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1. Introduction

Let S, T be self-mappings on a (non-empty) complete metric space (X, d).
Let ah i = 1,2, -•-, 5, be non-negative real numbers such that Zf=1flf < 1 and
for any x, y in X,

(1) d(S(x), T(y)) ^ atd(x, y) + a2d(x, T(y)) + a3d(y, S(x))

+ a4d(x,S(x)) + asd(y,T(y)).

The Banach contraction mapping theorem says that T has a unique fixed point if
S = T and a2 = a3 = a4 = as = 0. Kannan [15] proved that T has a unique
fixed point if S = T and ax = a2 = a3 = 0. Reich [26] proved that T has a unique
fixed point if S = T and a2 = a3 = 0. Hardy and Rogers [13] proved that T has
a unique fixed point if S = T. Gupta and Srivastava [27] proved that S, T have a
unique common fixed point if at = a2 = a3 = 0 and a4 = a5. We proved [30]
that S,T have a unique common fixed point if a2 — a3 and aA = a5. When
S = T, because of the symmetry in x, y, one can, without loss of generality,
assume that a2 = a3 and a4 = a5. So our result generalizes all of the results men-
tioned above. In general, there is however no such symmetry as a2 = a3 and
a4 = a5. There are examples [30] of S, T which satisfy the above conditions, but
(1) does not hold for any ait i = 1,2, --.S, in [0,1] with a2 = a3, aA = as and
X̂ - =! af < 1. By extending the idea of Rakotch [25], we [30] introduced mono-
tonically non-increasing self-mappings aj; i = 1,2, ••-,5, on [0, oo ] such that
a2 = 0C3, a4 = a5 and £ f=1 a;(0 < 1 for each f > 0. It was proved that S, T have
a unique common fixed point if (1) is satisfied with at replaced by at(d{x, y)). By
extending the idea of Boyd and Wong [5], we [31] introduced self-mappings
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ô , i = 1,2, •••,5, on [0, oo) such that a2 = a3, a4 = a5, Tt
s
i = 1(ai(t) < t for all

t > 0 and each a; is upper semicontinuous. It is assumed that for any distinct x,y
in X, (1) is satisfied with at replaced by a.i(d{x,y))jd{x,y). We proved that either
S or T has a fixed point and if both S and T have fixed points, then each of S, T
has a unique fixed point and these two fixed points coincide. Thus when S = T, T
has a unique fixed point. In fact, in this case, the condition "each af is upper
semicontinuous" can be weakened to "each a; is upper semicontinuous from the
right". The conclusion of the above result is best possible in the sense that there
are examples [30] of S, T which satisfy the above conditions but S has two fixed
points and T has none. However, in applying the above results, it may be difficult
to find the required a;'s even if they exist. We shall obtain some fixed point
theorems by replacing each af in (1) with a number at(x, y) depending on {x,y},
i.e. each a,- is a symmetric function of X x X into [0, oo). Thus each a; need not be
a composite function of d with any function on the real line and it is possible that

5

(2) I sup {ocfay): x,yeX} > 1.
i = l

One such example is given in Section 2. Related results are obtained for mappings
in a Banach space.

THEOREM 1. Let S, T be self-mappings on a complete metric space. Suppose
that there exist functions <xt, i = 1,2, " - , 5 , of X x X into [0, oo) such that

(a) r = sup { Zf=1!Xj(x y): x,yeX} < 1;
(b) a2 = a3, a4 = a5;
(c) for any distinct x, y in X,

d(S(x), T(y)) g M(x ,30 + a2d(x,T(y)) + a3d(y,S(x))

+ a4d(x,S(x)) + asd(y,T(y)),
where a; = a,{x, y).

Then S or T has a fixed point. If both S and T have fixed points, then each
of S, T has a unique fixed point and these two fixed points coincide.

PROOF. Let x0 e X,

x2n+l = S(x2n), x2n + 2 = T(x2n+l),n = 0 , 1 , 2 , — .

We shall prove that S or T has a fixed point. For this purpose, we may assume that
xn # xn+l for each n. From (c) with at = a^x^x^),

d(xltx2) = d(S(xo),T(xJ) ^ (at + ajdix^xj + a2d(x0,x2) + asd{xux2).

Since d(xo,x2) ^ d(xo,Xi) + d(x1)x2),

(3) (1 - a2 - a5)d{xux2) g (at + a2 +
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From (a) and (b), a2 + a4 ^ r/2 < 1/2 and

( 4 ) ai+a2 + a> < r-a2-a4 f r-* . x e [ 0 1 / 2 ] j < ,
w 1 - a2 - a5 ~ 1 - a2 - a4 ~ (1 - x L > < j j _

From (3) and (4),
d(xux2) ^ rd(xux0).

By induction, we have

(5) d(xn+2,xn+1) £ r d ( x n + 1 , x n ) , n = 0 , 1 , ! , • • • .

By (5) and induction,

d(xn+uxn)^r"d(xux0), n = 0 ,1 ,2 , - .
Since r < 1,

L d(xB+1,xB) < oo
n=0

and therefore {xn} is Cauchy. By completeness of (X, d), {xn} converges to some
point x in X. Since x n + 1 # xn for each n, either x 2 n + 1 ^ x for infinitely many w
or x2n ^ x for infinitely many n. By symmetry, we may assume that x2n+i ^ x

for infinitely many n. Thus there is a subsequence {/c(n)} of {«} such that
*2*(B)+i ?* x f° r e a c n n- I^t M = !• Then
(6) rf(x,T(x)) ^ d(x,xM(11)+1) + d(x24( l l )+1,r(x))

= d(x,x2t(B)+1) + d(S(x2Mn)), T(x)).

From (c) with af = Ui(x2kM,x),

(7)

+ i) + a5d(x,T(x))

^ d(x2k(n),x) + T~ d(x2k(n),T(x))

+ d(X, X2k(ny + I)

+ d(x2k(n),x2k(n)+i) + r- d(x,T(x)).

From (6) and (7), we have by letting n -*• oo ,

d(x, T(x)) S rd(x,

Since r < 1, T(x) = x. Let x be a fixed point of S and let y be a fixed point of T.
We need to prove that x = y. Suppose not. From (c) with a, = <X;(x, y),

d(x,y) = d(S(x), T(y)) £ (a, + a2 + a3)d(x,y) < d(x,y),

a contradiction.
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THEOREM 2. Let T be a self-mapping on a complete metric space (X, d).
Suppose that there exist symmetric functions ah i = 1,2, -•-, 5, of X x X into
[0,1) such that

(a) r = sup{ Sf=1aI-(x,>0: x,yeX} < 1;
(b) for any x, y in X,

d(T{x),T{y)) ^ aid(x,y) + a2d(x,T(y)) + a3d(y,T(x))

+ aAd{x, T(x)) + asd{y, T(y)),
where at = <Xj(x, y).
Then T has a unique fixed point.

PROOF. Let x, y e X. Calculating

(d(T(x), T(y)) + d(T(y), T(x)))/2

by (b), we obtain

d(T(x),T(y)) ^ b,d{x,y) + b2d(x,T(y)) + b3d(y,T(x))

+ b4d{x, T(x)) + b5d(y, T{y%
where

b2 = (cc2(x,y) + a3(j;,x))/2, b3 = (<x2(y,x) + <x3(x,y))/2,

bA = (a4(x, y) + ccs(y, x))/2, b5 = (ccA(y, x) + a5(x, y))/2.

Since each af is symmetric, b2 = b3, b4 = b5 and

5 5

L b{ = S at(x,y) S r.
i = l i = 1

So we may assume that a2 = <x3 and a4 = a5. By Theorem 1, T has a unique fixed
point.

EXAMPLE. Let X be the unit interval with the usual distance. Let T be the
self-mapping on X defined by

(8) T(x) = *§x-l if xe [10/11,1]

(9) T(x) = \ x if XG [0,10/11).
6

Then T is a continuous increasing self-mapping on X. For x,y in [0,10/11), we
define

«i(x,y) = Il6,a2(x,y) = <x3{x,y) = <x4(x,>>) = as(x,y) = 0.
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For x, y in X with x or y in [10/11,1], we define

<*i(x,y) = <*2(x,y) = x3(x,y) = 0,<x4(x,y) = <xs(x,y) = 19/41.

Then each af is a symmetric function of X x X into [0, oo) and ~Lf=1<Xj g 38/41
< 1. Suppose that x,ye [10/11,1].
Then

and
49 40 \ 418

c, r(x)) + a5(x, y)d(y, T(y)) « £ | 3 - ^ - ^ , ) :> - »

So T is not nonexpansive on X and

(10) d(T(x), T(y)) ^ <x4(x, y)d(x, T(x)) + «s(x, y)d(y,

Now suppose that x 6 [10/11,1], y e [0,10/11). Then

109 3 1
d(T(x),T(y)) = T(x)-T(y) = -^-x - - - - y;

19 /'3 49
T(x)) + *s{x,y)d(y,T{y)) = i?(f - ^-:

Since
109 3 1 19/3 49 5 \ 90, _ 68

(10) is satisfied. Finally, suppose that x,ye [0,10/11).
Then

d(nx),T(y)) = l- d{x,y) = a5(x, y)d(x,y).

So T satisfies the conditions of Theorem 2. To see the advantage of Theorem 2,
we note that

v f , , v l 269 ,
Lsup{cci(x,y):x,yeX} = —- > 1

i = i 246

and a4 is not a composite function of d with any function on the real line
(a4(0,l/ll) # a4(10/ll,l) but d(0,l/ll) = d(10/ll,l)). Also, if we replace 1/6 in
(9) by a number in [0,1/6), we will obtain an example of T which is not continuous
on X and satisfies the conditions of Theorem 2.

Let X be a complete metric space. For any subset A of X, cl A will denote the
closure of A in X and d(A) will denote the diameter of A, i.e. d(A) = sup{d(x, y):
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x, ye A}. Let T be a self-mapping on X. A subset A of X is T-invariant if
T(A) c A.LetxeX. O(x) will denote the set {T"(x): n ^ 0} (T°(x) = x) of all
iterates T"(x) of x and will be called the orbit of x. T has orbital diminishing
diameters if for any x in X, either <5(0(x)) = 0 or

lim <5(0(T"(x)) < (5(O(x)).

This definition was introduced by Belluce and Kirk [3], [4], [18]. Kirk [18] proved
that if X is compact and if T is a continuous self-mapping on X which has dimini-
shing orbital diameters, then for any x in X, some subsequence of {T"(x)} con-
verges to a fixed point of T. We shall obtain a related result with a different
approach.

THEOREM 3. Let Tbea continuous self-mapping on a compact metric space.
Suppose that

(a) there exist symmetric functions ^ , 0 2 ^ 3 , of X x X into [0,1] such that
a i + a2 + a3 ^ 1 and for any x,y in X,

d(T(x),T(y)) g aid(x,y) + a2d(x,T(y)) + a3d(y,T(x)),

where at = a;(x,y);
(b) for any T-invariant closed subset A of X with S(A) > 0, there exist y,z

in A such that
sup{d(y,Tn(z)): n ^ 0} < d(A).

Then for any x in X, {T"(x)} has a subsequence which converges to a fixed point
ofT.

PROOF. Let xeX. Consider cl O(x). Then cl O(x) is compact and T-invariant.
By Zorn's lemma, cl O(x) includes a minimal non-empty closed T-invariant subset
Y of X. Suppose to the contrary that S(Y) > 0. Then by (b), there exist y, z in Y
such that

r = sup{d(y,T"(z)): n ^ 0} < 8(Y).

By continuity of T, d(y, u) g r for each u e cl 0(z). Since cl O(z) is T-invariant,
by minimality of Y, cl O(z) = Y. So the set

(11) W = {ueY: d(u,v) g r for each v in Y}

contains y. By continuity of d, W is closed. Let u £ W. By compactness of Y, there
exists t o e y such that

(12) d(T(u), v0) = s u p {d(T(u), v):ve Y}.

Since T is continuous, T(F) is compact. Also, T(Y) is T-invariant. So by mini-
mality of 7, T(Y) = y. Therefore there exists J?! in Y such that T ^ ) = v0. By
(11), (12) and (a) with at = a^u,^),
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d(T(u),v0) = d(T(u), T(vt))

^ a ^ v ^ + a2d{u,T(v1)) + a3d(vuT{u))

g axr + a2r + a3d(T(u,v0) ^ (1 - a3)r + a3d(T(u),v0).
So
(13) ( l - f l 3 )d(T(«) ,D0)^( l -a3) r .

Since each a, is symmetric, we may assume that a2 = a3. Thus a3 g, 1/2. From
(13), we have d(T(u), v0) g r. So W is T-invariant. By minimality of Y, W = 7.
Therefore by (11),

<5(F) = 8{W) ^ r < S(Y),

a contradiction. Hence S(Y) = 0 and the point x0 in 7 is a fixed point of T. Since
x0 is a fixed point of T and x o ec l 0(x), some subsequence of {T"(x)} converges
tox 0 .

We remark that in Theorem 3, (b) is satisfied if T has diminishing orbital
diameters.

Let B be a Banach space, d will denote the metric for B induced by the norm
I I of B. For any subset A of B, co A will denote the convex hull of A. Let X be a
bounded closed convex subset of B. Let T be a self-mapping on .Y. X is regular
with respect to T if for any non-empty closed convex T-invariant subset A of X,
either <5(/l) = 0 or there exist y, z in A such that

sup{dO>,T"(z)): n k 0} < ,504).

X is normal with respect to T if for any non-empty closed convex T-invariant
subset A of X, either (5(̂ 4) = 0 or there exists z in A such that

X has normal structure [6] if X is normal with respect to the identity function on
X. It is clear that X is regular with respect to T if it is normal with respect to T;
X is normal with respect to T if it has normal structure. Our notions of regularity
and normality link T with the convex structure of X.

THEOREM 4. Let X be a weakly compact convex subset of a Banach space B.
Let T be a self-mapping on X. Suppose that

(a) X is normal with respect to T;
(b) there exist symmetric functions ocl,a2,oc3 of X x X into [0, oo ) such

that at + <x2 + <x3 g 1 and for any x,y in X,

d(T(x),T(y)) 5S aid(x,y) + a2d(x,T)y)) + a3d(y,T(x)),

where a% = a^x, y).
Then T has a fixed point.
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PROOF. By Zorn's lemma, there exists a minimal non-empty closed convex
T-invariant subset Y of X. Suppose to the contrary that d(Y) > 0. Then by (a),
there exists z in Y such that

r = sup{d(z,y): ye Y} < «5(Y).
So

W = {w G Y: d(w,y) ^ r for each y in Y}

contains z. Obviously Vf is convex and closed. We shall prove that W is T-
invariant. Let weW,

r, = sup{d(T(w),x):xeY}.

Since T(Y) a Y and Y is closed and convex, one has cl co T(Y) <= Y; hence

T(cl co T(Y)) cT(Y) c cl co T(Y).

By minimality of Y, cl co T( Y) = Y. So by continuity and convexity of d,

r, = snp{d(T(w),T(y)):yeY}.

(For nonexpansive mappings, the above argument or its variants occurred in [1],
[2], [3], [14], [16], [17], [19], [20], [21], [22], [23], [28], [29].) Let weW,
y G Y. By (b) with at = OL^X, y),

d(T(w), T(y)) ^ a^^y) + a2d(w, T(y)) + a3d(y, T(w)) ^ axr + a2r + a^.

Let e > 0 and select y e Y so that

sup(axr + a2r + a^r^) g dtr + d2r + d^ry + e where d; = at{w,y).

Then

rx = supd(T(w), T(y)) ^ sup(a]/ + a2r + a3rt) ^ dxr + d2r + d3rt + e
yeY yeY

= (1 - d3)r + d3rt + s.

Hence, since d3 g %>

r^ S r + ^ . g r + 2B.

Since £ is arbitrary, rt ^ r. A contradiction can be obtained as in the proof of
Theorem 3. Hence Y is a singleton and the point in Y is a fixed point of T.

By refining the above argument, one can obtain the following result for
nonexpansive mappings.

THEOREM 5. Let X be a weakly compact convex subset of a Banach space.
Let T be a nonexpansive self-mapping on X. Suppose that X is regular with
respect to T. Then T has a fixed point.
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Let X be a weakly compact convex subset of a Banach space B. Let T be a
nonexpansive self-mapping on X. Browder [7] and Gohde [12] proved that T has
a fixed point if B is uniformly convex. Belluce and Kirk [1] proved that T has a
fixed point if X has normal structure. Then they [3] obtained the following more
general results: (i) T has a fixed point if for any x in X, cl co O(x) has normal
structure, (ii) T has a fixed point if T has diminishing orbital diameters. Theorem
5 combines all these results into a more general one.

We remark here that by modifying the definitions, conditions and proofs in
an obvious way, Theorem 3 can be proved for a compact Hausdorff topological
space X associated with a definite family of pseudo-metrics; Theorems 4 and 5 can
be proved for a locally convex HausdorfF topological vector space X associated
with a family of pseudo-norms.One such example can be found in [14] Also, every
uniformly convex Banach space is reflexive [24], So in this case, to assume that X
is weakly compact convex is the same as assuming that X is bounded, closed and
convex.

Let I b e a bounded convex subset of a Banach space B. Let y e X,

ry = sup {d(x, y): xeX},

r = inf{r, : yeX},

C = {xeX:rx = r}.

r is called the radius of Jf and C is called the Chebyshev centre ofX. It was shown
in [17] that if B is reflexive and X is weakly compact convex, then C is a non-empty
closed convex subset of X. If C is a singleton {x}, then x is called the generalized
center of X. For example, every bounded closed convex subset of a uniformly
convex Banach space has a generalized centre [11].

THEOREM 6. Let X be a bounded convex subset of a Banach space B. Suppose
that X has a generalized centre x0. Let T be a self-mapping on X (not necessarily
continuous). Suppose further that

(a) clco T(X)=>X;
(b) there exist symmetric functions a1>a2,<x3 of X x X into [0, oo ) such

that for all x,y in X,

d(T(x), T(y)) ^ aid(x,y) + a2d(x, T(y)) + a3d(y,

where a{ = at(x, y).
Then x0 is a fixed point of T.

PROOF. Form the definition of generalized centres,
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(14) {*„} = n{xeY:d(x,y)gr},
y e Y

where r is the radius of Y. Let x e Y. By (b) with a,- = <Xj(x0, x),

(15) d(T(x0), T(x)) ^ M(x 0 , x) + a2rf(x0 ,T(x)) + M(* , T(*o))

g c^r + a2r + a3ru

where rt = sup{d(T(xo),j0: yeY}. By (a),

rt = sup{d(T(xo),T(y)): yeY}.

Arguing as the the proof of Theorem 4, rt g r. So

T(xo)e H { x e y : d ( x j ) ^ r } .

So by (14), T(x0) = x0.
Let X be a weakly compact convex subset of a Banach space B. Let T be a

self-mapping on X. T is called a generalized nonexpansive mapping if there exist
symmetric functions ah i = 1,2, "-,5, of X x .Y into X such that Zf=ia( ^ 1
and for all x, y in X,

d(T(x),T(y)) ^ M(x,y) + a2d(x,T(y)) + a3d(y,T(x))

a4d(x,T(x)) + a5d(y,T(y)),

where a; = a;(x, y). Let T be a generalized nonexpansive self-mapping on X. We
post the following open questions:

(a) mf{d(x,T(x)):xeX} =0?
(b) Does T have a fixed point?

By using the asymptotic center recently introduced by Edelstein [10], we can
prove that if X is uniformly convex and if T is continuous, then the above ques-
tions are equivalent. It is also interesting to note that if T has a fixed point, then
T must be quasi-nonexpansive [9].

We would like to mention here that the use of five monotonically non-
increasing functions a; on (0, 00 ) (with Sf=1a,- < 1) to contract self-mappings
on a complete metric space is invented by Hardy and Rogers [13].
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