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Abstract

Exact wave-height solutions are presented for trapped waves over two new three-parame-
ter depth topographies. Dispersive properties are calculated for both a semi-infinite and a
truncated convex exponential profile, as well as for a semi-infinite concave profile. The
analysis in all three cases is general in that both horizontal divergence and rotational
effects are included. These solutions may be used for either high-frequency edge wave or
low-frequency shelf wave studies by taking appropriate limits ( / -» 0 for edge wave and
E = /2L2/gH « 1 for shelf waves).

1. Introduction

The reflection of high-frequency gravity waves at a coastal boundary, coupled
with refraction effects due to shelving bottom topography, gives rise to a class of
coastally trapped waves known as edge waves. A similar trapping situation also
occurs when low-frequency topographic Rossby waves are reflected from a lateral
boundary. In the latter case the resulting trapped waves are traditionally referred
to as shelf waves.

A number of exact edge wave solutions have been derived for a variety of
simple bottom topographies. Two of the most useful models have been the convex
exponential shelf topography

h(x) = hoe"x (1)
(see for example, [2], [4] and [7]) and the concave exponential beach topography

h(x) = ho(l - e~") (2)
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[21 Exact edge wave solutions 317

(see for example, [1] and [6]). One disadvantage with these model topographies is
that the two adjustable parameters h0 and a do not allow for independent
specification of the three physical shelf parameters initial depth at the coastline
hs, shelf slope h's, and shelf width L (or alternatively the depth at the edge of the
shelf, hL).

In this paper the dispersion relationships are presented for a generalized
(three-parameter) convex exponential shelf profile,

h(x) = ho(ae"x-l), (3)

as well as for a generalized concave exponential beach profile,
h(x) = ho(l-0e-x). (4)

For both profiles, the analysis is general in the sense that it includes the
horizontal divergence term in the continuity equation as well as the Coriolis terms
in the horizontal momentum equations. In practice, horizontal divergence can be
neglected for low-frequency shelf waves, while rotational effects can be neglected
in the high-frequency edge wave limit.

2. Differential equation and boundary conditions

Consider the coastal geometry shown in Figure 1, in which a homogeneous
ocean is bounded by a straight coastline whose bottom topography varies in the
offshore direction only.

Neglecting vertical accelerations (w <s: u, v) and assuming that displacements
in the free surface elevation are small compared to the depth of the water column
(f "^ h), then the horizontal momentum equations for this system may be

Figure 1. Shelf geometry and axis system orientation.
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318 J. P. Louis and D. J. Clarke 131

approximated by

Ul~fV= ~ g f " (5)

where / is the Coriolis parameter and g the acceleration due to gravity. To the
same level of approximation the vertically integrated continuity equation may be
written as,

{hu)x+(hv)y=-a,. (6)

Periodic edge-wave solutions in this system are found by letting

" , i ) , fa exp[/(my - at)], (7)

where m is assumed to be positive always, so that a < 0 represents a wave
travelling in the negative y direction. Combining (5), (6) and (7) yields the
differential equation,

which, together with the appropriate boundary conditions, governs the fluid
motion over the margin.

Physically acceptable solutions of (8) must require that f is finite at all times.
Also, at a rigid wall it is required that the normal component of mass flow is zero.
Hence the boundary conditions at the coast are taken as,

f-ff=O, a,* = 0, (9)
where the bottom depth is non-zero at the coast, or as

f finite, at x = 0, (10)

where the bottom depth is zero at the coastal boundary. In the case of shelf
waves, the requirement that no waves propagate past the shelf is equivalent to (9).

For a semi-infinite continental margin the boundary condition for coastally
trapped waves requires that the horizontal transport, | / iu |->0as;c->oo. From
(5) and (7) this requires that,

/if, /i ^ -> 0, a s i - > oo. (11)

However, when the continental shelf is not semi-infinite in extent, but is trun-
cated at x = L by an ocean of constant depth (H = h(L)), the requirement for
continuity of wave height and the normal component of volume flux across the
boundary leads to the alternative offshore boundary condition,

£ + rf = O, a t x = L, (12)
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(13)

3. Convex exponential shelf profile

Consider the general, three-parameter, convex exponential shelf profile given
by equation (3). For this profile the physical shelf parameters hs, h's and h L are
related to the model shelf parameters, h0, a and a by

h, = ho(a-l),

h's = hoaa and hL = ho{aeaL - 1). (14)

Figure 2 displays the values of the quantities h0, a and a for independent
perturbations of the physical shelf parameters away from those used by [2],
hs = 10m, h's = 3.735 X 10~3 and hL = 5 km where L = 80 km, to approximate
the continental margin near Sydney. The two parameter exponential profile (1)
may be considered as a limiting form of the profile (3) when a -* oo, h0 -* 0
while the product hoa remains constant. Dispersion relationships will be derived

Figure 2. Behavior of the convex exponential shelf parameters
h0, a and a for independent variation in:

(a) h, with h's = 3.735 X 10"3 and hL = 5 km.

(b) h's with h, = 70 m and hL = 5 km.

(c) h, with h, = 70 m and h', = 3.735 x 10" 3 .
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for both the semi-infinite shelf

h = ho(aeax - 1), 0 < x < oo, (15)

as well as for the truncated exponential profile

•> -{It"" ~1)>
 IVL<L' <i6>

Substitution of (3) into (8) yields the differential equation governing the motion
of edge waves over the shelf region as

(aeax - \)d2X,/dx2 + aaeaxdl/dx

(o2-f2)/(gh0) - m2{«e«* - 1) - ^aae"x}l = 0. (17)

(18)

(19)

(20)

v2 = 4m2/a2 + 4mf/(ao) + l, (21)

transforms (17) into the hypergeometric differential equation

X(l - X)d2Z/dX2 + [2p-{2p + \)X]dZ/dX-(p2 - q2)Z = 0, (22)

where

q2=(o2-f2)/{a2gh0) + m2/a2.

Similarly, the semi-infinite exponential shelf has the transformed depth profile

h = ^ o C * ' 1 - 1), 0 < X < o" 1 , (23)

while the truncated one has the profile

ho(X->-l), KX<a-\

hL, X^A, v '

where

A = e~aL/a. (25)

One solution of (22) may now be written in terms of the hypergeometric
fucntion F(a, b, c; z) as

q,p-q,2p; X). (26)

The change of variables

and

where

with

X =

Z =

P = (

e~ax/a,

- x-"i,

1 + v)/2
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When a, b, c — a and c — b are non-integers, two independent solutions of the
hypergeometric differential equation are given by [5] as

Ul(z) = F(a,b,c;z), (27)

and

u2{z) = zx~cF(a - c + \,b - c+ 1,2 - c; z).

Thus, with (19) and (20), the general wave height solution over the shelf region (3)
may be written as

X^"^F[\ + \ + q, I + \ - q, 1 + v;

^\ - \ + q, \ - \ - q, 1 - v; Jf), (28)

which, together with the appropriate boundary conditions, governs the dispersive
properties of edge waves over the margin.

Since the depth profile (3) has a vertical barrier at x = 0, the relevant
boundary condition for trapped waves over the semi-infinite margin (15) are (9)
and (11). For the truncated shelf, the off-shore trapping condition (11) is replaced
by the boundary condition (12), at the edge of the shelf.

Transforming the boundary conditions (9), (11) and (12), by (18) yields the
boundary conditions appropriate to the solution (28) as

at the coastline,

~dX ~* as A —> 0 (30)

at infinity, and

a
2at the truncation x = L and where r2 is given by (13).

4. Dispersion relation: semi-infinite convex shelf

The general solution (28) satisfies the off-shore trapping condition (30), only
when B is zero and v1 > 1. This gives the following bound, from (21),

m/a + f/a > 0, (32)

on frequency and wave number. This bound is the same as that obtained by [4]
and eliminates the quasigeostrophic region of the a — m plane for edge waves
over the semi-infinite exponential shelf h = hoe

ax.
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Substitution of (28) with B = 0 into the coastal boundary condition (29) yields
the dispersion relation governing the discrete modes of oscillation over the
semi-infinite margin (15) as

[p + l£ P ~

+ a~l(p2 - q2)/(2p)F(p + q + 1, p - q + 1, 2p + 1; a"1) = 0, (33)

where the hypergeometric series in (33) are absolutely convergent for \a\ > 1 and
conditionally convergent for |«| = 1.

In the limit as a -» 1, the shelf profile (15) reduces to the convex exponential
shelf profile examined by [3], viz.

h = ho(e
ax - 1), 0 < x < o o , (34)

having zero depth at the coastline. In this case the coastal boundary condition
(29) is replaced by (10), i.e.,

f finite a t A ^ l .

However, convergence of the solution (28) with B = 0 at X = 1 requires the
hypergeometric series to terminate, i.e.,

p - q= -n, n = 0,1,2, . . . ,

which is the same dispersion relationship as that used by [3] to examine the
properties of high frequency edge waves over the exponential shelf given by (34).

5. Dispersion relation: truncated convex shelf

Applying the boundary conditions (29) and (31) to the general wave height
solution (28) yields

{ [-p + ^Fii"-1)} = 0 (35)
and

{ ( ^)} = 0,
where

Fl(X) = F(p + q,p-q,2p; X),

F2(X) = F(-p + q + 1, -p - q + 1,2 ~ 2p; X)
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and where a dash denotes differentiation with respect to X. The condition that
equations (35) have a non-trivial solution yields the dispersion relation for edge
waves over the truncated shelf profile (16) as

( 3 6 )

6. Concave exponential beach profile

Consider a semi-infinite beach, whose depth profile in the off-shore direction is
given by the generalized concave exponential form (4), i.e.

h = ho(l - fie'"*), 0 < x < o o . (37)

For this profile, the parameters h0, a and /Z are related to the physical
parameters hs, h's and hK, used to specify the margin, by

~ hs), (38)

where hx is the limiting depth of the margin as x -» oo. The two-parameter
concave exponential depth profile considered by [1], viz.

h = ho(l-e-"), 0 < x < o o , (39)

may be considered as a limiting case of (37) as /? -» 1 (i.e. hs -» 0).
Substituting the exponential form (4) into (8) yields the differential equation

for wave height as

*0(l - fie-ax) d^/dx1 + ho$ae-"*dS/dx

[ f l (40)

(°2 ~ f2)/g - m2h0(l - 0e-°*) - 'fh.aPe-**Jf = 0.
The transformations

X=pe-", (41)
and

Z = X-'S, (42)
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where

s2 = m2/a2-(o2-f2)/a2gh0, (43)

reduce (40) into the hypergeometric differential equation

X(l - X) d2Z/dX2 + [(2s + 1) -(2s + 2)X] dZ/dX

-(s2 - t2 + s + t)Z = 0, (44)

where

L I I a°
Thus, with (27) and (42), the general wave height solution, over the beach profile
(37), may be written in terms of the hypergeometric function F(a, b, c; z) as

f = AXsF(s + t,s - t + 1,2s + 1; X)

+ BX~sF(-s + t, - s - t+ 1,1 - 2s; X). (46)

Using (41), the semi-infinite beach (37) has the transformed depth function

h = ho(l-X), 0<X^p. (47)

Since this profile has a vertical barrier at the coastline (X = /?) the appropriate
coastal boundary condition is (9). Also, since the depth function (47) tends to a
finite depth at infinity (X -» 0), the off-shore trapping condition (11) reduces to
f -» 0 as x -> oo. Hence, using (41) again, the appropriate transformed boundary
conditions for the semi-infinite beach (47) are

and

$ -» 0, X-*0. (49)

7. Dispersion relation: concave beach profile

The general solution (46) satisfies the trapping condition (49) only if s2 > 0
and B = 0. This leads to the following bound, from (43),

(o2-f2)/(gh0)-m
2<0, (50)

on frequency and wave number. This bound is simply the high frequency cut-off
expected for trapped waves over any monotonic depth profile tending to be a
finite depth at infinity (h0).
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Substitution of (46) with B = 0 into the coastal boundary condition (48) yields
the dispersion relation for edge waves over the margin as

+ -^-\F(s + t,s- t+ 1,2s + 1; B)

+ B^S + *'(S ~ * + l' F{s + t + l,s - t + 2,2s + 2; B) = 0, (51)

where the hypergeometric series in (51) are absolutely convergent for \B\ < 1 and
conditionally convergent for \B\ = 1.

In the limit as B —» 1 (hs —> 0), the coastal boundary conditions is replaced by
the requirement (10). Convergence of the solution (46) with B = 0 then requires
that the hypergeometric series terminate, i.e.,

s - t + 1 = -7i , 7i = 0 , 1 , 2 , . . . . (52)

From (45), (52) may be written as

a
2

aa
,, = 0 , 1 , 2 , . . . . (53)

which is the dispersion relation given by [1] for edge waves over the concave
exponential profile (39) having zero depth at coastline. For concave exponential
profiles having non-zero depth at the coastline (B # 1) the dispersive properties
are defined by (51).

8. Conclusion

Exponential depth profiles have been shown to be well suited for approximat-
ing the bottom topography of a number of continental margins. The concave
exponential has been used successfully in [6] to approximate the near-shore beach
environment in a study of high-frequency edge waves. On the other hand the
convex exponential profiles have been found useful in studies (e.g. [2]) of
low-frequency shelf waves whose trapping scale 0(100 km) requires a model
topography that approximates the broader continental shelf region.

The exact solutions presented in this paper extend the above profiles by
providing for an additional adjustable parameter. The presence of three model
parameters then allows for independent specification of initial depth at the
coastline, shelf slope and shelf width.
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