ON THE IRREDUCIBLE LATTICES OF ORDERS

KLAUS W. ROGGENKAMP

1. Introduction. We shall use the following notation:

R = Dedekind domain;

K = quotient field of R;

 R_p = ring of *p*-adic integers in *K*, *p* being a prime ideal in *R*;

A =finite-dimensional separable K-algebra;

G = R-order in A (for the definition cf. (3)).

All modules that occur are assumed to be finitely generated unitary left modules, unless otherwise specified. By a *G*-lattice we mean a *G*-module which is torsion-free as *R*-module. A *G*-lattice is called *irreducible* if it does not contain a proper *G*-submodule of smaller *R*-rank. If p is a prime ideal in *R* we shall write $G_p = R_p \otimes_R G$; $M_p = R_p \otimes_R M$ for a *G*-lattice *M*, and $KM = K \otimes_R M$. Two *G*-lattices *M* and *N* are said to lie in the same genus (notation $M \vee N$) if $M_p \cong N_p$ for every prime ideal p in *R*.

For any A-module L, let S(L) be the collection of G-lattices M, for which $KM \cong L$. Suppose that S(L) splits into $r_g(L)$ genera, and into $r_i(L)$ classes under G-isomorphism. Maranda (6) has shown: If L is an absolutely irreducible A-module, then

(1)
$$r_i(L) = h \cdot r_g(L),$$

where h is the class number of K. Moreover, he listed all G-lattices which are in the same genus as $M \in S(L)$.

Our aim in this paper is to extend the results of Maranda (6). We shall describe (for a certain type of *R*-orders) all irreducible *G*-lattices in terms of irreducible lattices over maximal orders containing *G*. In § 2 we show that for considerations of irreducible *G*-lattices it suffices to look at orders in simple separable algebras. In § 3 we show that the irreducible *G*-lattices are also lattices over maximal orders in *A*, if for all irreducible *G*-lattices, $\operatorname{End}_G(M)$ is the same maximal order. In § 4 we apply the results of § 3 to extend Maranda's results; if *L* is an absolutely irreducible *G*-lattice, then we describe S(L) explicitly. However, the applications are not restricted to absolutely irreducible *A*-modules.

Convention. Homomorphisms will be written opposite to the scalars.

2. Reduction to orders in simple algebras. If H is any R-order in A containing G, and if M is an H-lattice, we write M_H and M_G to indicate whether M should be considered as an H-lattice or as a G-lattice, respectively.

Received February 19, 1968.

PROPOSITION 1. If M and N are H-lattices, then

 $\operatorname{Hom}_{H}(M_{H}, N_{H}) = \operatorname{Hom}_{G}(M_{G}, N_{G}).$

Proof. We have the inclusion

 $\operatorname{Hom}_{H}(M_{H}, N_{H}) \subset \operatorname{Hom}_{G}(M_{G}, N_{G}).$

To show the reverse inclusion, we pick $0 \neq r \in R$ such that $rH \subset G$. For $f \in \text{Hom}_G(M_G, N_G)$ we have:

$$r((xm)f) = (rxm)f = rx(mf), \quad x \in H, m \in M.$$

Since N is R-torsion-free, $f \in \text{Hom}_H(M_H, N_H)$.

For the remainder of this section we shall denote by Irr(G) the set of isomorphism classes of irreducible *G*-lattices.

PROPOSITION 2. We have an injection

$$F: \operatorname{Irr}(H) \to \operatorname{Irr}(G), \quad F: (M_H) \to (M_G),$$

where (M) denotes the isomorphism class of M.

Proof. This map is well-defined, and $(M_G) \in Irr(G)$ if $(M_H) \in Irr(H)$, since M is an irreducible G-lattice if and only if KM is an irreducible A-module. Using Proposition 1, we conclude that F is injective.

LEMMA 3. Let e_i , i = 1, ..., n, be the set of mutually orthogonal central primitive idempotents in A. Then

$$H = \sum_{i=1}^{n} \oplus Ge_{i}$$

is an R-order in A containing G, and F: $Irr(H) \rightarrow Irr(G)$ is a bijection.

Proof. The e_i are integral over R, and $\sum_{i=1}^{n} e_i = 1$; therefore H is an R-order in A containing G. Because of Proposition 2, it only remains to show that F is surjective. Let M be an irreducible G-lattice such that KM corresponds to e_k . Then

$$e_i m' = \delta_{ik} m'$$
 for every $m' \in KM$,

 δ_{ik} is the Kronecker symbol. Since $1 \otimes_R M$ is canonically isomorphic to M, we may assume that $M \subset KM$, so that

$$e_i m = \delta_{ik} m$$
 for ever $m \in M$,

i.e., M is an H-lattice, and F is surjective.

Remark 4. By means of Lemma 3, one knows all irreducible *G*-lattices once the irreducible *H*-lattices are known, where

$$H = \sum_{i=1}^{n} \oplus Ge_{i}.$$

However,

$$\operatorname{Irr}(H) = \bigcup_{i=1}^{n} \operatorname{Irr}(Ge_{i})$$

is the disjoint union of a finite number of sets. Therefore we may restrict our attention to orders in simple algebras.

Example 5. Let \emptyset be a finite abelian group of order g, and suppose that K splits \emptyset . If $X \cong \emptyset$ is the character group of \emptyset , then

 $Irr(R\mathfrak{G}) = \{ (I_k e_{\chi}) \colon \chi \in X, I_k \text{ are representatives of the different ideal classes} \\ \text{ in } R, \text{ and } e_{\chi} \text{ is the primitive idempotent to } \chi \}.$

Proof.

$$e_{\chi} = rac{1}{g} \sum_{\mathfrak{g} \in \mathfrak{G}} \chi(\mathfrak{g}^{-1})\mathfrak{g}, \qquad \chi \in X.$$

We use the bijection in Lemma 3:

$$\operatorname{Irr}(H) \to \operatorname{Irr}(R\mathfrak{G}),$$

where $H = \sum_{x \in x} \oplus R \otimes e_x$. However, $R \otimes e_x = Re_x$ is the maximal *R*-order in Ke_x . Thus

 $\operatorname{Irr}(Re_{x}) = \{ (I_{k}e_{x}), k = 1, \dots \text{ (class number of } R) \},\$

and by Remark 4 we conclude that

$$Irr(R\mathfrak{G}) = \{ (I_k e_{\chi}) \colon \chi \in X, k = 1, \dots \text{ (class number of } R) \}.$$

3. Irreducible lattices of orders in simple algebras. Let G be an R-order in the simple separable finite-dimensional K-algebra $A = (D)_n$, D a skewfield of finite dimension over K. We put $C = G \cap D$, viewing D as embedded in A. Then C is an R-order in D. Let

> $\{B_j\}$ $(j \in J)$ = different maximal *R*-orders in *A* containing *G*, M_j = a fixed irreducible B_j -lattice, for every $j \in J$.

Then

 $C_j = \operatorname{End}_{B_j}(M_j)$ is a maximal *R*-order in *D*; $\{I_k\}, k \in J(C_j) =$ representatives of the different classes of left C_j -ideals in *D*.

With this notation we can write down a full set of non-isomorphic irreducible B_j -lattices for every $j \in J$:

(2)
$$\operatorname{Irr}(B_{j}) = \{ (M_{j} \otimes_{C_{j}} I_{k}) \colon k \in J(C_{j}) \};$$

cf. (1;8).

972

THEOREM 6. Let Irr(G) denote the set of isomorphism classes of irreducible *G*-lattices. Then

(i) $\operatorname{card}(\operatorname{Irr}(G)) \geq \sum_{i \in J} \operatorname{card}(J(C_i));$

(ii) We have equality in (i) if $C = \operatorname{End}_{G}(M)$ for every irreducible G-lattice M;

(iii) In the latter case, we can give all irreducible G-lattices explicitly: Let $\{I_k\}, k \in J(C)$, be representatives of the different classes of left C-ideals in D; then

$$\operatorname{Irr}(G) = \{ (M_j \otimes_C I_k) \colon j \in J, k \in J(C) \}.$$

Moreover, in this case we have:

$$\operatorname{card}(\operatorname{Irr}(G)) = (\operatorname{card}(J))(\operatorname{card}(J(C)));$$

(iv) If we have equality in (i), then there are card(J) genera of irreducible G-lattices, and in each genus there are card(J(C)) different isomorphism classes of irreducible G-lattices. Moreover,

$$\{M \otimes_C I_k : k \in J(C)\}$$

are the non-isomorphic irreducible G-lattices which lie in the same genus as the irreducible G-lattice M, and representatives of the different genera of irreducible G-lattices are the G-lattices

$$\{M_j: j \in J\}.$$

The proof of Theorem 6 is done in several steps, as follows.

PROPOSITION 7. Let M be an irreducible B_j -lattice, N an irreducible B_k -lattice, $j, k \in J, j \neq k$, then M_G and N_G are not isomorphic as G-lattices.

Proof. Assume that $M_G \cong_G N_G$, and let $f: M_G \to N_G$ be a G-isomorphism Then we make M into a B_k -lattice, denoted by M_k , by defining

$$b_k m_k = (b_k(mf))f^{-1}, \quad b_k \in B_k, m_k \in M_k, m_k = m.$$

It is easily checked that the action of B_j on M and the action of B_k on M_k coincide on $B_j \cap B_k \supset G$. From (1, Theorem 3.9) it follows that

$$C_{j} = \operatorname{End}_{B_{j}}(M), \qquad B_{j} = \operatorname{End}_{C_{j}}(M),$$
$$C_{k} = \operatorname{End}_{B_{k}}(M_{k}), \qquad B_{k} = \operatorname{End}_{C_{k}}(M_{k})$$

Now we apply Proposition 1 and conclude that

$$C_j = \operatorname{End}_{B_j}(M) = \operatorname{End}_{G}(M) = \operatorname{End}_{B_k}(M_k) = C_k;$$

thus $B_j = B_k$, and we have deduced a contradiction.

Proof of Theorem 6(i). Because of (2) and Proposition 7, the G-lattices

$$\{M_j \otimes_{C_j} I_k, k \in J(C_j), j \in J\}$$

are non-isomorphic irreducible G-lattices, whence the inequality (i) in Theorem 6 follows.

Proof of Theorem 6(ii). If $C = \operatorname{End}_G(M)$ for every irreducible G-lattice M, then we have equality in Theorem 6(i). The hypothesis implies that C is maximal: Let M be an irreducible B_j -lattice for some $j \in J$; then $\operatorname{End}_{B_j}(M) =$ $\operatorname{End}_G(M) = C$ is a maximal R-order in D. To prove Theorem 6(ii) we have to show that every irreducible G-lattice is a B_j -lattice for some maximal order $B_j, j \in J$. Let M be an irreducible G-lattice. Then M is a right C-lattice, since $C = \operatorname{End}_G(M)$, and $B = \operatorname{End}_C(M)$ is a maximal R-order in

$$K \otimes_{\mathbf{R}} \operatorname{End}_{\mathcal{C}}(M) = \operatorname{End}_{\mathcal{D}}(KM) = A;$$

cf. (1, Theorem 3.9). Since M was a G-lattice to start with, $G \subset B = \text{End}_{C}(M)$, and M is a B-lattice in the usual fashion.

Proof of Theorem 6(iii). If Theorem 6(ii) holds, then $C_j = C$ for every $j \in J$ ($C_j = \operatorname{End}_{B_j}(M_j)$), cf. the beginning of § 3), and a full set of non-isomorphic irreducible G-lattices is given by

$$\{M_j \otimes_C I_k: j \in J, k \in J(C)\}.$$

Proof of Theorem 6(iv). We shall prove the following lemma, which is of interest in itself.

LEMMA 8. Let M be an irreducible G-lattice such that M is also a B_j -lattice for some $j \in J$; let $C_j = \operatorname{End}_{B_j}(M)$. Then

$$\{M \otimes_{C_j} I_k: k \in J(C_j)\}$$

are all the non-isomorphic G-lattices in the same genus as M.

For the notation, compare the beginning of \S 3.

Proof. Since C_j is a maximal *R*-order in *D*, all the *G*-lattices $M \otimes_{C_j} I_k$ are non-isomorphic, and they lie in the same genus as *M*. Now let *N* be a *G*-lattice in the same genus as M_G . Then N_p is a $(B_j)_p$ -lattice for every prime ideal p in *R*. However, this can only be if *N* is a B_j -lattice itself. Therefore, $N \cong M \otimes_{C_j} I_k$ for some $k \in J(C_j)$.

COROLLARY 9. If M and N are irreducible G-lattices such that M is a B_j -lattice for some $j \in J$ and N is a B_k -lattice for some $k \in J$, then M_G is in the same genus as N_G if and only if $B_j = B_k$.

COROLLARY 10. If L is an irreducible A-module, then

 $r_q(L) \geq \operatorname{card}(J).$

For the definition of $r_g(L)$, compare § 1.

The proof of Theorem 6(iv) follows now easily if one observes that we have equality in Theorem 6(i), i.e. every irreducible *G*-lattice is isomorphic to some B_j -lattice.

This completes the proof of Theorem 6.

4. Applications of Theorem 6 to some special orders. Let A be a separable finite-dimensional K-algebra.

LEMMA 11. If R is a Dedekind domain such that the class number of R is finite and such that (R:p) is finite for every prime ideal p in R, then there are only finitely many different maximal R-orders in A containing a fixed R-order G in A.

Proof. There is only a finite number of non-isomorphic irreducible A-modules, say L_1, \ldots, L_t . Under the hypotheses on R, the Jordan-Zassenhaus theorem is valid (cf. 10), i.e. for the R-order G, $S(L_i)$ (cf. § 1) contains only a finite number of non-isomorphic irreducible G-lattices. Now the result follows from Proposition 7 if one observes that every maximal R-order in A decomposes into a direct sum of maximal orders in the simple components of A. The main applications of Theorem 6 can be gained by using the following result.

LEMMA 12. Let G be an R-order in the simple separable K-algebra $A = (K')_n$, K' an extension field of finite dimension over K. If $G \cap K' = C$ is the maximal R-order in K', then every irreducible G-lattice is an irreducible lattice for some maximal R-order in A containing G, i.e. Theorem 6(iii), (iv) can be applied.

Proof. It only remains to show that $\operatorname{End}_{G}(M) = C$ for every irreducible G-lattice M; then the lemma follows from Theorem 6(ii). Since C is the only maximal R-order in D, $\operatorname{End}_{G}(M) \subset C$ for every irreducible G-lattice M. But since C is commutative and is contained in the centre of G, $\operatorname{End}_{G}(M) = C$.

For the remainder of the paper we adopt the following notation:

A is a separable finite-dimensional K-algebra;

L =irreducible A-module;

 $D_L = \operatorname{End}_A(L);$

 e_L = central primitive idempotent corresponding to L;

 $Ae_L = \operatorname{End}_D(L) = \operatorname{simple \ component \ of} A \ corresponding \ to \ L.$

For an R-order G in A we let:

 $C_L = Ge_L \cap D_L;$

 B_j^L , $j \in J_L$ = different maximal *R*-orders in Ae_L containing Ge_L ; M_j^L = irreducible B_j -lattice, $j \in J_L$;

 I_k^L , $k \in J(C_L)$ = representatives of the classes of left C_L -ideals in D; $S(L) = \{M: M = G\text{-lattice}, KM \cong L\}.$

THEOREM 13. If D_L is commutative and if C_L is the maximal R-order in D, then (i) all irreducible non-isomorphic G-lattices in S(L) are given by

$$\{M_j^L \otimes_{C_L} I_k^L, j \in J_L, k \in J(C_L)\},\$$

(ii) S(L) splits into card (J_L) genera:

 $\{M_{j^L} \otimes_{C_L} I_k, k \in J(C_L)\}, \quad j \in J_L,$

(iii)
$$r_i(L) = (\operatorname{card}(J(C)))r_g(L), r_g(L) = \operatorname{card}(J_L),$$

(this is an extension of Maranda's results (6)).

Remark 14. In the special case where L is an absolutely irreducible A-module, we obtain the well-known formula (1).

References

- 1. M. Auslander and O. Goldman, Maximal orders, Trans. Amer. Math. Soc. 97 (1960), 1-24.
- 2. C. W. Curtis and I. Reiner, *Representation theory of finite groups and associative algebras* (Interscience, New York, 1962).
- 3. M. Deuring, Algebren (Springer, Berlin, 1935).
- 4. D. K. Faddeev, On the semi-group of genera in the theory of integral representations, Izv. Akad. Nauk SSSR 24 (1964), 475-478.
- 5. A. Heller and I. Reiner, Representations of cyclic groups in rings of integers. I, Ann. of Math. (2) 76 (1962), 73–92.
- 6. J.-M. Maranda, On the equivalence of representations of finite groups by groups of automorphisms of modules over Dedekind rings, Can. J. Math. 7 (1955), 516-526.
- 7. I. Reiner, On the class number of representations of an order, Can. J. Math. 11 (1959), 660-672.
- 8. K. W. Roggenkamp, Darstellungen endlicher Gruppen in Polynomringen, Mitteilungen aus dem Math. Seminar, Giessen 71 (1967), 1-73.
- 9. S. Takahashi, Arithmetic of group representations, Tôhoku Math. J. 11 (1959), 216-246.
- H. Zassenhaus, Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Äquivalenz endlicher ganzzahliger Substitutionsgruppen, Abh. Math. Sem. Hansischen Univ. 12 (1938), 276-288.

Université de Montréal, Montréal, Québec