A' = A* suffices: i f A* n B* = B*

then A** n B* = A** n {A* n B*) = (-4** n A*) n B* = (0) n B* = (0) . In

general B* 3 {A u S)H = 4* n B* . Suppose that /!** n B* = (0) and take

a; € fl* . If x f 4* then for some a i A , x*a i s fa lse . Then

x** n a** * (0) since * i s regular, but x** cB* , a** c A** and

B* n d** = (0) . Thus x ? A* so that S* = A* n £* .

A boolean structure 8 for a ring R is a class of (two-sided)

ideals of R such that:
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(1) 8 , ordered by inclusion, is a complete boolean algebra;

(2) the zero of 8 is (0) and the unit of 8 is Ft .

Thus, if * is an orthogonality relation on R then the class 8(i?) of

polar subsets of R is a boolean structure. On the other hand if 8 is

a boolean structure for R define x°° = fl{B € 8 : x t B] and

x° = complement of x°° in 8 , for x € R . The relation * defined by

x*y if x (. y° is then an orthogonality relation on R with 8(i?) = 8 .

2. Representations

In this section a representation theorem for rings with orthogonality

relation is described. This representation is in terms of rings of global

sections of sheaves and since this method of representation has been given

at length elsewhere (Dauns and Hofmann [1], Kist [4], Pierce [5]) only the

pertinent definitions and proofs of the final results will be given here.

DEFINITION 2.1. If R, R' are rings with orthogonality relations

denoted indifferently by * then a map h : R •* R' is a ^-isomorphism

if

(1) h is a ring isomorphism into R' ,

(2) x*y if and only if h(x)*h(y) .

DEFINITION 2.2. A triple (A, b, C) is a sheaf of rings if

(1) A, C are topological spaces;

(2) b : A •* C is a local homeomorphism (that is for each a t A

there is an open set containing a such that b restricted to

this open set is a homeomorphism onto an open subset of C);

(3) for each y ( C , b~ (y) is a ring in A ;

(U) the maps (a\, 02) -»• aj - 02 , (<»i, ct2) •*• ctiO2 from the set

A v A = {(aj, 02) ( A x A : b{di) = £1(012)} into A are

continuous.

If C' c C is an open set then a continuous map o : C' •*• A is said

to be a section over C' if b°o : C' •*• C' is the identity map on C' .

If C' = C then a section over C' is said to be a global section. The

set of all global sections is denoted by T(A) and is a ring for the
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pointwise operations: [a+x](a) = a(a) + x(a) , a-x(a) = a(a)-T(a) .

If R is a ring with an orthogonality relation * write Q for the

Stone space of the boolean algebra B(R) of polar subsets of R . Thus,

Q is a Hausdorff extremally-disconnected topological space.

DEFINITION 2.3. For t (. Q define R, = {x I R : x** € t) .

LEMMA 2.4. Every R , t i Q , is a (two-sided) ideal of R ,

D R. = (0) . Every R, is a prime ideal if and only if x*y is
UQ t *

equivalent to xy = 0 .

Proof. I t is straightforward to check that each R is an ideal and

fl R, = (0) . Suppose that x*y is equivalent to xy = 0 . Thus

xy = 0 implies x*y which in turn implies x** n y** = (0) so that for

each t (. Q e i ther x** Z t or y** i t . That is for each R e i ther

x 6 R. or y t R so that each R, is prime. Conversely, suppose that

each R i s prime. If xy = 0 then x i R, or y f R , for eacht v v

t € Q so t h a t x** n y** f D t = (0) and thus x*y . In gene ra l i f
UQ

x*y then xi/ = 0 , for in this case {xy)** c_x** n y** = (0) . //

DEFINITION 2.5. For t ( Q write R/R. for the set of ordered

pairs (x+R,* t) , J: € R . Then i?/i?, is a ring for the operations

[x+Rt, t) + [y+Rt, t) = (x+i/+i?t, t ) ,

Put R = U R/R and define p : R * $ by p(r) = t i f r € i?/i?. .
t*Q

For each I U define a map x : Q -* R by x(t) = [x+R^ t) . Put

R = {x : x ( R) .

LEMMA 2.6. For eacfe x 6 R , p-x is the identity map on Q and

the set R is a ring for the pointwise operations.

A base for the open sets for the hull-kernel topology on Q consists
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of sets of the form Q. = {t $ Q : A* \ t] . The sets

x[QA) = {x(t) : t € QA) for i f fl , A c R , then form a base for the

open sets for a topology on R .

PROPOSITION 2.7. With the hull-kernel topology on Q , and the

topology described above on R , the triple (R, p , Q) is a sheaf of

rings.

Proof. Similar to Proposition 2.13 of Dauns and Hofmann [ / ] .

The ring f(R) of global sections of (R, p , Q) has an

orthogonality relat ion * given by O*t i f for each t (. Q ei ther

a{t) = 0 or T(i) = 0 in R/R, .

Let R be a ring with an orthogonality relat ion * and an identi ty

1 .

For Q' c Q the map l{Q') : Q * R i s defined by

l ( t ) i f t t Q' ,

! ( « ' ) ( * ) = •

o i f t ^ ' ,

I(Q') i s called the indicator function of Q' <=_ Q , and I(Q' ) d T(R) i f

and only if Q' c Q i s closed-open.

THEOREM 2.8. The map x "• x is a ^-isomorphism of R into T(R) .

For each a € F(R) there is a finite closed-open partition \Q. of Q *

and x. € R , such that o = 7 I\Q. \x.

Proof. For x, y € i? , t E S ,

x'>y(t) = {x-y+Rt, t) = (a;+i?t> t) - (y+J?t> t) = £{t) - y(t) ,

and similarly xy = x-p . If 1 is an identity in R then for a € T(R)

and t i Q , a-l(t) = aU)-l(t) = a(t) so 1 is an identity in T(R) .

If x(t) = 0 for each t £ Q then x** € fl t ~ (0) so that x = 0 .

If x«/ then t " n j " = (0) i fl t so for each t t Q either
UQ
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x(t) = 0 or p(t) = 0 , whilst if for each t i Q either x(t) = 0 or

y{t) = 0 then x** n y** £ D t = (0) ; since * is regular this means

that x*y .

Take a i T(R) . For each t i. Q there is an x̂ . € i? such that

o(t) = ̂ (t) • Then there is a closed-open neighbourhood G. of t such

that a{t') = S.(t') for all t' d Q . Then -(Q. : t € ©i is an open

cover for Q so there is a finite subcover \Q.,..., Q. > . Put
t t

n

Ql = QA ' QA = QA X U QA ?OT i > 1 . Then
t i t . V5j<i t .

i 0
t.
0

is a finite closed-open partition of Q . Put x. = x. , and consider the
v t

global section > I\Q. \x. : i f t € Q. then
I A \ i, A

i *• i> i

I I^^xA.t) = x^t) = x^(t) = a(t) . Thus, a = [ I\QA J ^ . //

DEFINITION 2 . 9 . A r i n g i? wi th an or thogona l i ty r e l a t i o n * i s

s a i d t o be completely-pro 3'eatable i f for each / l e i ? , A* © A** = /? .

PROPOSITION 2.10. If R is a ring with an orthogonality relation

then the ring r(R) of global sections of the sheaf (R, p , Q) is

comp lete ly-projectab le.

Proof. For Q' c Q , x ( R , define I(Q' ; x) : Q •* R by

x{t) for t ( Q' ,

KQ'i x)(t) = •

0 for t I Q' .

Then I(Q' ; x) € T(R) if and only if Q' is closed-open. As before,

if a € T(R) then a = j I\Q. ; x.\ where \Q. i is a finite closed-open
i I \ lJ I Ri>

partition of Q . Now take {a } c r(R) and o = \ I\Q. ; x. \ i T(R) .
a . { A. i)

Put S = U it i Q : a U) ?« 0} and S" = « \ 5 . Then S and 5 ' are
a a
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closed-open since Q is extremally-diseonnected. Thus

ao € ^ O * ' for if O (*) # 0 for someda a

a, t then t d S so that O2(t) = 0 . If T d {a }* , then a (t) # 0

ct a

for some a, t implies i(t) = 0 . That is, T = 0 on

U it € Q : a a(£) * 0} , and since T is continuous, T = 0 on S . Then
a
O\ = 0 on 5' so that ax*T . That is, a € {a }** which means that
{a }* © {a }** = r(R) . //
a a

3. Baer rings

Let R be a ring. For a subset A c R the right annihilator of A

is the set A° = {x € R : ax = 0 for all a € A} . The left annihilator

°/5 is defined similarly. If A = {x} is a singleton subset of i? then

4°, OJ4 are denoted respectively by i°, °x .

DEFINITION 3.1. Let R be a ring with identity 1 . R is said to

be a complete Baer ring if for each A c R there is an idempotent

e2 = e € R such that 4° = eR . R is said to be a Baer ring if for each

x i R there is an idempotent e with x° = eR .

Thus in a complete Baer ring right annihilators of subsets are

idempotently generated and similarly in a Baer ring right annihilators of

elements are idempotently generated. A result of Kaplansky [3] shows that

the assumption of an identity for the ring implies the same thing for left

annihilators.

DEFINITION 3.2. A complete Baer ring is said to be of type C if

right annihilators of subsets are generated by central idempotents. A

similar definition holds for Baer rings.

In a (complete) Baer ring R the idempotent generator of a subset

A c R will be denoted by i d U ) .

The set B{R) of all central idempotents of R is a complete boolean

algebra for the operations
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e v f = e f , e / \ f = e + f - e f , e ' = 1 - e .

Assume for the rest of this section that Baer ring means complete

Baer ring.

PROPOSITION 3.3. If R is a Baer ring then the relation * on R

given by x*y if id(x) v id(j/) = 1 is a regular orthogonality relation.

Furthermore e »->• e** is a complete isomorphism from B{R) onto B(R) .

Proof. If x*x then id(x) = 1 so that x° = R and thus x = 0

since 1 i R . To see that x\*y, x2*y implies (xi~x2)*y notice firstly

that (x\-x2)° 2 x° n X2 • That i s , idCx^i? n id(x2)R c ±d(xi~x2)R so

that id(xi) A id(a;2) t id(a;1-X2)^ and thus

id(xj) A id(x2) = ±d(xi-x2) [idCxJ A id(x2)J which means that

id(xi~a;2) i id(a;i) A id(x2) . Then

1 2 ±d(xi-x2) v id(y) > [id(xx) A idU2)] v id(j/) =

[id(x!) v id(j/)] A [id(*2) v id(i/)] = 1 .

If x*^ and a € R then (xs)° 3 x° so that id(*3) > id(x) , and

thus 1 2 id(xs) v id(y) > id(x) v id(j/) = 1 so that xz*y . The

remaining orthogonality properties of * follow easily.

To see that * is regular firstly notice that for A c_ R ,

A* = (l-id(4))* : if e2 = e is an. idempotent then id(e) = 1 - e .

Take x Z A* , so that id(x) v id(a) = 1 for each a t A and thus

id(r) V id[l-id(l-idU)M = id(x) V idU) =

(x) v / \ id(a) = / \ id(x) v id(a) = 1
a* A a*A

Thus, 1 - idU) i A** . If y I (l-idU))* then for a € A ,

id(a) v id(y) > id(/l) v id(y) = id(l-idU)) v ±d{y) = 1

so that y d A* . Thus, A* = (l-idU))* .

Take x, y € R . Then x** = (l-id(x))** , y** = (l-id(iy)) ** so

that [l-id(x)]-[l-id(y)] € x** n y** . It x i y* then

id(x) v id(y) ?t 1 so that [l-id(x)] • [l-id(j/)] # 0 . That i s , * is

regular.

The map e •+ e* from B(i?) into B(i?) is surjective since
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A* = (l-idU))* . If d* = /* then, since 1 - e € e* , 1 - / € / * , it

follows that f - ef = e - fe so that e = f . That is e •+ e* is

injective. For a set {e } c

( V e
aj" = {* < « •

 id^) v i d ( V ea) = ̂
= jx € Z? : id(x) V (l - \/ ej = lj

= jx i R : id(x) v /\ (l - e ) = ll

= jx € R : /\ id(x) v (l - ej = ll
'•a a J

a

Also (l-e)* = e** , for if x 6 (l-e)* , y (. e* then

id(x) v id(y) = [id (a:) v id(j/)] A [e v (l-e)]

= [id(x) v e] A [id(x) v (l-e)] A [id(y) v e] A [id(t/) v (l-e)]

= [id(x) v (l-e)] A l±d{y) v e] > (l-e) v e = 1 ,

while on the other hand 1 - e € e* . Thus e •* e** is a complete

isomorphism onto 8(fl) , as asserted. //

PROPOSITION 3.4. If R is a ring with identity 1 and an

orthogonality relation * then the ring F(R) of global sections of the

sheaf (R, p, 8) is a complete Baer ring of type C such that

id(o) v id(t) - X if and only if for each t i Q either a{t) = 0 or

T U ) = 0 .

Proof. If a i T(R) then a = 7 I\Q. x. , where \Q. 1 is a finite
i \- i> 1 I i>

closed-open partition of Q . For a subset (a } of F(R) put

S(a ) = {t € Q : a U ) * 0} for all a . Then 5(a) = 0 5 n ^ and is
i i i

therefore closed-open so that l[s{a)) € T(R) . If {o } c T(R) then the

closure U S(o J of U S[o ) is closed-open, since Q is extremally
a a

disconnected, so that I T(R) . If T € T(R) and a -T = 0
a
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f o r a l l a t h e n it € Q : I U S[oa) (t)-T(t) * o\ = U S[aJ n S ( T ) vh ich

is void so that I D S[°a)
 -T = 0 . The converse is easily established,

is a centrall - J U S[aJ - r (R) and 1 - I U S[a J
xx ' J ^a

idempotent in T(R) . If [l-j(s(a))] v P - I ( 5 ( T ) ) ] = 1 then

l(s(o)) -/(SCT)) = 0 SO that for each t i Q either o(t) = 0 or

f(t) = 0 . This argument reverses to show that if O*T = 0 then

id(a) v id(x) = 1 . / /

PROPOSITION 3.5. Let R be a complete Boer ring of type C. For

the orthogonality relation * on R given by x*y if id(x) v id(y) = 1

the ring R is *-isomorphica <j> : if-»-F(R) , to the Baer ring of global

sections of the sheaf (R, p , Q) and <j>(id(i4)) = id(<j)(A)) for each

subset A c R .

Proof. The sections a t T(R) can be written £ J P 4 * F # » w n e r e

x. € if and <Q A is a f inite closed-open partition of Q , so that

if = T(R) as a ring will follow once i t is known that for each A c ft ,

id(4) = id(i4) , where id(/l) is the unique central idempotent in T(R)

satisfying {A)° = id(2)-T(R) . For t € Q ,

id(2)(*) = | -xf u
0 if t f U S(a) ,

lit) if t K U 5(3) ,

whilst id(i4)(t) = (idU)+ift> t) , for t € Q .

Take t € ~U S(a) . Then t = lim (*a) , where ( t j is a net in
aeA a

U S(a) . Then fo r each a t h e r e i s an a i. A such t h a t « a ( * a ) * ° •
a^A

S i n c e id.(A) (. ( l - i d U ) ) * = A* then R ^ A* V i d ( 4 ) * 3 4* v A** = if

which means t h a t A** n i d U ) * * = (0) . Then, id(A)[ta) = 0 s i n c e
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A** fc t for each a . Thus

That

idU")(t) = idU) lim (t ) = lim idU") (t ) = 0 .
"•a ' a *• '

is, if id(2)(t) = 0 then \&(A)(t) = 0 .

If id(i4)(t) + 0 then idU)(t) = l(t) since

n (l-idU))** c 4* n A** = (0) and thus (l-idU))** i t since

t is prime. In this case id(2)(i) = l(t) also: A** = (l-idU))** € t

so that t K U S(a) and thus id(i4)(t) = l(t) . Thus the map
a*A

<}>:/?-*• F(R) given by <j>(x) = x is a ring isomorphism onto F(R) .

Furthermore 4i(id(<4)) = i d U ) = id(2) = id(<j>U)) . The map <j) is a

Jt-isomorphism since * is regular. //

4. f-rings

An / - r i n g i s a l a t t i c e ordered r ing R for which \x\ A \y\ = 0

implies \ax\ A \y\ = 0 = \xa\ A \y\ for each a £ R .

Thus, i f * i s t he r e l a t i o n on R given by x*\) i f |a;| A |t/ | = 0

then * i s an o r thogona l i t y r e l a t i o n . Furthermore * i s r e g u l a r s ince

x** n y** = ( | x | A \y\)** .

The main result in §2 gives the

PROPOSITION 4 .1 . Let R be an f-ring with a unit. Then every

ideal R.} t d Q , is a prime lattice-ideal, (R, p , Q) is a sheaf of

totally ordered rings, and F(R) can be lattice ordered so that F(R) is

an f-ring and x H- $ from R into F(R) is a lattice isomorphism into

r(R) .

Proof. If \y\ 5 |x| , x € R then y** ex** so that y i R .

Thus R, is a lattice-ideal for t 6 Q .
t

If |x| A \y\ = 0 then x** n y** = (0) so that, for t i Q ,

either x * * € t or y** t t . That is, x i. R, or y d R , so that

/?, , t € 5 , is a prime lattice-ideal.
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The factor spaces R/R. = \(x+R , t) : x € i?> can now be ordered by
c ( t )

(x+i? t) > 0 if there is a y € R. such that x + y > 0 in R . Then

each factor space is a lattice-ordered ring and in fact, since each B

is a prime lattice ideal, the factor spaces are totally ordered. The ring

F(R) of global sections of the sheaf (R, p, Q) can now be ordered

pointwise: that is a > T if for each t 6 Q , a(t) > r(t) in R/R .

For x € if put Pos(x) = {t € Q : x(t) > 0} . Take t d Pos(x) so that

x(t ) > 0 in R/R . By the definition of the order on R/R there is
0 *o *0

a y £ Rt such that x + y > 0 . Then x+^j/ (t ) = £(* ) so that
0

for all t i Q' where Q. is a neighbourhood of t

If x + y assumes the value 0 in all neighbourhoods of t then

X+y{t ) = 0 contrary to the choice of y . Thus, there is a

neighbourhood Qg of t such that tf + y{t) > 0 for all t t Q„ .

Then x(t) = x^y{t) > 0 for all t d QA n QB . That is,

Q. n Qg c Pos(x) so that Pos(*) is open. On the other hand Pos(x) is

contained in the closed set [t I Q : £(t) 2 0} , yet if £{t) = 0 then

there is a neighbourhood Q of t such that £(t') = 0 for all

t' ( Q. and thus Pos(x) n Q. is void. Thus the closure Pos(x) of

Pos(x) is contained in {t ( Q : £(t) > 0}\{t I Q : £(t) = 0} = Pos(x)

so that Pos(x) = Pos(x) is closed-open. Now for x £ R the function

x v 0 : Q •* R given by x v 0(t) = max{x(t), 0} in R/R is Just

j(Pos(x)]x € T(R) . Thus, if a = [ I\Q. \x. t r(R) then for t i Q. ,

a v 0(t) = max{o(t), 0} = max{x.(t), 0} , so that with Q

Q = Q n Pos(x.) , o v 0 = I \Q }x. € T(R) . That is, T(R) is
bi Ai x i i BV %

l a t t i c e ordered. T(R) is an / - r ing for if |cr| A | T | = 0 then for each

t 6 Q , min{|o | (£) , | T | ( t ) } = 0 so that for U $ T(R) ,
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min{|au|(i), | T | ( £ ) } = 0 and thus |ou| A |x| = 0 .

5. Commutative semi-prime rings

In this section R will denote a commutative semi-prime ring. There

is a regular orthogonality relation * on R given by x*y if xy = 0 .

The aim of this section is to prove the analogue for rings of a result of

Spirason and Strzelecki [6] on vector lattices.

As before, Q will denote the Stone space of the boolean algebra of

polar subsets of R , (R, p, 8) the sheaf of rings obtained from * ,

and T(R) the ring of global sections of (R, p, Q) .

From §2 it is known that for t ? Q the ideal R.cR is prime.

The next result gives a characterization of the ideals R, in the class

of prime ideals of R :

PROPOSITION 5.1. An ideal I of R is of the form I = R , for

some t i Q , if and only if

(1) I is a prime ideal;

(2) x±, .... xm f J implies x** v ... v x£* c I •

(3) x i I implies x* t (0) .

Proof. If x , ..., x € R. and y t x** v ... v a:** then

y** ex** v ... v x** 6 t fsince t is an ideal in B(R)) so that
** — 1 m *• '

y € R . If x i R. then x** ? R since x** i t and t is a proper

ideal in B(i?) . On the other hand let I be an ideal in G having the

properties (l) - (3). Write t for the ideal in 8(i?) generated by

the set {*** My* : x (. I, y I 1} . That is,

t = (4* : A* c x** v ... v x** v y* v ... v y* : x. d I, y. ^ 1} .

I f t = B{R) t h e n R = ( 0 ) * = x** v ... v x** v y* v ... M y * f o r s o m e

x. d I, y . \ I . Then
In If

** n ... n
1

y** = [v* v . .. v u*) * = (u* v . . . v y*} * n (x** v .. . v x**)
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so that y** n ... n y** c x** v ... v x** c I . Since each y** is an

ideal and I is prime then y • € I for some i , which is a contradiction
1r

so that R ^ t . Thus t is contained in a maximal ideal t . If

x € I then a:** € £ c £ so that s f S . If !/ U then #* € t c t

so that y** K t (since y** v y* = R $ t) and thus y \ R. . That is,

DEFINITION 5.2. A subset J of R is said to be a ^-subset if

x , . . . , x € I implies x** v .. . v x** c J . An element x € R for

which x* = (0) is said to be a *-unit of R .

Thus the ideals R , t i Q are just the *-prime ideals not

containing *runits.

PROPOSITION 5.3. If M cR is a minimal prime ideal then M = R

for sane t i Q .

Proof. Take x , ..., x d M and suppose that for some

y € x** v ... v x** , y** <̂  M . Then (0) = y* n y** so that y* <=M .

Thus x* n ... n x* c y* c W , so that x* c M for some i .

Since x. i M , M is prime and R is semi prime, then there is an

a \ M such that xa = 0 . Thus a i x* but a ^ M , which is a

contradiction. Hence x** v ... v x** c M . If i f » then for some
1 m —

a \ M , xa = 0 and thus x* # (0) .

The following result gives an internal description of those

commutative semiprime rings for which the class {R, : t i Q, R. # R} is

precisely the class of minimal prime ideals of R :

DEFINITION 5.4. A commutative semiprime ring R is said to be of

locally compact type if for all x, y t R there exist y1 € x* ,

y2 6 x** such that y € (i/j+j^)*'1 •

PROPOSITION 5.5. A ring R is of locally compact type if and only

if each R ? R is minimal prime.
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Proof. Assume that R is of locally compact type and R. c R is

not minimal prime. Then for some x £ R, , x* c R . How take y £ R .

Then there exist y \ £ x* , y2 £ x** with y £ (Ui+y2)** • Since y\*y2

then y £ [y^y^** = ;/** v j/** c i?t since hx> y2
 € Rt ' T h u s Rt = R '

On the other hand if i? is not of locally compact type then there

exist x, y d R such that # & (x+a)** for all a € x* . Put

5 = {(x+a)** v y* : a € x*} . Then for a € x* ,

Qx+a)** v y*\ n y** = (x+a)** n y** + y** since y** ^ (x+a)** . Thus

(x+a) v y* + R for each a d x* so the ideal t c B(R) generated by

is a proper ideal and is therefore contained in a maximal ideal

t c B(i?) . Consider R, : y € y** \ t since y* i t . Thus y i R

which means that R. + R . Now suppose that a** n x** = (0) . Then

a*x since * is regular so that a** e x * * v a** v y* = (x+a)** v y* f t

and thus a i. R. . That is, x £ R. and x* c i? so that i? is not

minimal prime. //
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