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A DOMAIN-THEORETIC ACCOUNT OF PICARD’S THEOREM

ABBAS EDALAT and DIRK PATTINSON

Abstract

We present a domain-theoretic version of Picard’s theorem for
solving classical initial value problems in Rn. For the case of
vector fields that satisfy a Lipschitz condition, we construct an
iterative algorithm that gives two sequences of piecewise linear
maps with rational coefficients, which converge, from below
and above respectively, exponentially fast, to the unique solu-
tion of the initial value problem. We provide a detailed analysis
of the speed of convergence and the complexity of comput-
ing the iterates. The algorithm uses proper data types based
on rational arithmetic, where no rounding of real numbers is
required. Thus we obtain a sound implementation framework
to solve initial value problems. In particular, the use of rational
arithmetic guarantees that implementations of our technique
will adhere to the bounds on convergence speed and algebraic
complexity.

1. Introduction

We consider the initial value problem (IVP) given by the system of differential
equations

ẏi(x) = vi(y1, . . . , yn), yi(0) = 0 (i = 1, . . . , n), (1)

where the vector field v : O → Rn is continuous in a neighbourhood O ⊆ Rn of
the origin, and we look for a differentiable function y = (y1, . . . , yn) : [−a, a] → Rn,
defined in a neighbourhood of 0 ∈ R, that satisfies (1). By a theorem of Peano there
is always a solution [6, p. 19]. Uniqueness of the solution is guaranteed, by Picard’s
theorem, if v satisfies a Lipschitz condition. The question of computability and the
complexity of the initial value problem has been studied in different contexts in
computable analysis [12, 1, 5, 14, 20, 17, 4].

On the algorithmic and more practical side, standard numerical packages for
solving IVPs try to compute an approximation to a solution with a specified
degree of accuracy. Although these packages are usually robust, their methods are
not guaranteed to be correct, and it is easy to find examples where they output
inaccurate results [13].

Interval analysis [16] provides a method to give upper and lower bounds for the
unique solution in the Lipschitz case with a prescribed tolerance, and has been
developed and implemented for analytic vector fields [18, 3]. These approaches
are concerned with the correctness of the computed values, and deliver interval
values that are guaranteed to contain the true solution of the problem. Typically,
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a domain-theoretic account of picard’s theorem

implementations of interval analysis techniques represent real numbers as floating-
point intervals, and outward rounding is applied if the resulting interval endpoints
are not machine-representable.

While this strategy guarantees soundness (that is, containment of the exact result
in the computed interval), one has in general no control over the rounding, which
can produce unduly large intervals, depending on the accuracy of the underlying
floating-point numbers. While it is intuitively clear that more precise floating-point
numbers give more accurate results, there is no general guarantee of actual conver-
gence to the solution. For the same reason, one has no control over the speed of
convergence.

Domain theory [2] presents an alternative technique, based on proper data types,
to produce a provably correct solution with any given degree of accuracy. Using the
domain of Scott continuous interval-valued functions on a compact interval, we
define a domain-theoretic Picard operator, whose least fixed point contains any
solution of the IVP. When the vector field is Lipschitz, the solution is unique, and
we construct an iterative algorithm that gives two sequences of piecewise linear
maps with rational coefficients, which converge, from below and above respectively,
exponentially fast, to the unique solution of the initial value problem. Since the data
types for representing the piecewise linear maps with rational coefficients are di-
rectly representable on a digital computer, no rounding of real numbers is required.
The implementation of the domain-theoretic approach is also complete; that is,
we can guarantee the convergence of the approximating iterates to the solution of
the IVP also for the implementation. This property is not present in any other
approach to validated solutions of differential equations. Furthermore, as a result
of the data types that we use, we can give estimates for the speed of convergence
of the approximating iterates, which are still valid for an actual implementation of
our algorithm.

This simplifies the earlier treatment, discussed in detail in [7], which used a
domain for C1 functions [8, 9]. That approach requires, at each stage of the iter-
ation, a new approximation to the derivative of the solution. The new treatment
is much more similar to the classical theorem in that it gives rise, in the Lipschitz
case, to fast convergence of the approximations to the solution. As regards the
question of computability of the solution of the IVP in the Lipschitz case, the two
domain-theoretic techniques lead to the same result as those in computable analy-
sis [12, 20, 19, 21]: if the vector field is computable then the unique solution of
the IVP is also computable [7, Corollary 6.3].

We discuss two different bases to represent approximations to the solutions of the
IVP, namely the piecewise linear and the piecewise constant functions with rational
(or dyadic) coefficients. Using piecewise linear functions, we avoid the computa-
tion of rectangular enclosures of the solution, which gives tighter bounds on the
solution. This comes at the expense of an increase in the size of the representation
of the approximations to the solution. Using the base consisting of piecewise
constant functions, we show that the order of the speed of convergence to the
solution remains unchanged, while the time and space complexity for the represen-
tation of the iterates is much reduced.

Our approach relies on approximating the vector field with a sequence of (interval-
valued) step functions which converge exponentially fast to an interval extension of
the vector field. We discuss two techniques for obtaining such sequences. First, we
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show how to compose two sequences of approximations such that the composition
of the approximations still converges exponentially fast. Our second technique is
based on a function which computes the values of the vector field to an arbitrary
degree of accuracy, and we show how this gives rise to step functions with the
desired properties.

A prototypical implementation using the GNU multi-precision library [11] shows
that the resulting algorithms are actually feasible in practice, and we plan to refine
the implementation and compare it in scope and performance with existing interval
analysis packages like AWA [3], bearing in mind that the floating-point arithmetic
used by interval software is executed on highly optimised processors, whereas the
rational arithmetic needed for our implementation is performed by software.

2. Preliminaries and notation

For the remainder of the paper, we fix a continuous vector field

v = (v1, . . . , vn) : O −→ Rn

where O ⊆ Rn is a subset of Rn with 0 ∈ O, and we consider the IVP given by
equation (1). Our aim is to approximate solutions y : [−a, a] → Rn of the initial
value problem (1).

We use basic notions from domain theory; see, for example, [2, 10]. Our work
is based on the interval domain IR = {[a−, a+] | a− � a+, a−, a+ ∈ R} ∪ {R},
ordered by reverse inclusion; that is, α � β if and only if β ⊆ α. We write ⊥= R

for the least element of IR. The ‘way below’ relation on IR is given by α � β if
and only if β ⊆ αo, where (·)o denotes the interior of a set. For n � 1, the domain
IRn is isomorphic to the domain of n-dimensional rectangles {α1 × · · · × αn | αi ∈
IR for all 1 � i � n}, and we do not distinguish between these two presentations.
For a rectangle A ∈ IRn, the subset {S ∈ IRn | S ⊆ A} of rectangles contained in
A is a sub-domain of IRn, which is denoted by IA.

We consider the n-dimensional Euclidean space Rn equipped with the maxi-
mum norm ‖x‖ = max{|x1|, . . . , |xn|}, as this simplifies dealing with the Lipschitz
conditions, which we introduce later.

The powers IRn of the interval domain and the sub-domain IA, for a rectangle
A ∈ IRn, are continuous Scott domains. If α−, α+ ∈ Rn with α−

i � α+
i for all

1 � i � n, we write [α−, α+] for the rectangle [α−
1 , α+

1 ] × · · · × [α−
n , α+

n ]. Similarly,
if f : X → IRn is a function, we write f = [f−, f+] if f(x) = [f−(x), f+(x)] for all
x ∈ X.

The link between the ordinary and the interval-valued function is provided by
the notion of extension. If A ∈ IRn is a rectangle, we say that g : IA → IRn is an
extension of f : A → Rn if

g({x1}, . . . , {xn}) = {f(x1, . . . , xn)}
for all x ∈ A. Note that every continuous function f : A → Rn has a canonical
maximal extension If defined by If = (If1, . . . , Ifn) : IA → IRn where

Ifi(S) =

{
fi(S), in cases where fi(S) is bounded,

⊥, otherwise,

for a rectangle S ∈ IA (fi(S) denotes direct image). This extension is maximal
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in the set of interval-valued functions extending f . It is easy to see that If is
continuous with respect to the Scott topology on IA and IRn if f is continuous
with respect to the Euclidean topology.

If P ∈ IRn and Q ∈ IRm, we write IP ⇒ IQ for the set of continuous functions
with respect to the Scott topology on IP and the Scott topology on IQ; likewise,
P ⇒ IQ denotes the set of continuous functions with respect to the Euclidean
topology on P and the Scott topology on IQ. The following operations mediate
between IP ⇒ IQ and P ⇒ IQ; this is as in [8].

Lemma 2.1. Suppose that P ∈ IRk and Q ∈ IRl, and consider the following
operations:

E :(P ⇒ IR) 
 f �→ λα. ⊔x∈αf(x) ∈ (IP ⇒ IR);
I :(IP ⇒ IR) 
 f �→ λx.f({x}) ∈ (P ⇒ IR).

Then both I and E are continuous, I ◦ E = id and id � E ◦ I.

For the proof, see [10, II-3.9]. In order to measure the speed of convergence,
as well as for technical convenience in the formulation of some of our results, we
introduce the following notation.

The width of a compact interval [a, b] is given as w([a, b]) = b−a and its midpoint
is m([a, b]) = (a + b)/2. We put w(⊥) = ∞. For α = (α1, . . . , αn) ∈ IRn we let
w(α) = max{w(αi) | 1 � i � n} and m(α) = (m(α1), . . . , m(αn)). If X is a set and
f : X → IRn is a function, the width of f is given as w(f) = sup{w(f(x)) | x ∈ X}.
In the special case where X ⊆ R, we let wα(f) = sup{e−α|x|w(f(x)) | x ∈ X}, and
we call wα(f) the weighted width of f with respect to the weight α; this gives
w(f) = w0(f). We will use the weighted width to show that the domain-theoretic
Picard operator is a contraction.

Given two intervals α = [a−, a+] and β = [b−, b+] ∈ IR, their Hausdorff distance
is d(α, β) = max{|a+ − b+|, |a− − b−|}. Similarly, for α = (α1, . . . , αn) and β =
(β1, . . . , βn) ∈ IRn, we let d(α, β) = max{d(αi, βi) | 1 � i � n}, and we define the
distance of two functions f, g : X → IRn as d(f, g) = sup{d(f(x), g(x)) | x ∈ X}.

Considering g as an approximation to f , we view the distance d(f, g) as a
measure of the quality of the approximation. We mention two simple lemmas linking
distance, width and weighted width.

Lemma 2.2. Let f : [−a, a] → IRn. Then wα(f) � w(f) � eaαwα(f) for all α � 0.

For the next lemma, recall that m(·) denotes the midpoint of a rectangle.

Lemma 2.3. Suppose that α, β ∈ IRn are compact. Then
(i) ‖m(α) − m(β)‖ � d(α, β);
(ii) 0 � w(β) − w(α) � 2d(α, β) in the case β � α.

The proof of both lemmas is a straightforward calculation, and is therefore omit-
ted here.

Finally, if x � y are real numbers, a partition of [x, y] is a finite sequence
(q0, . . . , qk) of real numbers such that x = q0 < · · · < qk = y, and the set of
partitions of [x, y] is denoted by P[x, y]. The norm of a partition Q = (q0, . . . , qk)
is denoted by |Q| = max{qi − qi−1 | 1 � i � k}.
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3. Picard operator in domain theory

In the classical proof of Picard’s theorem on the existence and uniqueness of
the solution of the initial value problem (1), one defines an integral operator on
C0[−a, a] by

y �→ λx.

∫ x

0

v(y(t)) dt

(with the integral understood componentwise), which can be shown to be a contrac-
tion for sufficiently small a provided that v satisfies a Lipschitz condition [15]. An
application of Banach’s theorem then yields a solution of the initial value problem.
We now define the domain-theoretic Picard operator for arbitrary Scott continuous
vector fields u : IA → IB, for A, B ∈ IRn, and focus on the special case where u is
an extension of a classical function later. As in the classical proof, the Picard opera-
tor is an integral operator, and we therefore introduce the integral of interval-valued
functions.

Definition 3.1. Suppose that f = [f−, f+] : [−a, a] → IR is Scott continuous. For
x ∈ [−a, a] we let ∫ x

0

f(t) dt =
[ ∫ x

0

f−σ(x)(t) dt,

∫ x

0

fσ(x)(t) dt

]
,

where σ(x) = sgn(x) is the sign of x and f0(t) = 1. If f = (f1, . . . , fn) : [−a, a] →
IRn, we let ∫ x

0

f(t) dt =
( ∫ x

0

f1(t) dt, . . . ,

∫ x

0

fn(t) dt

)
.

Note that if we integrate in the positive x-direction, then f− contributes to the
lower function associated with the integral of f , and f+ contributes to the upper
function. If we integrate in the negative x-direction, the roles of f− and f+ are
swapped to ensure that the lower value of the integral is indeed smaller than the
upper value. The following lemma shows that our definition is meaningful.

Lemma 3.2. Suppose that f : [−a, a] → IR is Scott continuous.Then
(i) f− and f+ are measurable;
(ii)

∫ x

0
f(t) dt ∈ IR for all x ∈ [−a, a].

Proof. For Scott continuous f , the functions f− and f+ are, respectively, lower and
upper semi-continuous, and hence measurable. If σ(x) = sgn(x), then σ(x)f−σ(x) �
σ(x)fσ(x), and

∫ x

0
f−σ(x)(t) dt �

∫ x

0
fσ(x)(t) dt follows from the definition of the

ordinary integral. Finally, we have to show that
∫ x

0
f+(t) dt = ∞ if and only if∫ x

0
f−(t) dt = −∞, but this is clear as f+(t) = ∞ if and only if f−(t) = −∞.

The following lemma shows that integration is compatible with taking suprema.

Lemma 3.3. Let f : [−a, a] → IRn.
(i) The function λx.

∫ x

0
f(t) dt is Scott continuous.

(ii) The function
∫

: ([−a, a] ⇒ IRn) → ([−a, a] ⇒ IRn), defined by f �→
λx.

∫ x

0
f(t) dt, is Scott continuous.
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Proof. We assume that n = 1, from which the general case follows. If g(x) =∫ x

0
f(t) dt, then g− and g+ are continuous, and hence g is Scott continuous. The

second statement follows from the monotone convergence theorem.

In the following, we are interested in solutions y : [−a, a] → Rn of the initial
value problem (1), and we fix the domain of definition [−a, a] of a solution for the
remainder of the paper. In order to define the domain-theoretic Picard operator,
we assume that u : IA → IB, where either

• A = [−K, K]n, B = [−M, M ]n and a � 0 satisfies aM � K, or
• A = B = Rn and a � 0 is arbitrary.

The restriction on the lifetime a of a solution in the first case is due to the fact
that, for a solution z : [−a, a] → Rn of the IVP (1), we have ż = v(z) � M ; that
is, M is a bound on the derivative of z. As z(0) = 0, we can only guarantee that
z(t) � Mt, which gives rise to the restriction aM � K for the expression v(z(t))
to be well defined for all t ∈ [−a, a]. Clearly, this restriction is not necessary if u is
defined on all of IRn.

Definition 3.4. Suppose that u ∈ IA ⇒ IB. The domain-theoretic Picard operator
Pu : ([−a, a] ⇒ IA) → ([−a, a] ⇒ IA) is defined by Pu(y) = λx.

∫ x

0
u(y(t)) dt.

Lemma 3.5. Pu is well defined and continuous.

Proof. In case A = [−K, K]n and B = [−M, M ]n, the lemma follows from the
assumption that aM � K that Pu(y) ∈ ([0, a] ⇒ IA) whenever y ∈ [0, a] ⇒ IA.
Lemma 3.3 shows that Pu(y), for y ∈ [0, a] ⇒ IA, and Pu itself are continuous.

In the classical proof of Picard’s theorem, one constructs solutions of IVPs as
fixpoints of the (classical) Picard operator. The domain-theoretic proof replaces
Banach’s theorem with the domain-theoretic fixpoint theorem in the construction
of a fixed point of the (domain-theoretic) Picard operator. Unlike the classical case,
where one chooses an arbitrary initial approximation, we need to choose an initial
(interval-valued) function y0 which is invariant under the Picard operator; that is,
y0 � Pu(y0).

Theorem 3.6. Suppose that y0 : [−a, a] → IA satisfies y0 � Pu(y0), and let yk+1 =
Pu(yk). Then y =

⊔
k∈N

yk satisfies Pu(y) = y.

Proof. The theorem follows immediately from the domain-theoretic fixpoint theo-
rem; see, for example, [2, Theorem 2.1.19], applied to the directed complete partial
order ↑ y0 = {f : [−a, a] → IA | y0 � f}.

For computing solutions of IVPs, we will take y0 = λt.[−K, K]n in the case
that u : I[−K, K]n → I[−M, M ]n is defined in a bounded neighbourhood of the
origin, and the restriction aM � K will ensure that y0 � Pu(y0). This situation is
discussed in detail in Section 4. In the unbounded case, we need to take y0 such
that the (unique) solution z of problem (1) satisfies y0 � z; see Section 5 for details.

The bridge between the solution of the domain-theoretic fixpoint equation and
the classical initial value problem is established in the following proposition, where
Sf : [−a, a] → I[−K, K]n denotes the function λx.{f(x)}, for f : [−a, a] →
[−K, K]n.
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Proposition 3.7. Suppose that y0 : [−a, a] → IA satisfies y0 � Pu(y0), and that
y ∈ ↑y0 is the least fixpoint of the restricted Picard operator Pu : (↑y0) → (↑y0).

(i) If f : [−a, a] → IA solves (1) and y0 � Sf , then y � Sf .
(ii) If y has width 0, then y− = y+ solves (1).

Proof. For the first statement, note that Sf is a fixed point of Pu and y is the least
such. The second statement follows from the fundamental theorem of calculus; note
that y− = y+ implies continuity from the left and from the right.

The previous proposition can be read as a soundness result. Assuming that the
problem (1) admits a unique solution z with y0 � z, then the least fixpoint y of the
domain-theoretic Picard operator will satisfy y � z.

4. Picard operator for Lipschitz vector fields

We now specialise our discussion to the case where v : [−K, K]n → [−M, M ]n is
defined in a compact neighbourhood of the origin, and we fix an interval extension
u : I[−K, K]n → I[−M, M ]n of v; the unbounded case will be discussed in Section
5.

This allows us to consider the following spaces for approximating the vector field
and the solutions to the IVP, where a � 0 is with aM � K:

• V = I[−K, K]n ⇒ I[−M, M ]n for approximations of the vector field;
• S = [−a, a] ⇒ I[−K, K]n for approximate solutions.
It is clear that in this setup, with aM � K, the function y0 = λt.[−K, K]n :

[−a, a] → I[−K, K]n satisfies y0 � Pu(y0).
We can ensure the uniqueness of the solution of the IVP by requiring that the

vector field satisfy an interval version of the Lipschitz property. Recall that for
metric spaces (M, d) and (M ′, d′), a function f : M → M ′ is Lipschitz, if there is
L � 0 such that d′(f(x), f(z)) � L ·d(x, z) for all x, z ∈ M . The following definition
translates this property into an interval setting; see also [16].

Definition 4.1 (Lipschitz condition). Suppose that u : I[−K, K]n →
I[−M, M ]n. Then u is interval Lipschitz if there is some L � 0 such that w(u(α)) �
L·w(α) for all α ∈ I[−K, K]n. In this case, L is called an interval Lipschitz constant
for u.

The following proposition describes the relationship between the classical notion
and its interval version.

Proposition 4.2. For v : [−K, K]n → [−M, M ]n, the following are equivalent.
(i) v is Lipschitz.
(ii) The canonical extension of v satisfies an interval Lipschitz condition.
(iii) v has an interval Lipschitz extension.

Proof. If v is Lipschitz, then the canonical extension of v satisfies an interval Lips-
chitz condition. Now assume that u is an extension of v which is interval Lipschitz,
and let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ [−K, K]n. Let R(x, y) denote the
rectangle α1 × · · · × αn where αi = [xi, yi] in case xi � yi, and αi = [yi, xi]
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otherwise. Since u extends v, we have v(x) ∈ u({x}) ⊆ u(R(x, y)) by mono-
tonicity. Hence u−

i (R(x, y)) � vi(x) � u+
i (R(x, y)) for all 1 � i � n. Similarly,

u−
i (R(x, y)) � vi(y) � u+

i (R(x, y)). Now

‖v(x) − v(y)‖ = max
1�i�n

‖vi(x) − vi(y)‖
� max

1�i�n
u+

i (R(x, y)) − u−
i (R(x, y))

= max
1�i�n

w(ui(R(x, y)))

� L · w(R(x, y))
= L‖x − y‖,

as required.

Note that every interval Lipschitz function induces a total and continuous
classical function.

Corollary 4.3. Suppose that u is interval Lipschitz. Then w(u(α)) = 0 whenever
w(α) = 0, and the induced real-valued function ū, given by ū(x) = z if and only if
u({x}) = {z}, is continuous.

We now show that the least fixpoint of the Picard operator associated with u
has indeed width zero, if u satisfies an interval Lipschitz condition. We assume for
the remainder of the paper that u is an extension of v that satisfies an interval
Lipschitz condition with Lipschitz constant L. In order to show that the least fix-
point of Pu has width zero, we use the weighted width, introduced in Section 2.
The following lemma is the essential step in showing that the least fixpoint of the
domain-theoretic Picard operator actually has width 0 on the whole of [−a, a]. This
is most conveniently expressed as a statement about the whole space S of solutions
introduced at the beginning of Section 4.

Lemma 4.4. Let y ∈ S. Then wα(Pu(y)) � (L/α)wα(y).

Proof. For the ith component Pu(y)i of Pu(y), we calculate that

wα(Pu(y)) = sup
t∈[−a,a]

e−α|t|
∫ t

0

u
σ(t)
i (y(x)) − u

−σ(t)
i (y(x)) dx

� sup
t∈[−a,a]

e−α|t|
∫ t

0

σ(t) · L · e−α|x|eα|x| · w(y(x)) dx

� L · wα(y) · sup
t∈[−a,a]

e−α|t|
∫ |t|

0

eαxdx

� L

α
wα(y)

as required.

Recall that y0(x) = [−K, K]n, and hence w(y0) = wα(y0) = 2K for all α � 0.
This gives us the following theorem for the (not weighted) width of the iterates yk.

Theorem 4.5. Let yk+1 = Pu(yk) for all k ∈ N. Then w(yk) ∈ O(2−k). In partic-
ular, y =

⊔
k∈N

yk is real-valued and solves (1).
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Proof. Put α = 2L in Lemma 4.4. Then, by induction, one obtains w2L(yk) �
2−kw2L(y0), and hence w(yk) � 2−ke2Lw(y0) by Lemma 2.2. It follows from Propo-
sition 3.7 that y solves the initial value problem.

The last result is a simplification, and at the same time a generalisation to higher
dimensions, of [9, Theorem 7.2] and [7, Theorem 6.1], which give a domain-theoretic
proof that the unique solution of the initial value problem for a time-dependent,
computable scalar field is computable.

Although the above theorem tells us that the iterates yk of the Picard operator
will converge to the unique solution, we need to take a further step to actually be
able to compute the iterates. In particular, we need a way to effectively compute
the integrals involved in the definition of Pu. For this reason, we now consider
approximations to u; the basic idea is that every continuous vector field can be
approximated by a sequence of step functions (that is, functions taking only finitely
many values), which allows us to compute the integrals involved in calculating
the approximations to the solution effectively (they reduce to a finite sum). The
key property that enables us also to use approximations to the vector field is the
continuity of the mapping u �→ Pu, which is similar to the approach of [7, Section 6].

Lemma 4.6. The map P : V → (S ⇒ S), u �→ Pu, is continuous.

Proof. This follows from the continuity of u and the monotone convergence
theorem.

This continuity property allows us to compute solutions to the classical initial
value problem by means of a converging sequence of approximations of u.

Proposition 4.7. Suppose that u =
⊔

k∈N
uk and yk+1 = Puk

(yk) for k ∈ N. Then
y =

⊔
k∈N

yk satisfies y = Pu(y).

Proof. The proof follows from Theorem 3.6 and the continuity of u �→ Pu by the
interchange-of-suprema law (see, for example, [2, Proposition 2.1.12]).

We have seen that the Lipschitz condition on the vector field ensures that
the approximations of the solution converge exponentially fast (Theorem 4.5). In
the presence of approximations of the vector field, the speed of convergence will
also depend on how fast the vector field is approximated. The following estimate
allows us to describe the speed of convergence of the iterates if the vector field is
approximated by an increasing chain of vector fields.

Lemma 4.8. Let r � u and y ∈ S. Then wα(Pr(y)) � (L/α)wα(y) + (2/αe)d(u, r).

Proof. For the ith component Pr(y)i we calculate, using Lemma 4.4, that

wα(Pr(y))i = sup
t∈[−a,a]

e−α|t|
∫ t

0

r
σ(t)
i (y(x)) − r

−σ(t)
i (y(x)) dx

� sup
t∈[−a,a]

e−α|t|
∫ t

0

u
σ(t)
i (y(x)) − u

−σ(t)
i (y(x)) + 2d(u, r)) dx

� sup
t∈[−a,a]

e−α|t|w(Pu(y)i) + sup
t∈[−a,a]

e−α|t| · |t| · 2d(u, r)

� L
αwα(y) + 2

eαd(u, r)
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where the estimate for the second term follows from f ′(1/α) = 0, f ′′(1/α) < 0 for
f(x) = x · e−αx.

Using this estimate, we can now prove fast convergence if the approximations of
the vector field converge fast, too.

Theorem 4.9. Suppose that u =
⊔

k∈N
uk with d(u, uk) ∈ O(2−k). For k � 0, put

yk+1 = Puk
(yk) and y =

⊔
k∈N

yk. Then w(yk) ∈ O(2−k) and y is real-valued and
solves equation (1).

Proof. We show that w4L(yk) � 2−k ·w4L(y0) by induction on k; this will imply that
w(yk) ∈ O(2−k). Without loss of generality, we assume that d(u, uk) � 2−k−1Le ·
w(y0). There is nothing to show in the case k = 0. For the general case, we invoke
Lemma 4.8 and obtain

w4L(yk+1) � 1
4w4L(yk) + 2

4Led(u, uk)

� 1
42−kw4L(y0) + 1

42−kw4L(y0)

= 2−(k+1)w4L(y0),

as required. In combination with Lemma 2.2 this yields w(yk) � 2−k · e4aLw(y0) ∈
O(2−k).

Given a representation of u in terms of step functions, Proposition 4.7 gives
rise to an algorithm for computing the solution of the initial value problem, and
Theorem 4.9 provides an estimate on the speed of convergence.

We conclude with a brief remark on the maximal lifetime of solutions before we
extend the method to vector fields defined on the whole of Rn.

Remark 4.10. Recall that we have assumed throughout the section that aM � K,
where M is a bound on the absolute value of the vector field on [−K, K]n. If we
drop this restriction and use a modified Picard operator P ′

u defined by P ′
u(y) =

λt.Pu(y)(t) ∩ [−K, K]n, the ensuing iterates yk will still converge to a solution of
the problem, provided that yk(t) ∈ (−K, K)n for all t ∈ [−a, a].

In the next section, the method is extended to deal with vector fields defined on
the whole of Rn.

5. Picard’s method for unbounded vector fields

In the previous section, we have shown how to construct domain-theoretic
solutions of initial value problems given by a vector field defined on a rectangle
[−K, K] containing the origin.

In practice, one often encounters the situation where v : Rn → Rn is defined
on the whole of the n-dimensional Euclidean space, which renders the limitation
of v being defined on some hyper-rectangle [−K, K]n extremely restrictive: For the
equation to be well-defined, one has to impose the restriction aM � K which poses
an upper limit to the lifetime a of any solution. The next example illustrates this
situation.

Example 5.1. Consider the IVP ẏ = y + 1 with initial condition y(0) = 0. This
problem has the solution y(t) = et − 1, which is defined on the whole real line.
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However, the requirement aM � K forces us to consider the vector field as being
of type v : [−K, K] → [−(K + 1), K + 1] (that is, M = K + 1) and subsequently
a � (K + 1)/K, which restricts the domain of definition of the constructed solution
to the interval [−a, a] of width at most 2.

One situation where the global existence of solutions to IVPs is particularly
important is the solution of linear boundary-value problems — that is, differential
equations of the form

ẏ = Ay + g with boundary conditions involving y(a) and y(b),

where A is a (possibly time-dependent) n×n-matrix. Clearly, we need to construct
solutions in this case at least in the interval [a, b].

In this section, we extend the construction of domain-theoretic solutions to vec-
tor fields defined over the whole of n-dimensional Euclidean space. Classically, this
is achieved by constructing solutions locally, and then applying the extension the-
orem [6]. In the domain-theoretic setting, this is captured by amalgamating the
local fixpoint iterations into one, albeit on a larger function space, so that a single
iterative scheme yields the solution on the whole time interval.

For the remainder of the section, we fix a vector field v : Rn → Rn that satisfies
the Lipschitz condition with Lipschitz constant L, and an extension u : IRn → IRn

that is interval Lipschitz with the same constant L. The problem that we face is the
following: if we assume that the range of the classical vector field v : Rn → Rn is
unbounded, we cannot start the iteration with the everywhere undefined function
y0 = λx. ⊥, since y0 is already a fixpoint of the Picard operator.

Example 5.2. Suppose that v : R → R is the identity function v(x) = x with
extension u(α) = α for α ∈ IR. Then the function y = λx. ⊥ is the least fixed point
of Pu:

Pu(y)(t) =
∫ t

0

u(y(x)) dx =
∫ t

0

u(⊥) dx =
∫ t

0

⊥ dx =⊥ .

Note that the corresponding IVP ẏ = v(y), y(0) = 0 has the unique solution
y(t) = 0.

Therefore, a more sophisticated technique is called for. We now introduce local
a priori bounds for solutions of IVPs. The idea is to fix a partition (cf. Section 2)
Q = (q0, . . . , qk) of the interval [0, a] on whose symmetric expansion [−a, a] about 0
we want to construct a solution of the equation. We then define constants Ki such
that the (unique) solution z : [−a, a] → Rn satisfies ‖z(t)‖ � Ki on every interval
[−qi, qi] induced by the partition. This allows us to take y0 to be the least function
satisfying [−Ki, Ki] � y(t) for all t ∈ [−qi, qi] and all i = 0, . . . , k as starting-point
of the iteration or, equivalently, to obtain a meaningful least fixpoint of the Picard
operator in the space ↑ y0 = {f : [−a, a] → IRn | y0 � f}.

Definition 5.3. Suppose that Q = (q0, . . . , qk) ∈ P[0, a] with |Q| < 1/2L. Define
the constants

KQ
i =

qi‖v(0)‖
(1 − 2L|Q|)i

for all i = 0, . . . , k.
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We drop the superscript Q if the partition Q is clear from the context. The constants
KQ

i are called the local a priori bounds induced by the partition Q, and we define
the induced global bound by KQ = KQ

k .

We collect some straightforward properties, which will be used later.

Lemma 5.4. Suppose that Q = (q0, . . . , qk) ∈ P[0, a] with |Q| < 1/2L.

(i) KQ
i � KQ

i−1 + (qi − qi−1)‖v(0)‖ + 2L|Q|KQ
i for all 1 � i � k.

(ii) KQ
i−1 � KQ

i for all 1 � i � k.

Proof. Throughout the proof, we drop the superscript Q. For the first item, we fix
1 � i � n and calculate

Ki =
qi−1‖v(0)‖ + (qi − qi−1)‖v(0)‖

(1 − 2L|Q|)i

� qi−1‖v(0)‖ + (1 − 2L|Q|)i−1(qi − qi−1)‖v(0)‖
(1 − 2L|Q|)i

=
Ki−1

1 − 2L|Q| +
(qi − qi−1)‖v(0)‖

1 − 2L|Q| .

Hence

Ki(1 − 2L|Q|) � Ki−1 + (qi − qi−1)‖v(0)‖;
that is,

Ki � Ki−1 + (qi − qi−1)‖v(0)‖ + 2L|Q|Ki.

For the second claim, note that 0 < |Q| < 1/2L; hence 1/(1 − 2L|Q|) > 1, and
therefore

Ki−1 =
qi−1‖v(0)‖

(1 − 2L|Q|)i−1

� qi‖v(0)‖
(1 − 2L|Q|)i

= Ki.

The following proposition justifies our choice of terminology. Note that we assume
that v satisfies the Lipschitz condition with Lipschitz constant L.

Proposition 5.5. Suppose that Q = (q0, . . . , qk) ∈ P[0, a] with |Q| � 1/2L and
z : [−a, a] → Rn is the unique solution of the IVP (1). Then ‖z(t)‖ � Ki for all
t ∈ [−qi, qi].

Proof. We show that ‖z(t)‖ � Ki for all t ∈ [−qi, qi] by induction on i. For i = 0,
there is nothing to show. Now suppose that 0 < i. If t ∈ [−qi−1, qi−1], the result
follows from the induction hypothesis in conjunction with Lemma 5.4. Let t ∈
[qi−1, qi].
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As z(t) =
∫ t

0
v(z(x))dx, we have the following estimate:

‖z(t)‖ �
∥∥∥∥

∫ qi−1

0

v(z(x)) dx

∥∥∥∥ +
∥∥∥∥

∫ t

qi−1

v(z(x)) dx

∥∥∥∥
� ‖z(qi−1)‖ +

∫ qi

qi−1

‖v(z(x))‖ dx

� ‖z(qi−1)‖ +
∫ qi

qi−1

‖v(z(x)) − v(z(0)) + v(z(0))‖ dx

� ‖z(qi−1)‖ +
∫ qi

qi−1

L‖z(x) − z(0)‖ + ‖v(z(0))‖ dx

� ‖z(qi−1)‖ +
∫ qi

qi−1

L‖z(x)‖ + ‖v(0)‖ dx

� ‖z(qi−1)‖ + (qi − qi−1)L sup
x∈[qi−1,qi]

‖z(x)‖ + (qi − qi−1)‖v(0)‖.

Hence, as qi − qi−1 � |Q| � 2|Q|, we find that
sup

x∈[qi−1,qi]

‖z(x)‖ � ‖z(qi−1)‖ + 2|Q|L sup
x∈[qi−1,qi]

‖z(x)‖ + (qi − qi−1)‖v(0)‖.

By rearranging and using the induction hypothesis ‖z(qi−1)‖ � Ki−1, we see that
sup

x∈[qi−1,qi]

‖z(x)‖(1 − 2|Q|L) � Ki−1 + (qi − qi−1)‖v(0)‖,

and the result follows from Lemma 5.4.
Similarly, the claim is established for t ∈ [−qi,−qi−1].

Actually, one can prove the same statement with a sharper definition of Ki and
show that

‖z(x)‖ � qi‖v(0)‖
(1 − |Q|L)i

on [0, qi].

However, as we shall see later, we need the a priori bounds of Definition 5.3 when
we move to interval-valued functions.

For later reference, we include the following lemma, which will be used to show
that the Picard operator, which we introduce in the next section, is well defined.

Lemma 5.6. Suppose that Q = (q0, . . . , qk) ∈ P[0, a] with |Q| < 1/2L. Then

qi‖v(0)‖ +
i∑

j=1

2LKj |Q| � Ki

for all i = 0, . . . , k.

Proof. We proceed by induction on i, where there is nothing to show for the case
i = 0 (recall that K0 = q0 = 0). Now suppose that i > 0. The induction hypothesis,
together with Lemma 5.4, gives

qi‖v(0)‖ +
i∑

j=1

2LKj |Q| = qi−1‖v(0)‖ +
i−1∑
j=1

2LKj |Q| + (qi − qi−1)‖v(0)‖ + 2LKi|Q|

� Ki−1 + (qi − qi−1)‖v(0)‖ + 2LKi|Q| � Ki

as required.
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Figure 1: The set SQ for Q = (q0, q1, q2, q3)

We now introduce the space on which we construct domain-theoretic solutions.

Definition 5.7. Suppose that Q = (q0, . . . , qk) is a partition of [0, a] with |Q| <
1/2L, and take the a priori bounds Ki and the global bound KQ as in Definition
5.3. We let

SQ = {f : [−a, a] → I[−KQ, KQ]n | f � (−qi, qi) � λt.[−Ki, Ki] for all 1 � i � k}
and we write

yQ
0 =

⊔
1�i�k

[−qi, qi] ↘ [−Ki, Ki]

for the least element of SQ, where the step function α ↘ β is defined by x �→ β if
and only if x ∈ αo, and x �→⊥ otherwise. We call SQ the solution space associated
with Q, and we drop the sub/superscript Q if the partition is clear from the context.

Graphically, the set SQ is the set of functions whose interval values are bounded
by a double staircase, illustrated in Figure 1. Using Lemma 5.6, we can now show
that the Picard operator maps SQ to SQ.

Lemma 5.8. Let Q ∈ P[0, a] with |Q| < 1/2L. Then Pu(y) ∈ SQ if y ∈ SQ.

Proof. Suppose that Q = (q0, . . . , qk). By monotonicity of Pu it suffices to show
the statement for y = y0, as y0 is the least element of S.

We show, by induction on i, that [−Ki, Ki]n � Pu(y)(t) for all t ∈ [−qi, qi]. For
i = 0 there is nothing to show, so we suppose that i > 0.

As y0 � λt.0, we see, by monotonicity of integration, that Pu(y0) � Pu(λt.0),
and hence

Pu(y0) =
∫ t

0

u(y0(x)) dx

�
∫ t

0

u(0) dx =
{ ∫ t

0

v(0) dt

}
= {t · v(0)};

that is,

t · v(0) ∈ Pu(y0) (2)

for all t ∈ [0, a].
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Moreover, the width of Pu(y0) can be estimated using the fact that u is interval
Lipschitz as follows for t ∈ [qi−1, qi]:

w(Pu(y0)(t)) =
∫ t

0

w(u(y0(x))) dx

=
i−1∑
j=1

∫ qj

qj−1

w(u(y0(x))) dx +
∫ t

qi−1

w(u(y0(x))) dx

�
i−1∑
j=1

2LKj(qj − qj−1) + 2LKi(t − qi−1)

for all t ∈ [qi−1, qi]. Hence

w(Pu(y0)(t)) �
i∑

j=1

2LKj(qj − qj−1) �
i∑

j=1

2LKj |Q|. (3)

Putting Wi =
∑i

j=1 2LKj(qj − qj−1), equation (2) combined with equation (3)
yields

[−qi‖v(0)‖, qi‖v(0)‖]n + [−Wi, Wi]n � t‖v(0)‖ + [−Wi, Wi]n

� Pu(y0)(t)

for all t ∈ [qi−1, qi].
By Lemma 5.6 we have qi‖v(0)‖+Wi � Ki, and therefore [−Ki, Ki]n � Pu(y0)(t)

for all t ∈ [qi−1, qi], as required. By an analogous argument, the same relation
holds for t ∈ [−qi,−qi−1]. Note that for 0 � t < qi we find, by the induction
hypothesis, that [−Ki, Ki]n � [−Ki−1, Ki−1]n � Pu(y0)(t), and hence the proof is
complete.

Since the estimate on convergence speed (Theorem 4.9) also remains valid in this
extended setting, we have our next theorem.

Theorem 5.9. Suppose that Q ∈ P[0, a] is a partition with |Q| � 1/2L, and let
yk+1 = Pu(yk). Then w(yk) ∈ O(2−k) and y =

⊔
k∈N

yk is real-valued and solves
the IVP (1).

Proof. The estimate on the convergence speed is identical to the proof of Theorem
4.9, and the result follows, since y is a real-valued fixpoint of Pu.

We now discuss the case where the extension u of the classical vector field v is
given in terms of an increasing sequence of approximations u =

⊔
k∈N

uk. For this,
we need to reconsider the measure of convergence speed of the uk to u.

Definition 5.10. If r, u : IRn → IRm and K � 0, the restricted distance dK(r, u)
is given by

dK(r, u) = sup{d(r(α), u(α)) | α ∈ I[−K, K]n}.
If u =

⊔
k�0 uk, we say that dc(u, uk) ∈ O(2−k) if, for all K � 0, we have

dK(u, uk) ∈ O(2−k).
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That is, we say that the sequence (uk) converges exponentially fast to u if it
converges exponentially fast on all compact sets; notationally, this is reflected by
using the subscript ‘c’ in the statement dc(u, uk) ∈ O(2−k).

We now establish that working with approximations (uk) of u does not destroy
the convergence to a solution, and then we give an estimate of the convergence
speed.

First, note that for u′ � u, it is no longer guaranteed that Pu′(y) ∈ SQ for all
y ∈ SQ. This problem is addressed in the next lemma, where 2SQ = {2y | y ∈ SQ}.
Lemma 5.11. Suppose that Q ∈ P[0, a] with |Q| < 1/2L, u′ � u with d2KQ(u, u′) �
(1/2)‖v(0)‖. Then Pu′(y) ∈ 2SQ for all y with y ∈ 2SQ.

Proof. Similarly to the proof of Lemma 5.8, it suffices to show that the claim
holds for

y = 2y0 =
⊔

i=1,...,k

[−qi, qi] ↘ [−2Ki, 2Ki],

and to verify that tv(0) ∈ Pu′(y)(t) for all t ∈ [0, a]. We have, for t ∈ [qi−1, qi]:

w(Pu′(y)(t)) =
∫ t

0

w(u′(y(x))) dx

�
∫ qi

0

w(u(y(x))) + 2d2KQ(u, u′) dx

�
i∑

j=1

(qj − qj−1)(L · 4Ki + 2d2KQ(u, u′))

�
i∑

j=1

4KjL(qj − qj−1) + qi‖v(0)‖.

Again, if we let

Wi =
i∑

j=1

4KjL(qj − qj−1) + qi‖v(0),

we have
Pu′(y)(t) � [−qi‖v(0)‖, qi‖v(0)‖]n + [−Wi, Wi]n,

and as

qi‖v(0)‖ + Wi � 2qi‖v(0)‖ +
i∑

j=1

(qj − qj−1)4LKj � 2Ki

by Lemma 5.6, the result follows.

We now show that the order of the convergence speed of the iterates to the
solution remains unaffected if we compute the iterates using approximations of
the vector field. This is similar to Lemma 4.8, except that we need an additional
condition on the distance of u and u′.

Lemma 5.12. Suppose that Q ∈ P[0, a] with |Q| � 1/2L and u′ � u with
d2KQ(u, u′) � (1/2)‖v(0)‖ and y ∈ 2SQ. Then

wα(Pu′(y)) � L
αwα(y) + 2

αed2KQ(u, u′).
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Proof. This is as for Lemma 4.8.

Moving from weighted width to ordinary width, we obtain the main result of
this section: fast convergence of the Picard iterates for unbounded vector fields.

Theorem 5.13. Suppose that u =
⊔

k uk with dc(u, uk) ∈ O(2−k). For k � 0, put
yk+1 = Puk

(yk) and y =
⊔

k yk. Then Pu(y) = y and w(yk) ∈ O(2−k).

Proof. We proceed as in the proof of Theorem 4.9, but invoking Lemma 5.12 instead
of Lemma 4.8.

Our next goal is to show that this algorithm can be restricted to bases of the
respective domains, showing that it can be implemented without loss of accuracy.
We then give an estimate of the algebraic complexity of the algorithm.

6. An implementation framework for solving IVPs

We now show that the algorithm contained in Proposition 4.7 is indeed imple-
mentable, by showing that the computations can be carried out in the bases of the
domains. In fact, we demonstrate that every increasing chain of (interval-valued)
vector fields (uk)k∈N, where each uk is a base element of V, gives rise to a sequence of
base elements of S, which approximate the solution and converge to it. Our discus-
sion is restricted to the situation where the vector field v : [−K, K]n → [−M, M ]n

is defined on a rectangle containing the origin, but all the results adapt to the un-
bounded setting outlined in Section 5. Recall that in this case we have to make the
assumption that aM � K on the lifetime of a solution to guarantee well-definedness
of the problem.

In view of the algorithm contained in Proposition 4.7, we consider simple step
functions as the base of V, and piecewise linear function as the base of S. Note that
in this setup, the domain-theoretic Picard operator computes integrals of piecewise
constant functions, and hence produces piecewise linear functions.

We begin by introducing the bases with which we are going to work.

Definition 6.1. Let D ⊆ R, and assume that −a = a0 < · · · < ak = a with
a0, . . . , ak ∈ D, β0, . . . , βk ∈ I[−K, K]nD and γ1, . . . , γk ∈ I[−M, M ]nD, where IRD

denotes the set of rectangles which are contained in R and whose endpoints lie in D.
We consider the following classes of functions.

(i) The class SL
D of piecewise D-linear functions [−a, a] → I[−K, K]n,

f = (a0, . . . , ak)↘L (β0, . . . , βk)

where

f(x)± = β±
j−1 +

x − aj−1

aj − aj−1
(β±

j − β±
j−1) for x ∈ [aj−1, aj ].

Every component of a D-linear function is piecewise linear and at a0, a1 . . . , ak

takes values in D.
(ii) The set SC

D of piecewise D-constant functions [−a, a] → I[−K, K]n,

f = (a0, . . . , ak)↘C (β1, . . . , βn), x �→
{

βi, x ∈ [ai−1, ai]o,
βi−1 ⊔βi, x = ai and 1 < i < k,
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where ⊔denotes the greatest lower bound and ( · )o is interior relative to the
interval [−a, a]. The components of a D-constant function assume constant
values in D, which only change at a0, a1, . . . , ak.

(iii) The set VD of finite suprema of consistent step functions I[−K, K]n →
I[−M, M ]n,

f =
⊔

1�j�k

βj ↘ γj : x �→
⊔

{γj | 1 � j � k, βj � x},

where (βi ↘ γi)1�i�k are consistent if βo
i ∩ βo

j �= ∅ =⇒ γi ∩ γj �= ∅ for all
1 � i, j � k.

(iv) For any f as above, we put N (f) = k and call it the complexity of represen-
tation of f . In more detail, we let the complexity of representation be given
by

N ((a0, . . . , ak)↘L (β0, . . . , βk)) = N (
(a0, . . . , ak)↘C (β1, . . . , βk)

)
= N

( ⊔
1�j�k

βj ↘ γj

)
= k.

The notation N (·), which measures the size of representations, is as in [7]. Since
we will not consider different representations for the same functions, we allow our-
selves to blur the distinction between a function and its representation as a step
function. The last section shows how to obtain a representation of u as a supremum
of step functions.

If D is dense in R, it is well known that the sets defined above are bases of their
respective superspaces.

Proposition 6.2. Suppose that D ⊆ R is dense and −a, a ∈ D. Then
(i) SL

D and SC
D are bases of S;

(ii) VD is a base of V.

We can now show that the Picard operator Pu associated with a simple step
function u restricts to an endofunction on the set of basis elements of the space
of linear step functions SL

D, and give estimates for the algebraic complexity of the
procedure. The following lemma covers the operation of applying the vector field
to an approximation of the solution, and simplifies [7, Algorithm 4.4].

Lemma 6.3. Suppose that D ⊆ R is a subfield, u ∈ VD and y ∈ SL
D. Then we can

effectively find f ∈ SC
D with N (f) � 3N (y)N (u) and u ◦ y(x) = f(x) for all but

finitely many x ∈ [−a, a]. Moreover, f can be computed in time O(N (u)2N (y)).

Proof. First suppose that u = β ↘ γ consists of a single step function, and that
y = (a0, . . . , ak)↘L β with β = (β0, . . . , βk). In every open interval (aj−1, aj) we can
find an open (possibly empty) subinterval αj ⊆ (aj−1, aj) such that y(x) � γ if and
only if x ∈ αj for all x ∈ (aj−1, aj): put αj =

⋂
1�i�n{x ∈ (aj−1, aj) | yi(x) ∈ βo

i }.
As D ⊆ R is a subfield, we have α± ∈ D. This gives

u(y(x)) =

{
γ, x ∈ α1 ∪ · · · ∪ αk,

⊥, otherwise,

for all but finitely many x ∈ [−a, a].
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Since αj can be computed in constant time (for every subinterval (aj−1, aj))
and the αj are pairwise disjoint intervals satsfiying α+

j � α−
k for all j � k, we can

compute f ∈ SC
D with f(x) = u(y(x)) for all but finitely many x in time O(N (y)).

Moreover, since αj splits every subinterval (aj−1, aj) into at most three parts, we
can achieve N (f) � 3N (y).

In the case u =
⊔

1�j�l γj ↘ βj , we have

u ◦ y =
⊔

1�j�l

(γj ↘ βj) ◦ y.

For every j, we can compute fj with fj(x) = (γj ↘ βj)(y(x)) for all but finitely
many y in O(N (y)) algebraic steps. Hence supj fj can be performed in O(N (u)2 ·
N (y)) steps, taking into account that we need O(N (u)2) steps to compute the
support points where u ◦ y changes its (piecewise constant) value. Note that the
interval (−a, a) is subdivided into at most 3N (y)N (u) parts. We have u ◦ y(x) =
f(x) for all but finitely many x, by construction.

Now that we have a basis representation of u ◦ y, it is easy to obtain a basis
representation of Pu(y) by integration. Note that computing integrals can be per-
formed over a base defined over a subring of R; we will make use of this fact later.
We now consider integration of base functions, which plays the part of function
updating [7, Algorithm 3.3].

Lemma 6.4. Suppose that D ⊆ R is a subring and let g(x) =
∫ x

0
f(x) dx for f ∈ SC

D .
Then g ∈ SL

D and N (g) = N (f). Furthermore, g can be computed in O(N (f)) steps.

Proof. Let f = (a0, . . . , ak)↘C (β1, . . . , βk). First suppose that 0 ∈ {a0, . . . , ak}.
Every component fi = [f−

i , f+
i ] consists of a pair of piecewise constant functions.

On every interval [aj−1, aj ], for 1 � j � k, the integral of f±
i can be computed

by multiplying the width of the interval by the value of f±
i , and hence g ∈ SL

D

since D ⊆ R is a subring. This computation takes constant time; hence g can be
computed in time O(N (f)), and clearly N (g) = N (f). In the case 0 /∈ {a0, . . . , ak}
we insert 0 as additional partition point and obtain N (g) = N (f) + 1, and g can
be computed in O(N (f) + 1) = O(N (f)) steps.

Summing up, we have the following estimate on the algorithm induced by Propo-
sition 4.7 if we compute over the base of piecewise linear functions.

Proposition 6.5. Suppose that D ⊆ R is a subfield, u ∈ VD and y ∈ SL
D. Then

(i) Pu(y) ∈ SL
D;

(ii) Pu(y) can be computed in time O(N (u)2N (y));

(iii) N (Pu(y)) ∈ O(N (u)N (y)).

Proof. Lemma 6.4 provides us with f = (a0, . . . , ak)↘C (β1, . . . , βk) with N (f) ∈
O(N (u) · N (y)) such that u ◦ y = f for all but finitely many arguments. Hence

Pu(y)(x) =
∫ x

0

(u ◦ y)(t) dt =
∫ x

0

f(t) dt,

and the claims follow from Lemma 6.4.
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aj−1 l j h j
aj

+

−β

β

Figure 2: Subdivision of intervals.

We can now summarise our results for computing with piecewise linear functions
as follows.

Theorem 6.6. Suppose that D ⊆ R is a subfield and u =
⊔

k∈N
uk with uk ∈ VD.

If yk+1 = Puk
(yk), then

(i) yk ∈ SL
D for all k ∈ N;

(ii) y =
⊔

k∈N
yk has width 0 and y− = y+ solves the IVP (1);

(iii) w(yk) ∈ O(2−k) if d(u, uk) ∈ O(2−k).

Since the elements of SL
D for D = Q, the set of rational numbers, can be repre-

sented faithfully on a digital computer, the theorem — together with Proposition 3.7
— guarantees soundness and completeness also for implementations of the domain-
theoretic method, albeit at the expense of an exponential number of intermediate
points. (This is addressed in the next section.) We also provide a guarantee on the
speed of convergence, since the condition d(u, uk) ∈ O(2−k) can always be ensured
by the library used to construct the sequence (uk) of approximations to the vector
field, which is discussed in Section 8.

Also, computing over the base of piecewise linear functions eliminates the need
for computing rectangular enclosures at every step of the computation. This increase
in accuracy comes at the expense of a high complexity of the representation of the
iterates. The next section presents an alternative, which uses piecewise constant
functions only.

7. Computing with piecewise constant functions

We have seen that the time needed to compute Pu(y) is quadratic in the com-
plexity of the representation of u and linear in that of y. However, the complexity
of the representation of Pu(y) is as in Proposition 6.5(iii). This implies that

N (yk+1) ∈ O(N (u0) . . .N (uk)),

if u =
⊔

k∈N
uk and yk+1 = Puk

(yk).
The blow-up of the complexity of the representation of the iterates is due to the

fact that each interval on which y is linear is subdivided when computing u ◦ y,
since we have to intersect linear functions associated with y with constant functions
induced by u, as illustrated by Figure 2.
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f

f

F

F

+

−

Q
(f) −

Q
(f)

+

Figure 3: Flattening.

This can be avoided if we work with piecewise constant functions only. The key
idea is to transform the linear step function Pu(y) into a simple step function before
computing the next iterate: on every interval, replace the upper (linear) function
by its maximum and the lower function by its minimum. We now develop the
technical apparatus that is needed to show that the approximations so obtained
still converge to the solution. Technically, this is achieved by using partitions of
the interval [−a, a], where we use the following terminology. (Recall that P[x, y]
denotes the set of partitions of [x, y].)

Definition 7.1 (Partitions). Suppose that x � y are real numbers.

(i) If D ⊆ R, then PD[x, y] ⊂ P[x, y] is the subset of partitions of [x, y] whose
points lie in D.

(ii) The size of a partition Q = (q0, . . . , qk) is given by N (Q) = k.

(iii) A partition Q = (q0, . . . , qk) refines a partition R = (r0, . . . , rl) if {r0, . . . , rl} ⊆
{q0, . . . , qk}; this is denoted by R � Q.

(iv) The range of a partition Q = (q0, . . . , qk) is denoted by r(Q) = [q0, qk].

We are now ready for the definition of the flattening functional, which transforms
piecewise linear functions to piecewise constant functions. The following definition
uses the notation introduced at the beginning of Section 4.

Definition 7.2. Suppose that Q ∈ P[−a, a]. The flattening functional FQ : S → S
associated with Q is defined by

FQ(f) = (q0, . . . , qk)↘C (γ1, . . . , γk),

where γi = ⊔{f(x) | x ∈ [qi−1, qi]} for 1 � i � k.

Note that, geometrically speaking, FQ computes an enclosure of semi-continuous
functions into rectangles, as illustrated by Figure 3.

Lemma 7.3. FQ is well defined and continuous.

Proof. Since FQ(f) is a step function, we know that FQ(f) is continuous, and FQ

is well defined. We now show that FQ is continuous. Let f ∈ S, and assume that
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f =
⊔

n∈N
fn. First suppose that x ∈ [qi, qi+1]o. We find, by Lemma 2.1, that⊔

n∈N

FQ(fn)(x) =
⊔
n∈N

⊔{fn(x) | x ∈ [qi, qi+1]}

=
⊔
n∈N

E(fn)([qi, qi+1])

= E
( ⊔

n∈N

fn

)
([qi, qi+1])

= E(f)([qi, qi+1])

= ⊔{f(x) | x ∈ [qi, qi+1]}
= FQ(f)(x).

For x ∈ {q0, . . . , qk}, the claim follows from the continuity of ⊔: IRn × IRn →
IRn.

In order to reduce the complexity of the representations of the iterates, we apply
the flattening functional at every step of the computation. The following lemma is
the stepping stone to proving that this does not affect convergence to the solution.
In the context of partitions, we understand ‘increasing’ in terms of the refinement
order �, introduced in Definition 7.1.

Lemma 7.4. Suppose that (Qk)k∈N is an increasing sequence of partitions of [−a, a]
with limk→∞ |Qk| = 0. Then

⊔
k∈N

FQk
= id.

Proof. This follows from the fact that, for every upper semi-continuous function
f : [−a, a] → R and every decreasing chain α0 ⊇ α1 ⊇ . . . of compact intervals
containing x with w(αk) → 0 as k → ∞, one has f(x) = infk∈N sup{f(x) | x ∈ αk},
and the dual statement for lower semi-continuous functions.

The last lemma puts us in a position to show that the application of the flattening
functional at every stage of the construction does not affect the convergence of the
iterates to the solution.

Proposition 7.5. Suppose that u =
⊔

k∈N
uk, (Qk)k∈N is an increasing sequence

of partitions with limk→∞ |Qk| = 0 and yk+1 = FQk
(Puk

(yk)). Then y =
⊔

k∈N
yk

satisfies y = Pu(y).

Proof. The proof follows from the interchange-of-suprema law (see, for example,
[2, Proposition 2.1.12]), the previous lemma and Proposition 4.7.

We now show that the speed of convergence is essentially unaffected if we apply
the flattening functional at every stage of the computation. This result hinges on
the following estimate on Lipschitz functions, whose Lipschitz constant N is not
related to the Lipschitz constant of the vector field.

Lemma 7.6. Suppose that g = ([g−1 , g+
1 ], . . . , [g−n , g+

n ]) : [−a, a] → IRn is Scott
continuous and, for all i ∈ {1, . . . , n}, either g+

i or g−i satisfies a Lipschitz condition
with Lipschitz constant N . If Q is a partition, then w(FQ(g)) � w(g) + N |Q|.
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Proof. Fix 1 � i � n, suppose that x ∈ [−a, a], and choose two consecutive
partition points q− and q+ of Q such that x ∈ [q−, q+]. Since upper and lower
semi-continuous functions attain, respectively, their suprema and their infima on
compact intervals, there are x−, x+ ∈ [q−, q+] such that, for all x ∈ [q−, q+], we have
FQ(g)−i (x) = g−i (x−) and FQ(g)+i (x) = g+

i (x+), where FQ(g)i = [FQ(g)−i , FQ(g)+i ]
denotes the ith component of FQ(g). If we assume without loss of generality that
g+

i is Lipschitz continuous, we find for x ∈ [q−, q+] that

FQ(g)+i (x) − FQ(g)−i (x) = |g+
i (x+) − g−i (x−)|

� |g+
i (x+) − g+

i (x−)| + |g+
i (x−) − g−i (x−)|

� N |x+ − x−| + w(gi)
� N |Q| + w(g),

as required.

For the weighted width, we have the following corollary.

Corollary 7.7. Under the hypothesis of the previous lemma,

wα(FQ(g)) � wα(g) + N |Q|.
Proof. This follows from calculating

wα(FQ(g)) = sup
t∈[−a,a]

e−α|t|w(FQ(g)(t))

� sup
t∈[−a,a]

e−α|t|(w(g) + N |Q|)

� wα(g) + N |Q|
as claimed.

The last corollary allows us to estimate the width of an iterate computed after
applying the flattening functional.

Lemma 7.8. Let u′ ∈ V with u′ � u, y ∈ S and Q ∈ P[−a, a]. Then

wα(FQ(Pu(y))) � L
αwα(y) + 2

αed(u, u′) + K
a |Q|.

Proof. By definition, the upper and lower functions associated with the compo-
nents of g = Pu′(y), being integrals of functions bounded by M , satisfy a Lipschitz
condition with Lipschitz constant M ; we have K/a � M , by assumption. The claim
follows from Lemma 4.8 and Corollary 7.7.

We can now establish the main result of this section: applying the flattening
functional at every step of the computation does not affect the order of the speed
of convergence.

Proposition 7.9. Suppose that u =
⊔

k∈N
uk with d(u, uk) ∈ O(2−k), and that

(Qk)k∈N is an increasing sequence in P[−a, a] with |Qk| ∈ O(2−k). If yk+1 =
FQk

(Puk
(yk)), then w(yk) ∈ O(2−k). In particular, y =

⊔
k∈N

yk is real-valued and
solves the IVP (1).
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Proof. We can assume, by relabelling the indices of the sequence, that d(u, uk) �
2−k · eLw(y0) and |Qk| � 2−k · (a/3)w(y0). We show that w6L(yk) � 2−kw6L(y0),
which implies the claim with the help of Lemma 2.2. There is nothing to be shown
for k = 0. For the inductive step we have, by Lemma 7.8,

w6L(FQk
(Puk

(yk))) � 1
6w6L(y0) + 1

62−kw6L(y0) + 1
6K

� 1
62−k(w6L(y0) + w6L(y0) + w6L(y0))

= 2−(k+1)w6L(y0),

as required.

We now show that the application of the flattening functional at every step
avoids the blow-up of the size of the iterates. As a consequence, the algorithm with
flattening can be implemented using a base of functions defined over a dense subring
of R, such as the dyadic numbers.

Lemma 7.10. Suppose that D ⊆ R is a subring and Q ∈ PD[−a, a]. Then FQ

restricts to a mapping SL
D → SC

D .

Proof. Suppose that f = (a0, . . . , al)↘L (β0, . . . , βl) ∈ SL
D and Q = (q0, . . . , qk) ∈

PD[−a, a]. If FQ(f) = (q0, . . . , qk)↘C (γ1, . . . , γk), then the vertices of the γi are
elements of the set

⋃
1�i�n{f+

i (q0), f−
i (q0), . . . , f+

i (qk), f−
i (qk)}, which can be

computed from the vertices of the βj without forming quotients.

The complexity of the algorithm underlying Theorem 7.5 over the bases VD and
SC

D can now be summarised as follows; recall that N (Q) = k is the size of a partition
Q = (q0, . . . , qk).

Proposition 7.11. Suppose that D ⊆ R is a subring, y ∈ SC
D and u ∈ VD.

(i) FQ(Pu(y)) ∈ SC
D and N (FQ(Pu(y))) = N (Q).

(ii) FQ(Pu(y)) can be computed in time O(max(N (u) · N (y),N (Q))).

Proof. For the first statement, assume that

y = (a0, . . . , ak)↘C (β1, . . . , βk) and u =
⊔

1�j�l

γi ↘ δi.

Then

u ◦ y = (a0, . . . , ak)↘C (β′
1, . . . , β

′
k), where β′

m =
⊔{δj | βm � γj}.

Clearly, u ◦ y ∈ SC
D . Computing u ◦ y takes O(N (u) · N (y)) steps, since we have to

match every step function in u against every βm. By Lemma 6.4 we see that Pu(y) ∈
SL

D, and finally FQ(Pu(y)) ∈ SC
D by Lemma 7.10. Computing Pu(y) from u◦y takes

time O(N (u)·N (y)), and FQ(Pu(y)) can be computed in O(max(N (u)·N (y),N (Q))
steps, hence the bound on the complexity.

Note the complexity reduction compared to Proposition 6.5, which is achieved
since Pu(f) does not change its value in the subintervals [ai, ai+1]. We can now
summarise our results concerning the soundness and completeness of the algorithm
with flattening as follows.

106https://doi.org/10.1112/S1461157000001315 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001315


a domain-theoretic account of picard’s theorem

Theorem 7.12. Suppose that D ⊆ R is a subring and u =
⊔

k∈N
uk with uk ∈

VD. Furthermore, assume that (Qk)k∈N is an increasing sequence of partitions with
limk→∞ |Qk| = 0 and yk+1 = FQk

(Puk
)(yk).

(i) yk ∈ SC
D for all k ∈ N and N (yk) = N (Qk).

(ii) y =
⊔

k∈N
yk has width 0 and y− = y+ solves the IVP (1).

(iii) w(yk) ∈ O(2−k), if both d(u, uk) ∈ O(2−k) and |Qk| ∈ O(2−k).

Note that, for a subring R ⊆ Q of the rational numbers, the elements of VD

and SC
D can be faithfully represented on a digital computer. Hence we can also

guarantee both the soundness and the completeness for an implementation of the
domain-theoretic approach where, furthermore, the representation complexity of
the iterates is bounded above by the size of the partitions.

8. Approximating continuous functions

The theory outlined in the previous sections depends on an interval vector field
u, given in terms of a supremum u =

⊔
k∈N

uk of step functions. In order to apply
our theory, the following assumptions must be satisfied.

1. u is an extension of the classical vector field v.
2. u satisfies an interval Lipschitz condition.
3. The interval distance d(u, uk) converges exponentially fast.

This section shows how to obtain a sequence (uk)k∈N which satisfies the above
assumptions. We discuss two techniques for constructing approximations of vector
fields: first, we discuss compositions of approximations, and then we show how to
construct interval-valued approximations from a function that computes the value
of the vector field to an arbitrary degree of accuracy.

8.1. Composition of approximations

In this section we assume that we have two functions g : IRn → IRm and
f : IRm → IRk, approximated by sequences of step functions (gn) and (fn), and we
show how to use these approximations to compute approximations of f ◦ g, subject
to the conditions laid down at the beginning of the section.

We begin with an example showing that composition of approximations does not
necessarily preserve the convergence speed.

Example 8.1. This example shows that if f =
⊔

k fk and g =
⊔

k gk, and both
(fk) and (gk) converge exponentially fast, then this is not necessarily true for the
composition g ◦ f , even if both f and g are interval Lipschitz.

Consider the continuous function h : [0,∞) → [0, 2] given by

h(x) =




1 − 1
log2(

2
1−x )

, x < 1,

1, x � 1,

where log2 is the dyadic logarithm (logarithm with respect to base 2). Clearly, h is
differentiable in [0, 1), and elementary analysis shows that 0 � h′(x) � 1/ln 2 � 2
for x ∈ [0, 1), and hence h(x) � 2x for all x ∈ R. Therefore the Scott continuous
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function f : IR → IR with f(x) = [0, h(w(x))] satisfies the interval Lipschitz
condition w(f(x)) � 2w(x). Putting fk = f , we clearly see that d(f, fk) � 2−k.
Note that f is a non-maximal interval extension of the constant zero function.

For g(x) = [0, w(x)] and gk(x) = [0, w(x) + 2−k−1] we also find that g is interval
Lipschitz and d(g, gk) = 2−k−1 � 2−k. We show that the composition fk ◦ gk only
converges linearly fast to f ◦ g. Consider the interval xk = [0, 1 − 2−k−1]. Then

d(fk ◦ gk, f ◦ g) � d(fk(gk(xk)), f(g(xk)))
= h(w(gk(xk))) − h(w(g(xk)))

= h(1) − h(1 − 2−k−1)

=
1

k + 2
,

showing that function composition does not preserve exponential convergence speed.

As this example shows, we need extra conditions to ensure that composition of
approximations preserves the speed of convergence. We propose to consider func-
tions which are Hausdorff Lipschitz from below.

Definition 8.2. Suppose that f : IRn → IRm. Then f is Hausdorff Lipschitz from
below, if and only if

d(f(α), f(β)) � L · d(α, β)

for some L � 0 and all α � β, α, β ∈ IRn.

Note that we require the estimate to hold only if α � β; hence being Hausdorff
Lipschitz from below is a weaker condition than being Lipschitz with respect to the
Hausdorff metric on IRn or IRm, respectively.

We briefly relate this condition to the interval Lipschitz condition that we have
introduced already. Recall that f is interval Lipschitz, if w(f(α)) � L · w(α) for
some L � 0 and all α ∈ dom(f); that is, f increases the width of its argument only
linearly.

Remark 8.3. The notions ‘interval Lipschitz’ and ‘Hausdorff Lipschitz from below’
are unrelated, as shown by the following examples.

1. The function f in Example 8.1 is interval Lipschitz, but not Hausdorff
Lipschitz from below.

2. The function λx.[0, 1] : IR → IR is Hausdorff Lipschitz from below, but not
interval Lipschitz.

It is easy to see that the maximal extension of a classical Lipschitz function is
also Hausdorff Lipschitz from below, but the converse is not true in general.

Proposition 8.4. Suppose that f : Rn → Rm satisfies a Lipschitz condition
with Lipschitz constant L. Then d(If(α), If(β)) � Ld(α, β) for all compact
α � β ∈ IRn.

Proof. Suppose that α, β ∈ IRn. Denote the minimal distance between a point
x ∈ Rn and a compact set c ⊆ Rn by dm(x, c). By the definition of Hausdorff
distance we find, for all x ∈ α, an element yx ∈ β such that ‖x − yx‖ � d(α, β).
Hence we find, for all x ∈ α, that dm(f(x), If(b)) � L‖x−yx‖ � Ld(α, β). Therefore
d(If(α), If(β)) � Ld(α, β).

108https://doi.org/10.1112/S1461157000001315 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001315


a domain-theoretic account of picard’s theorem

The next example shows that functions which are Hausdorff Lipschitz from below
are not necessarily maximal.

Example 8.5. Suppose that IR×IR → R is the maximal extension of the subtrac-
tion function; that is, [a−, a+] − [b−, b+] = [a− − b+, a+ − b−]. Then the function
f : IR → IR, x �→ x − x, is both interval Lipschitz and Hausdorff Lipschitz from
below (actually it is even Lipschitz with respect to the Hausdorff distance), but not
maximal, as the function λx.0 satisfies f � λx.0.

What makes functions that are Hausdorff Lipschitz from below attractive for our
purposes is that the set of such functions is closed under composition, in contrast
to maximal extensions.

Lemma 8.6. Suppose that f : IRn → IRm and g : IRm → IRk are Hausdorff
Lipschitz from below. Then so is g ◦ f .

Proof. This follows immediately from the monotonicity of g.

Proposition 8.4 and Example 8.5 lead us to think of functions that are Haus-
dorff Lipschitz from below as functions that are close to being maximal extensions,
without actually being maximal. In particular, these functions are closed under
composition, which makes them attractive for building libraries.

We are now in a position to prove the promised result on compositionality of
approximations; in particular, we establish a guarantee of the convergence speed of
composed approximations.

Theorem 8.7. Suppose that gk : IRn → IRm and fk : IRm → IRl are monotone
sequences of Scott continuous functions with f =

⊔
k fk and g =

⊔
k gk that satisfy

the following requirements.
(i) Both f and g are interval Lipschitz and f is Hausdorff Lipschitz from below.
(ii) d(f, fk), d(g, gk) ∈ O(2−k).

Then f ◦ g is interval Lipschitz and the extension of a classical function and d(fk ◦
gk, f ◦ g) ∈ O(2−k). Moreover, if g is also Hausdorff Lipschitz from below, then so
is f ◦ g.

Proof. Only the statement on the convergence speed requires proof. We denote the
Hausdorff Lipschitz constant of f by L and assume without loss of generality that
l = 1; the general result then follows if we take the maximum over the components
of f and fk, respectively. Note that

d([a−, a+], [b−, b+]) � |a− − b−| + |a+ − b+| � 2d([a−, a+], [b−, b+]).

Using this fact, the claim follows from the following calculation:

d(f ◦ g(α), fk ◦ gk(α)) = f+
k (gk(α)) − f+(g(α)) + f−(g(α)) − f−

k (gk(α)

= f+
k (gk(α)) − f+(gk(α)) + f+(gk(α)) − f+(g(α))

+ f−(g(α)) − f−(gk(α)) + f−(gk(α)) − f−
k (gk(α))

� 2d(f, fk) + 2d(f(g(α)), f(gk(α)))

� 2d(f, fk) + 2Ld(g, gk) ∈ O(2−k),

where α ∈ I[−K, K]n was arbitrary.
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This theorem shows that the class of functions that are both interval Lipschitz
and Hausdorff Lipschitz from below can be used to build a compositional library
for fast-converging Lipschitz functions. In the next section, we address the task of
actually constructing functions that fall into this class.

8.2. Construction of approximations

Having seen how to obtain approximations of interval vector fields composition-
ally, this section outlines a technique for constructing these approximations, given
a function that computes the Lipschitz function f : Rn → Rm up to an arbitrary
degree of accuracy.

More precisely, we assume that g : Qn × N → Qm is given such that

‖f(x) − g(x, k)‖ � 2−k.

On a practical level, this allows us to compute approximations for a large class
of functions. Moreover, the existence of a computable function g with the above
property is equivalent to the computability of f , and the results of this section show
that we obtain approximations by step functions for every computable Lipschitz
vector field.

The idea of the construction is as follows: Given a rectangle α ⊆ Rn, we compute
g(m(α), k), which gives the value of f at the midpoint m(α) of α up to an accuracy
of 2−k. In order to accommodate for this inaccuracy, we extend this point value into
a rectangle by extending it with 2−k into the direction of each coordinate axis. This
rectangle is then subsequently extended using the Lipschitz constant of f , resulting
in a rectangle that contains all values f(x) for x ∈ α.

While it is straightforward to see that this method produces approximations
of any Lipschitz functions up to an arbitrary degree of accuracy, more work is
needed to show that these approximations are actually compositional — that is,
Hausdorff Lipschitz from below in the sense of the previous section — and converge
exponentially fast.

To formalise the construction, we now assume for the rest of the section that
f : Rn → Rm satisfies a Lipschitz condition with Lipschitz constant L and g :
Qn × N → Qm is such that ‖g(x, k) − f(x)‖ � 2−k.

Definition 8.8. For a real vector x = (x1, . . . , xn) ∈ Rn and λ ∈ [0,∞), we write
x ⊕ λ for the n-dimensional rectangle [x1 − λ, x1 + λ] × · · · × [xn − λ, xn + λ] with
centre x and width 2λ. Given a partition Q = (q0, . . . , qk), we denote the set of
n-dimensional rectangles with endpoints in Q by

R(Q) = {[qi1 , qj1 ] × · · · × [qin , qjn ] | 0 � ir < jr � k for all 1 � r � n}.
Finally, we define the family of functions fk

Q for k ∈ N by

fk
Q =

⊔
α∈R(Q)

α ↘ g(m(α), k) ⊕
(

2−k +
L

2
· w(α)

)
.

We call the fk
Q the approximation functions associated with Q.

It is easy to see that the approximation functions associated with a partition are
sound in the sense that they give enclosures of the approximated functions.
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Lemma 8.9. Let Q ∈ P and k ∈ N. Then fk
Q � If .

Proof. We have to show that f(x) ∈ fk
Q(α) for all α ∈ IRn and all x ∈ α. This

follows from

f(x) ∈ g(m(β), k) ⊕
(
2−k + L

2 · w(β)
)

for all β � α, β ∈ R(Q)

by taking suprema.
So suppose that β ∈ R(Q) and β � α. To see that

f(x) ∈ g(m(β), k) ⊕ (2−k + (L/2) · w(β)),

it suffices to show that

‖f(x) − g(m(β), k)‖ � 2−k + (L/2) · w(β) for all x ∈ α.

But this follows from

‖f(x) − g(m(β), k)‖ � ‖f(x) − f(m(β))‖ + ‖f(m(β)) − g(m(β), k)‖
� L · ‖x − m(β)‖ + 2−k

� L · 1
2w(β) + 2−k

where the estimate ‖x − m(β)‖ � (1/2)w(β) follows from β � α and x ∈ α.

Before we give guarantees on the quality of the approximations constructed using
this method, we need to check that the approximations constructed actually form
an increasing chain. This is the content of the following easy lemma.

Lemma 8.10. Suppose that R � Q ∈ P and j � i. Then f j
R � f i

Q.

We now establish one of the criteria for approximations laid down at the be-
ginning of the section: that is, that they converge to a function which is interval
Lipschitz. Recall the order on partitions and their range from Definition 7.1.

Lemma 8.11. Suppose that (Qk)k∈N is an increasing sequence of partitions with
limk→∞ |Qk| = 0 and

⋃
k r(Qk) = R. Then

⊔
k∈N

fk
Qk

satisfies the interval Lipschitz
condition with constant L.

Proof. Pick α ∈ IRn. For any given ε > 0, pick k � 0 such that |Qk| < ε/2,
2−k � ε and r(Qk)n � α. By the choice of k, we find β ∈ R(Qk) with β � α and
w(β) � w(α) + ε. We now have β ↘ g(m(β), k) ⊕ (2−k + (L/2) · w(β)) � fk

Qk
and

β � α, whence

w

( ⊔
k∈N

fk
Qk

(α)
)

� w
(
fk

Qk
(α)

)
� w

((
β ↘ g(m(β), k) ⊕ (

2−k + L
2 w(β)

))
(α)

)
� 2 · 2−k + L · w(β)

� 2 · 2−k + L · (w(α) + ε)
� ε + Lw(α) + Lε

� (1 + L)ε + L · w(α).

As ε > 0 was arbitrary, we conclude that w(
⊔

k∈N
fk

Qk
(α)) � L · w(α).
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Figure 4: Approximations associated with g(x, y, k) = (x, y).

Corollary 8.12. The function h =
⊔

k∈N
fk

Qk
is an extension of f .

Proof. By Lemma 8.9, we have f(x) ∈ h({x}), and Lemma 8.11 shows that h({x})
is a singleton set.

We have shown how to construct approximations which satisfy two of the three
criteria needed to put our theory to work. We now turn to the last item and give
an estimate on the convergence speed of the fk

Qk
to h. In the proof, we compare an

upper approximation of (fk
Qk

)+ with a lower approximation of h+ for h =
⊔

k fk
Qk

.
The next lemma is a major stepping-stone to establishing a lower approximation
of h. If we recall the definition of fk

Qk
, we see that the width of the interval m(β)⊕

(2−k + (L/2) ·w(β)) in the step function β ↘ m(β)⊕ (2−k + (L/2) ·w(β)) depends
only on the width of β. Hence, given α ∈ IR, it does not suffice to consider a
minimal enclosure R(Q) 
 β � α to find an upper bound for fk

Qk
(α). Instead, we

need to consider all enclosures that have the same width as the minimal enclosure.
This situation is illustrated for f(x, y) = g(x, y, k) = (x, y) in Figure 4, where the
dots indicate the grid points given by Qk. Note that

(fk
Qk

)+1 (α) = g1(m(β0), k) + 2−k + L
2 w(β0)

despite the fact that β1 is a better approximation of α.
The next lemma accounts for this situation, and gives a lower bound for the

upper function associated with fk
Qk

.

Lemma 8.13. Suppose that Q ∈ P with r(Q) � [−K, K] and k ∈ N. Then, for all
i = 1, . . . , n and all α ∈ I[−K, K]n,

(fk
Q)+i (α) � min{fi(m(α′)) | α′ � α, w(α′) = w(α)} + L

2 w(α),

where (fk
Q)+i is the upper function associated with the ith component of fk

Q.

Proof. Throughout the proof, we fix i with 1 � i � n and α = (α1, . . . , αn). First
note that

{α′ � α | w(α′) = w(α)}
= {α + (ρ1, . . . , ρn) | 0 ∈ ρj ∈ IR and w(αj) + w(ρj) � w(α)}, (4)

whence the midpoint set M(α) = {m(α′) | α′ � α, w(α′) = w(α)} is

M(α) = m(α)+ 1
2 ([w(α1)−w(α), w(α)−w(α1)]×· · ·×[w(αn)−w(α), w(α)−w(αn)]).

We first show that

fi(m(β)) + L
2 w(β) � min{fi(x) | x ∈ M(α)} + L

2 w(α) for all β � α.
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Let β � α be given. In the case where m(β) ∈ M(α), there is nothing to show,
and the claim follows from w(β) � w(α). Now assume that m(β) /∈ M(α).

For an arbitrary x ∈ Rn, we write ‖M(α)−x‖ = infy∈M(α) ‖y−x‖ for the distance
between x and the set M(α). Hence our assumption is that ‖M(α) − m(β)‖ > 0.
Pick any x ∈ M(α) such that ‖M(α)−m(β)‖ = ‖x−m(β)‖, and let j ∈ {1, . . . , n}
be such that ‖M(α)−m(β)‖ = ‖x−m(β)‖ = |xj −m(β)j | (recall that ‖ · ‖ denotes
maximum norm).

We now claim that w(βj) � w(α) + 2‖M(α) − m(β)‖. To see this, recall that
x ∈ M(α) and ‖x−m(β)‖ is minimal, and we have two cases, since x is a boundary
point of M(α):

Case 1 : m(β)j < xj = m(α)j − 1
2 (w(α) − w(αj));

Case 2 : m(αj) + 1
2 (w(α) − w(αj)) = xj < m(β)j .

We treat only the first case, as the second is symmetric; so assume that
m(β)j < xj . If

β = [b−1 , b+
1 ] × · · · × [b−n , b+

n ],

we have
xj − 1

2 (b+
j + b−j ) = xj − m(β)j = ‖M(α) − m(β)‖,

whence

b−j = 2xj − 2‖M(α) − m(β)‖ − b+
j

� 2m(α)j − (w(α) − w(αj)) − 2‖M(α) − m(β)‖ − a+
j

= a+
j + a−

j − w(α) + a+
j − a−

j − a+
j − 2‖M(α) − m(β)‖

= a+
j − w(α) − 2‖M(α) − m(β)‖,

where we have used β � α to obtain a+
j � b+

j in the second line.
For the same reason, and using the last estimate, we now have

w(βj) = b+
j − b−j

� a+
j − a+

j + w(α) + 2‖M(α) − m(β)‖,
which implies our claim that w(βj) � 2‖M(α) − m(β)‖ + w(α).

Using this fact, as a consequence of the choice of x we now have

fi(m(β)) + L
2 w(β) = fi(m(β)) − fi(x) + fi(x) + L

2 w(β)

� −L‖x − m(β)‖ + fi(x) + L
2 (w(α) + 2‖M(α) − m(β)‖)

= fi(x) + L
2 w(α)

� min{fi(x) | x ∈ M(α)} + L
2 w(α),

which concludes the proof of our first statement. We now show the lemma. As

fk
Q =

⊔
β∈R(Q)

β ↘ g(m(β), k) ⊕
(
2−k + L

2 w(β)
)
,

it suffices to show that

gi(m(β), k) + 2−k + L
2 w(β) � min{fi(x) | x ∈ M(α)} + L

2 w(α) for all β � α.
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But this now follows easily:

gi(m(β), k) + 2−k + L
2 w(β) � fi(m(β)) + L

2 w(β)

� min{fi(x) | x ∈ M(α)} + L
2 w(α),

using our first result and the fact that β � α.

We obtain the following immediate corollary, which we use in the estimate of the
convergence speed to give an upper bound on h(α).

Corollary 8.14. Suppose that (Qk) is an increasing sequence of partitions and
h =

⊔
k∈N

fk
Qk

. Then

h+
i (α) � min{fi(m(α′)) | α′ � α, w(α′) = w(α)} + L

2 w(α) for all 1 � i � n.

Using the last corollary as an upper bound for the value of h, we can formulate
and prove a statement on the convergence speed as follows.

Proposition 8.15. Suppose that (Qk) is an increasing sequence of partitions with
|Qk| ∈ O(2−k) and

⋃
k r(Qk) = R. If h =

⊔
k fk

Qk
, then d(h, fk

Qk
) ∈ O(2−k).

Proof. Let K > 0. We show that d(h(α), fk
Qk

(α)) ∈ O(2−k) for all α ∈ I[−K, K]n.
Without loss of generality we can assume that r(Q0) � [−K, K] and |Qk| � (1/L) ·
2−k.

Suppose now that α ∈ I[−K, K]n is given, and that 1 � i � n. By the com-
pactness of α and continuity of f , we can find α′ � α with w(α′) = w(α) such
that

fi(m(α′)) = min{fi(m(γ)) | γ � α, w(γ) = w(α)}.
By Corollary 8.14 we have

h+
i (α) � fi(m(α′)) + L

2 w(α′) (5)

(note that w(α) = w(α′)). As |Qk| � (1/L)2−k, we can find β � α′ with d(α′, β) �
2|Qk| = 2(1/L) · 2−k. By the definition of fk

Qk
, we have

g(m(β), k) ⊕
(
2−k + L

2 w(β)
)
� fk

Qk
(α),

and hence
(fk

Qk
)+i (α) � gi(m(β), k) + 2−k + L

2 w(β). (6)

Combining equations (5) and (6) we obtain

(fk
Qk

)+i (α) − h+
i (α) � gi(m(β), k) + 2−k + L

2 w(β) − fi(m(α′)) − L
2 w(α′)

� fi(m(β)) + 2 · 2−k + L
2 (w(β) − w(α′)) − fi(m(α′))

� L · ‖m(β) − m(α′)‖ + L
2 d(α′, β) + 2 · 2−k

� 3
2Ld(α′, β) + 2 · 2−k

� 3L|Qk| + 2 · 2−k

� 5 · 2−k,

where we have used Lemma 2.3 in lines 3 and 4 of the estimate. Similarly, one shows
that h−

i (α)− (fk
Qk

)−i � 5 · 2−k, and we conclude that d(hi(α), (fk
Qk

)i(α)) � 5 · 2−k,
which implies the claim, as i was arbitrary.
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In summary, we have the following theorem, which shows that the approxima-
tions satisfy all the conditions discussed at the beginning of the section.

Theorem 8.16. Suppose that (Qk) is an increasing sequence of partitions with
|Qk| ∈ O(2−k) and

⋃
k�0 r(Qk) = R, and let h =

⊔
k∈N

fk
Qk

. Then

(i) h is an extension of f ;

(ii) h satisfies an interval Lipschitz condition with Lipschitz constant L;

(iii) d(h, fQk

k ) ∈ O(2−k).

8.3. Compositionality of approximations

We have now established conditions which allow us to compose function approx-
imations in such a way that the order of magnitude of the convergence speed is pre-
served. On the other hand, we have described a method to construct fast-converging
approximations from scratch. In this section, we show that the approximations fk

Qk

are amenable to building a library for approximating Lipschitz functions, by show-
ing that their suprema are Hausdorff Lipschitz from below, which entails that the
composition of approximations preserves fast convergence (Theorem 8.7).

For the purposes of this section, we assume that f : Rn → Rm is a classical
Lipschitz function, (Qk) is an increasing sequence of partitions with |Qk| ∈ O(2−k),
and

⋃
k�0 r(Qk) = R. Furthermore, we assume that fQk

k is constructed as in Defi-
nition 8.8.

Our main result is to show that the functions h =
⊔

k fk
Qk

can be used to build a
compositional library of fast-converging approximations to Lipschitz vector fields.
In the light of Theorem 8.7, we therefore have to show that the function h =

⊔
k fk

Qk

is Hausdorff Lipschitz from below.
We fix the function h =

⊔
k fk

Qk
. The proof of the Hausdorff Lipschitz property

is split into several lemmas.

Lemma 8.17. Suppose that α′ � α with w(α) = w(α′). Then there are (x1, . . . , xn) ∈
Rn such that:

(i) |xi| � (1/2)(w(α) − w(αi)) for all i = 1, . . . , n;

(ii) m(α′) = m(α) + (x1, . . . , xn).

Proof. Suppose that α = [α−
1 , α+

1 ] × · · · × [α−
n , α+

n ], and similarly for α′. Then we
see, for i = 1, . . . , n, that

α′
i = [α−

i − ai, α
+
i + ai] where 0 � a−

i , a+
i and a−

i + a+
i � w(α) − w(αi).

Putting xi = (a+
i − a−

i )/2 satisfies the hypothesis of the lemma.

Lemma 8.18. Let α ∈ IRn. Then h+
i (α) � fi(m(α)) + (L/2)w(α).

Proof. Let ε > 0 and find k � 0 such that 2−k � ε, |Qk| � ε and r(Qk)n � α. By
the choice of k, we can find α0 ∈ R(Qk) with α0 � α and d(α, α0) � ε.
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We calculate that

h+
i (α) � (fQk

k )+i (α)

� gi(m(α0), k) + 2−k + L
2 w(α0)

� fi(m(α0)) + 2 · 2−k + L
2 w(α0)

� fi(m(α)) + |fi(m(α0) − fi(m(α))| + 2 · 2−k + L
2 w(α) + L

2 |w(α0) − w(α)|
� fi(m(α)) + L

2 w(α) + L‖m(α) − m(α0)‖ + L
2 (w(α0) − w(α)) + 2 · 2−k

� fi(m(α)) + L
2 w(α) + Ld(α, α0) + Ld(α, α0) + 2 · 2−k

� fi(m(α)) + L
2 w(α) + 2Lε + 2ε,

which proves the claim, as ε was arbitrary.

The next lemma gives the first half of the Hausdorff Lipschitz property.

Lemma 8.19. Let α � β ∈ IRn. Then h+
i (α) − h+

i (β) � 3Ld(α, β).

Proof. By the compactness of the midpoint set

{m(γ) | γ � β, w(β) = w(γ)},
we find β′ � β with w(β′) = w(β) such that

h+
i (β) � min{fi(m(γ)) | γ � β, w(γ) = w(β)} + L

2 w(β) = fi(m(β′)) + L
2 w(β),

where the first estimate is Corollary 8.14. By Lemma 8.17, there are x1, . . . , xn

such that m(β) + (x1, . . . , xn) = m(β′) and |xi| � (1/2)(w(β) − w(βi)). We put
x = (x1, . . . , xn) and observe that, for i = 1, . . . , n,

1
2 (w(β) − w(βi)) � 1

2 (w(α) − w(βi) − w(αi) + w(αi))

� 1
2 (w(α) − w(αi)) + 1

2 (w(αi) − w(βi))

� 1
2 (w(α) − w(αi)) + d(α, β).

Hence we find yi such that |yi| � (1/2)(w(α)−w(αi)) such that |xi − yi| � d(α, β)
for all i = 1, . . . , n. Now put α′ = α′

1 × · · · × α′
n, where

α′
i =

{
[α−

i , α+
i + 2y1], if yi � 0,

[α−
i + 2yi, α

+
i ], if yi � 0,

and let y = (y1, . . . , yn). Then α′ � α and w(α′) = w(α). By the monotonicity of
h, we have h+

i (α) � h+
i (α′). Using Corollary 8.14 and Lemma 8.18, this gives

h+
i (α) − h+

i (β) � fi(m(α′)) + L
2 w(α) −

(
f(m(β′)) + L

2 w(β)
)

� L‖m(α′) − m(β′)‖ + L
2 (w(α) − w(β))

� ‖m(α) + x − m(β) − y‖ + Ld(α, β)
� L‖m(α) − m(β)‖ + L‖y − x‖ + Ld(α, β)
� Ld(α, β) + Ld(α, β) + Ld(α, β),

where h+
i (α) � h+

i (β) follows from the monotonicity of hi.

As a corollary, we obtain a bound on the difference between the upper values
of h.
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Corollary 8.20. Let α � β ∈ IRn and 1 � i � n. Then |h+
i (α) − h+

i (β)| �
3Ld(α, β).

Similarly, one proves the dual statement that |h−
i (α)−h−

i (β)| � 3d(α, β). These
two results together show that h, as constructed, is Hausdorff Lipschitz from below.

Theorem 8.21. Let α � β ∈ IRn. Then d(h(α), h(β)) � 3Ld(α, β). In particular,
h is Hausdorff Lipschitz from below.

Proof. By Corollary 8.20 and its dual, we see for 1 � i � n, that

d(h(α), h(β)) = max{|h+
i (α) − h+

i (β)|, |h−
i (α) − h−

i (β)|}
� max{3Ld(α, β), 3Ld(α, β)}
= 3Ld(α, β).

Taking the maximum over i = 1, . . . , n establishes the claim.

This shows, together with the results of Section 8.1, that we can build a compo-
sitional library for domain-theoretic approximations of Lipschitz vector fields.

In conjunction with Theorem 7.12 we obtain a framework for solving initial
value problems that is based on proper data types, and can therefore be directly
implemented on a digital computer. Moreover, working with rational or dyadic
numbers, the speed of convergence can also be guaranteed for implementations of
our technique.
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