FIXED POINT THEOREMS FOR GENERALIZED NONEXPANSIVE MAPPINGS

CHI SONG WONG

(Received 12 July 1972, revised 25 August 1972)
Communicated by E. Strzelecki

1. Introduction

Let S, T be self-mappings on a (non-empty) complete metric space (X, d). Let $a_{i}, i=1,2, \cdots, 5$, be non-negative real numbers such that $\sum_{i=1}^{5} a_{i}<1$ and for any x, y in X,

$$
\begin{align*}
d(S(x), T(y)) \leqq & a_{1} d(x, y)+a_{2} d(x, T(y))+a_{3} d(y, S(x)) \tag{1}\\
& +a_{4} d(x, S(x))+a_{5} d(y, T(y)) .
\end{align*}
$$

The Banach contraction mapping theorem says that T has a unique fixed point if $S=T$ and $a_{2}=a_{3}=a_{4}=a_{5}=0$. Kannan [15] proved that T has a unique fixed point if $S=T$ and $a_{1}=a_{2}=a_{3}=0$. Reich [26] proved that T has a unique fixed point if $S=T$ and $a_{2}=a_{3}=0$. Hardy and Rogers [13] proved that T has a unique fixed point if $S=T$. Gupta and Srivastava [27] proved that S, T have a unique common fixed point if $a_{1}=a_{2}=a_{3}=0$ and $a_{4}=a_{5}$. We proved [30] that S, T have a unique common fixed point if $a_{2}=a_{3}$ and $a_{4}=a_{5}$. When $S=T$, because of the symmetry in x, y, one can, without loss of generality, assume that $a_{2}=a_{3}$ and $a_{4}=a_{5}$. So our result generalizes all of the results mentioned above. In general, there is however no such symmetry as $a_{2}=a_{3}$ and $a_{4}=a_{5}$. There are examples [30] of S, T which satisfy the above conditions, but (1) does not hold for any $a_{i}, i=1,2, \cdots, 5$, in $[0,1]$ with $a_{2}=a_{3}, a_{4}=a_{5}$ and $\sum_{i=1}^{5} a_{i}<1$. By extending the idea of Rakotch [25], we [30] introduced monotonically non-increasing self-mappings $\alpha_{i}, i=1,2, \cdots, 5$, on $[0, \infty]$ such that $\alpha_{2}=\alpha_{3}, \alpha_{4}=\alpha_{5}$ and $\sum_{i=1}^{S} \alpha_{i}(t)<1$ for each $t>0$. It was proved that S, T have a unique common fixed point if (1) is satisfied with a_{i} replaced by $\alpha_{i}(d(x, y))$. By extending the idea of Boyd and Wong [5], we [31] introduced self-mappings

[^0]$\alpha_{i}, i=1,2, \cdots, 5$, on $[0, \infty)$ such that $\alpha_{2}=\alpha_{3}, \alpha_{4}=\alpha_{5}, \quad \sum_{i=1}^{5}\left(\alpha_{i}(t)<t\right.$ for all $t>0$ and each α_{i} is upper semicontinuous. It is assumed that for any distinct x, y in $X,(1)$ is satisfied with a_{i} replaced by $\alpha_{i}(d(x, y)) / d(x, y)$. We proved that either S or T has a fixed point and if both S and T have fixed points, then each of S, T has a unique fixed point and these two fixed points coincide. Thus when $S=T, T$ has a unique fixed point. In fact, in this case, the condition 'each α_{i} is upper semicontinuous" can be weakened to "each α_{i} is upper semicontinuous from the right', The conclusion of the above result is best possible in the sense that there are examples [30] of S, T which satisfy the above conditions but S has two fixed points and T has none. However, in applying the above results, it may be difficult to find the required α_{i} 's even if they exist. We shall obtain some fixed point theorems by replacing each a_{i} in (1) with a number $\alpha_{i}(x, y)$ depending on $\{x, y\}$, i.e. each α_{i} is a symmetric function of $X \times X$ into [$0, \infty$). Thus each α_{i} need not be a composite function of d with any function on the real line and it is possible that
\[

$$
\begin{equation*}
\sum_{i=1}^{5} \sup \left\{\alpha_{i}(x, y): x, y \in X\right\}>1 \tag{2}
\end{equation*}
$$

\]

One such example is given in Section 2. Related results are obtained for mappings in a Banach space.

2

Theorem 1. Let S, T be self-mappings on a complete metric space. Suppose that there exist functions $\alpha_{i}, i=1,2, \cdots, 5$, of $X \times X$ into $[0, \infty)$ such that
(a) $r \equiv \sup \left\{\sum_{i=1}^{5} \alpha_{i}(x y): x, y \in X\right\}<1$;
(b) $\alpha_{2}=\alpha_{3}, \alpha_{4}=\alpha_{5}$;
(c) for any distinct x, y in X,

$$
\begin{aligned}
d(S(x), T(y)) \leqq & a_{1} d(x, y)+a_{2} d(x, T(y))+a_{3} d(y, S(x)) \\
& +a_{4} d(x, S(x))+a_{5} d(y, T(y))
\end{aligned}
$$

where $a_{i}=\alpha_{i}(x, y)$.
Then S or T has a fixed point. If both S and T have fixed points, then each of S, T has a unique fixed point and these two fixed points coincide.

Proof. Let $x_{0} \in X$,

$$
x_{2 n+1}=S\left(x_{2 n}\right), x_{2 n+2}=T\left(x_{2 n+1}\right), n=0,1,2, \cdots
$$

We shall prove that S or T has a fixed point. For this purpose, we may assume that $x_{n} \neq x_{n+1}$ for each n. From (c) with $a_{i}=\alpha_{i}\left(x_{0}, x_{1}\right)$,

$$
d\left(x_{1}, x_{2}\right)=d\left(S\left(x_{0}\right), T\left(x_{1}\right)\right) \leqq\left(a_{1}+a_{4}\right) d\left(x_{0}, x_{1}\right)+a_{2} d\left(x_{0}, x_{2}\right)+a_{5} d\left(x_{1}, x_{2}\right)
$$

Since $d\left(x_{0}, x_{2}\right) \leqq d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)$,

$$
\begin{equation*}
\left(1-a_{2}-a_{5}\right) d\left(x_{1}, x_{2}\right) \leqq\left(a_{1}+a_{2}+a_{4}\right) d\left(x_{0}, x_{1}\right) \tag{3}
\end{equation*}
$$

From (a) and (b), $a_{2}+a_{4} \leqq r / 2<1 / 2$ and

$$
\begin{equation*}
\frac{a_{1}+a_{2}+a_{4}}{1-a_{2}-a_{5}} \leqq \frac{r-a_{2}-a_{4}}{1-a_{2}-a_{4}} \leqq \max \left\{\frac{r-x}{1-x}: x \in[0,1 / 2]\right\} \leqq r \tag{4}
\end{equation*}
$$

From (3) and (4),

$$
d\left(x_{1}, x_{2}\right) \leqq r d\left(x_{1}, x_{0}\right)
$$

By induction, we have

$$
\begin{equation*}
d\left(x_{n+2}, x_{n+1}\right) \leqq r d\left(x_{n+1}, x_{n}\right), \quad n=0,1,2, \cdots \tag{5}
\end{equation*}
$$

By (5) and induction,

$$
d\left(x_{n+1}, x_{n}\right) \leqq r^{n} d\left(x_{1}, x_{0}\right), \quad n=0,1,2, \cdots
$$

Since $r<1$,

$$
\sum_{n=0}^{\infty} d\left(x_{n+1}, x_{n}\right)<\infty
$$

and therefore $\left\{x_{n}\right\}$ is Cauchy. By completeness of $(X, d),\left\{x_{n}\right\}$ converges to some point x in X. Since $x_{n+1} \neq x_{n}$ for each n, either $x_{2 n+1} \neq x$ for infinitely many n or $x_{2 n} \neq x$ for infinitely many n. By symmetry, we may assume that $x_{2 n+1} \neq x$ for infinitely many n. Thus there is a subsequence $\{k(n)\}$ of $\{n\}$ such that $x_{2 k(n)+1} \neq x$ for each n. Let $n \geqq 1$. Then

$$
\begin{align*}
d(x, T(x)) & \leqq d\left(x, x_{2 k(n)+1}\right)+d\left(x_{2 k(n)+1}, T(x)\right) \tag{6}\\
& =d\left(x, x_{2 k(n)+1}\right)+d\left(S\left(x_{2 k(n)}\right), T(x)\right)
\end{align*}
$$

From (c) with $a_{i}=\alpha_{i}\left(x_{2 k(n)}, x\right)$,

$$
\begin{align*}
d\left(S\left(x_{2 k(n)}\right), T(x)\right) \leqq & a_{1} d\left(x_{2 k(n)}, x\right)+a_{2} d\left(x_{2 k(n)}, T(x)\right) \tag{7}\\
& +a_{3} d\left(x, x_{2 k(n)+1}\right) \\
& +a_{4} d\left(x_{2 k(n)}, x_{2 k(n)+1}\right)+a_{5} d(x, T(x)) \\
\leqq & d\left(x_{2 k(n)}, x\right)+\frac{r}{2} d\left(x_{2 k(n)}, T(x)\right) \\
& +d\left(x, x_{2 k(n)+1}\right) \\
& +d\left(x_{2 k(n)}, x_{2 k(n)+1}\right)+\frac{r}{2} d(x, T(x))
\end{align*}
$$

From (6) and (7), we have by letting $n \rightarrow \infty$,

$$
d(x, T(x)) \leqq r d(x, T(x)) .
$$

Since $r<1, T(x)=x$. Let x be a fixed point of S and let y be a fixed point of T. We need to prove that $x=y$. Suppose not. From (c) with $a_{i}=\alpha_{i}(x, y)$,

$$
d(x, y)=d(S(x), T(y)) \leqq\left(a_{1}+a_{2}+a_{3}\right) d(x, y)<d(x, y)
$$

a contradiction.

Theorem 2. Let T be a self-mapping on a complete metric space (X, d). Suppose that there exist symmetric functions $\alpha_{i}, i=1,2, \cdots, 5$, of $X \times X$ into $[0,1)$ such that
(a) $r \equiv \sup \left\{\sum_{i=1}^{5} \alpha_{i}(x, y): x, y \in X\right\}<1$;
(b) for any x, y in X,

$$
\begin{aligned}
d(T(x), T(y)) \leqq & a_{1} d(x, y)+a_{2} d(x, T(y))+a_{3} d(y, T(x)) \\
& +a_{4} d(x, T(x))+a_{5} d(y, T(y))
\end{aligned}
$$

where $a_{i}=\alpha_{i}(x, y)$.
Then T has a unique fixed point.
Proof. Let $x, y \in X$. Calculating

$$
(d(T(x), T(y))+d(T(y), T(x))) / 2
$$

by (b), we obtain

$$
\begin{aligned}
d(T(x), T(y)) \leqq & b_{1} d(x, y)+b_{2} d(x, T(y))+b_{3} d(y, T(x)) \\
& +b_{4} d(x, T(x))+b_{5} d(y, T(y))
\end{aligned}
$$

where

$$
\begin{array}{ll}
b_{1}=\left(\alpha_{1}(x, y)+\alpha_{1}(y, x)\right) / 2 \\
b_{2}=\left(\alpha_{2}(x, y)+\alpha_{3}(y, x)\right) / 2, & b_{3}=\left(\alpha_{2}(y, x)+\alpha_{3}(x, y)\right) / 2 \\
b_{4}=\left(\alpha_{4}(x, y)+\alpha_{5}(y, x)\right) / 2, & b_{5}=\left(\alpha_{4}(y, x)+\alpha_{5}(x, y)\right) / 2
\end{array}
$$

Since each α_{i} is symmetric, $b_{2}=b_{3}, b_{4}=b_{5}$ and

$$
\sum_{i=1}^{5} b_{i}=\sum_{i=1}^{5} \alpha_{i}(x, y) \leqq r
$$

So we may assume that $\alpha_{2}=\alpha_{3}$ and $\alpha_{4}=\alpha_{5}$. By Theorem $1, T$ has a unique fixed point.

Example. Let X be the unit interval with the usual distance. Let T be the self-mapping on X defined by

$$
\begin{array}{ll}
T(x)=\frac{109}{60} x-\frac{3}{2} & \text { if } x \in[10 / 11,1] \tag{8}\\
T(x)=\frac{1}{6} x & \text { if } x \in[0,10 / 11)
\end{array}
$$

Then T is a continuous increasing self-mapping on X. For x, y in $[0,10 / 11)$, we define

$$
\alpha_{1}(x, y)=1 / 6, \alpha_{2}(x, y)=\alpha_{3}(x, y)=\alpha_{4}(x, y)=\alpha_{5}(x, y)=0
$$

For x, y in X with x or y in $[10 / 11,1]$, we define

$$
\alpha_{1}(x, y)=\alpha_{2}(x, y)=\alpha_{3}(x, y)=0, \alpha_{4}(x, y)=\alpha_{5}(x, y)=19 / 41
$$

Then each α_{i} is a symmetric function of $X \times X$ into $[0, \infty)$ and $\sum_{i=1}^{5} \alpha_{i} \leqq 38 / 41$ <1. Suppose that $x, y \in[10 / 11,1]$.
Then

$$
d(T(x), T(y))=\frac{109}{60} d(x, y) \leqq \frac{109}{660}
$$

and

$$
\alpha_{4}(x, y) d(x, T(x))+\alpha_{5}(x, y) d(y, T(y))=\frac{19}{41}\left(3-\frac{49}{60} x-\frac{49}{60} y\right) \geqq \frac{418}{660} .
$$

So T is not nonexpansive on X and

$$
\begin{equation*}
d(T(x), T(y)) \leqq \alpha_{4}(x, y) d(x, T(x))+\alpha_{5}(x, y) d(y, T(y)) \tag{10}
\end{equation*}
$$

Now suppose that $x \in[10 / 11,1], y \in[0,10 / 11)$. Then

$$
\begin{aligned}
& d(T(x), T(y))=T(x)-T(y)=\frac{109}{60} x-\frac{3}{2}-\frac{1}{6} y \\
& \alpha_{4}(x, y) d(x, T(x))+\alpha_{5}(x, y) d(y, T(y))=\frac{19}{41}\left(\frac{3}{2}-\frac{49}{60} x+\frac{5}{6} y\right) .
\end{aligned}
$$

Since

$$
\frac{109}{60} x-\frac{3}{2}-\frac{1}{6} y-\frac{19}{41}\left(\frac{3}{2}-\frac{49}{60} x+\frac{5}{6} y\right)=\frac{90}{41}(x-1)-\frac{68}{123} y \leqq 0
$$

(10) is satisfied. Finally, suppose that $x, y \in[0,10 / 11)$.

Then

$$
d(T(x), T(y))=\frac{1}{6} d(x, y)=\alpha_{5}(x, y) d(x, y)
$$

So T satisfies the conditions of Theorem 2. To see the advantage of Theorem 2, we note that

$$
\sum_{i=1}^{5} \sup \left\{\alpha_{i}(x, y): x, y \in X\right\}=\frac{269}{246}>1
$$

and α_{4} is not a composite function of d with any function on the real line $\left(\alpha_{4}(0,1 / 11) \neq \alpha_{4}(10 / 11,1)\right.$ but $\left.d(0,1 / 11)=d(10 / 11,1)\right)$. Also, if we replace $1 / 6$ in (9) by a number in [0,1/6), we will obtain an example of T which is not continuous on X and satisfies the conditions of Theorem 2.

3

Let X be a complete metric space. For any subset A of $X, \operatorname{cl} A$ will denote the closure of A in X and $\delta(A)$ will denote the diameter of A, i.e. $\delta(A)=\sup \{d(x, y)$:
$x, y \in A\}$. Let T be a self-mapping on X. A subset A of X is T-invariant if $T(A) \subset A$. Let $x \in X . O(x)$ will denote the set $\left\{T^{n}(x): n \geqq 0\right\}\left(T^{0}(x)=x\right)$ of all iterates $T^{n}(x)$ of x and will be called the orbit of $x . T$ has orbital diminishing diameters if for any x in X, either $\delta(O(x))=0$ or

$$
\lim _{n \rightarrow \infty} \delta\left(O\left(T^{n}(x)\right)<\delta(O(x))\right.
$$

This definition was introduced by Belluce and Kirk [3], [4], [18]. Kirk [18] proved that if X is compact and if T is a continuous self-mapping on X which has diminishing orbital diameters, then for any x in X, some subsequence of $\left\{T^{n}(x)\right\}$ converges to a fixed point of T. We shall obtain a related result with a different approach.

Theorem 3. Let T be a continuous self-mapping on a compact metric space. Suppose that
(a) there exist symmetric functions $\alpha_{1}, \alpha_{2}, \alpha_{3}$, of $X \times X$ into $[0,1]$ such that $\alpha_{1}+\alpha_{2}+\alpha_{3} \leqq 1$ and for any x, y in X,

$$
d(T(x), T(y)) \leqq a_{1} d(x, y)+a_{2} d(x, T(y))+a_{3} d(y, T(x))
$$

where $a_{i}=\alpha_{i}(x, y)$;
(b) for any T-invariant closed subset A of X with $\delta(A)>0$, there exist y, z in A such that

$$
\sup \left\{d\left(y, T^{n}(z)\right): n \geqq 0\right\}<\delta(A)
$$

Then for any x in $X,\left\{T^{n}(x)\right\}$ has a subsequence which converges to a fixed point of T.

Proof. Let $x \in X$. Consider $\operatorname{cl} O(x)$. Then $\mathrm{cl} O(x)$ is compact and T-invariant. By Zorn's lemma, cl $O(x)$ includes a minimal non-empty closed T-invariant subset Y of X. Suppose to the contrary that $\delta(Y)>0$. Then by (b), there exist y, z in Y such that

$$
r \equiv \sup \left\{d\left(y, T^{n}(z)\right): n \geqq 0\right\}<\delta(Y)
$$

By continuity of $T, d(y, u) \leqq r$ for each $u \in \operatorname{cl} O(z)$. Since $\mathrm{cl} O(z)$ is T-invariant, by minimality of $Y, \mathrm{cl} O(z)=Y$. So the set

$$
\begin{equation*}
W=\{u \in Y: d(u, v) \leqq r \text { for each } v \text { in } Y\} \tag{11}
\end{equation*}
$$

contains y. By continuity of d, W is closed. Let $u \in W$. By compactness of Y, there exists $v_{0} \in Y$ such that

$$
\begin{equation*}
d\left(T(u), v_{0}\right)=\sup \{d(T(u), v): v \in Y\} \tag{12}
\end{equation*}
$$

Since T is continuous, $T(Y)$ is compact. Also, $T(Y)$ is T-invariant. So by minimality of $Y, T(Y)=Y$. Therefore there exists v_{1} in Y such that $T\left(v_{1}\right)=v_{0}$. By (11), (12) and (a) with $a_{i}=\alpha_{i}\left(u, v_{1}\right)$,

$$
\begin{aligned}
d\left(T(u), v_{0}\right) & =d\left(T(u), T\left(v_{1}\right)\right) \\
& \leqq a_{1} d\left(u, v_{1}\right)+a_{2} d\left(u, T\left(v_{1}\right)\right)+a_{3} d\left(v_{1}, T(u)\right) \\
& \leqq a_{1} r+a_{2} r+a_{3} d\left(T\left(u, v_{0}\right) \leqq\left(1-a_{3}\right) r+a_{3} d\left(T(u), v_{0}\right) .\right.
\end{aligned}
$$

So

$$
\begin{equation*}
\left(1-a_{3}\right) d\left(T(u), v_{0}\right) \leqq\left(1-a_{3}\right) r . \tag{13}
\end{equation*}
$$

Since each α_{i} is symmetric, we may assume that $a_{2}=a_{3}$. Thus $a_{3} \leqq 1 / 2$. From (13), we have $d\left(T(u), v_{0}\right) \leqq r$. So W is T-invariant. By minimality of $Y, W=Y$. Therefore by (11),

$$
\delta(Y)=\delta(W) \leqq r<\delta(Y),
$$

a contradiction. Hence $\delta(Y)=0$ and the point x_{0} in Y is a fixed point of T. Since x_{0} is a fixed point of T and $x_{0} \in \mathrm{cl} O(x)$, some subsequence of $\left\{T^{n}(x)\right\}$ converges to x_{0}.

We remark that in Theorem 3, (b) is satisfied if T has diminishing orbital diameters.

4
Let B be a Banach space. d will denote the metric for B induced by the norm $\|\|$ of B. For any subset A of B, co A will denote the convex hull of A. Let X be a bounded closed convex subset of B. Let T be a self-mapping on $X . X$ is regular with respect to T if for any non-empty closed convex T-invariant subset A of X, either $\delta(A)=0$ or there exist y, z in A such that

$$
\sup \left\{d\left(y, T^{n}(z)\right): n \geqq 0\right\}<\delta(A)
$$

X is normal with respect to T if for any non-empty closed convex T-invariant subset A of X, either $\delta(A)=0$ or there exists z in A such that

$$
\sup \{d(z, y): y \in A\}<\delta(A) .
$$

X has normal structure [6] if X is normal with respect to the identity function on X. It is clear that X is regular with respect to T if it is normal with respect to T; X is normal with respect to T if it has normal structure. Our notions of regularity and normality link T with the convex structure of X.

Theorem 4. Let X be a weakly compact convex subset of a Banach space B. Let T be a self-mapping on X. Suppose that
(a) X is normal with respect to T;
(b) there exist symmetric functions $\alpha_{1}, \alpha_{2}, \alpha_{3}$ of $X \times X$ into $[0, \infty)$ such that $\alpha_{1}+\alpha_{2}+\alpha_{3} \leqq 1$ and for any x, y in X,

$$
\left.\left.d(T(x), T(y)) \leqq a_{1} d(x, y)+a_{2} d(x, T) y\right)\right)+a_{3} d(y, T(x)),
$$

where $a_{i}=\alpha_{i}(x, y)$.
Then T has a fixed point.

Proof. By Zorn's lemma, there exists a minimal non-empty closed convex T-invariant subset Y of X. Suppose to the contrary that $\delta(Y)>0$. Then by (a), there exists z in Y such that

$$
r \equiv \sup \{d(z, y): y \in Y\}<\delta(Y)
$$

So

$$
W=\{w \in Y: d(w, y) \leqq r \text { for each } y \text { in } Y\}
$$

contains z. Obviously W is convex and closed. We shall prove that W is T invariant. Let $w \in W$,

$$
r_{1}=\sup \{d(T(w), x): x \in Y\}
$$

Since $T(Y) \subset Y$ and Y is closed and convex, one has cl co $T(Y) \subset Y$; hence

$$
T(\mathrm{cl} \operatorname{co} T(Y)) \subset T(Y) \subset \mathrm{cl} \operatorname{co} T(Y)
$$

By minimality of $Y, \operatorname{cl} \operatorname{co} T(Y)=Y$. So by continuity and convexity of d,

$$
r_{1}=\sup \{d(T(w), T(y)): y \in Y\}
$$

(For nonexpansive mappings, the above argument or its variants occurred in [1], [2], [3], [14], [16], [17], [19], [20], [21], [22], [23], [28], [29].) Let $w \in W$, $y \in Y$. By (b) with $a_{i}=\alpha_{i}(x, y)$,

$$
d(T(w), T(y)) \leqq a_{1} d(w, y)+a_{2} d(w, T(y))+a_{3} d(y, T(w)) \leqq a_{1} r+a_{2} r+a_{3} r_{1}
$$

Let $\varepsilon>0$ and select $\bar{y} \in Y$ so that

$$
\sup _{y \in Y}\left(a_{1} r+a_{2} r+a_{3} r_{1}\right) \leqq \bar{a}_{1} r+\bar{a}_{2} r+\bar{a}_{3} r_{1}+\varepsilon \text { where } \bar{a}_{i}=\alpha_{i}(w, \bar{y})
$$

Then

$$
\begin{aligned}
r_{1}=\sup _{y \in Y} d(T(w), T(y)) & \leqq \sup _{y \in Y}\left(a_{1} r+a_{2} r+a_{3} r_{1}\right) \leqq \bar{a}_{1} r+\tilde{a}_{2} r+\tilde{a}_{3} r_{1}+\varepsilon \\
& =\left(1-\bar{a}_{3}\right) r+\tilde{a}_{3} r_{1}+\varepsilon .
\end{aligned}
$$

Hence, since $\bar{a}_{3} \leqq \frac{1}{2}$,

$$
r_{1} \leqq r+\frac{\varepsilon}{1-\tilde{a}_{3}} \leqq r+2 \varepsilon
$$

Since ε is arbitrary, $r_{1} \leqq r$. A contradiction can be obtained as in the proof of Theorem 3. Hence Y is a singleton and the point in Y is a fixed point of T.

By refining the above argument, one can obtain the following result for nonexpansive mappings.

Theorem 5. Let X be a weakly compact convex subset of a Banach space. Let T be a nonexpansive self-mapping on X. Suppose that X is regular with respect to T. Then T has a fixed point.

Let X be a weakly compact convex subset of a Banach space B. Let T be a nonexpansive self-mapping on X. Browder [7] and Göhde [12] proved that T has a fixed point if B is uniformly convex. Belluce and Kirk [1] proved that T has a fixed point if X has normal structure. Then they [3] obtained the following more general results: (i) T has a fixed point if for any x in X, cl co $O(x)$ has normal structure, (ii) T has a fixed point if T has diminishing orbital diameters. Theorem 5 combines all these results into a more general one.

We remark here that by modifying the definitions, conditions and proofs in an obvious way, Theorem 3 can be proved for a compact Hausdorff topological space X associated with a definite family of pseudo-metrics; Theorems 4 and 5 can be proved for a locally convex Hausdorff topological vector space X associated with a family of pseudo-norms. One such example can be found in [14] Also, every uniformly convex Banach space is reflexive [24]. So in this case, to assume that X is weakly compact convex is the same as assuming that X is bounded, closed and convex.

Let X be a bounded convex subset of a Banach space B. Let $y \in X$,

$$
\begin{aligned}
r_{y} & =\sup \{d(x, y): x \in X\}, \\
r & =\inf \left\{r_{y}: y \in X\right\}, \\
C & =\left\{x \in X: r_{x}=r\right\} .
\end{aligned}
$$

r is called the radius of X and C is called the Chebyshev centre of X. It was shown in [17] that if B is reflexive and X is weakly compact convex, then C is a non-empty closed convex subset of X. If C is a singleton $\{x\}$, then x is called the generalized center of X. For example, every bounded closed convex subset of a uniformly convex Banach space has a generalized centre [11].

Theorem 6. Let X be a bounded convex subset of a Banach space B. Suppose that X has a generalized centre x_{0}. Let T be a self-mapping on X (not necessarily continuous). Suppose further that
(a) cl co $T(X) \supset X$;
(b) there exist symmetric functions $\alpha_{1}, \alpha_{2}, \alpha_{3}$ of $X \times X$ into $[0, \infty)$ such that for all x, y in X,

$$
d(T(x), T(y)) \leqq a_{1} d(x, y)+a_{2} d(x, T(y))+a_{3} d(y, T(x)),
$$

where $a_{i}=\alpha_{i}(x, y)$.
Then x_{0} is a fixed point of T.
Proof. Form the definition of generalized centres,

$$
\begin{equation*}
\left\{x_{0}\right\}=\bigcap_{y \in Y}\{x \in Y: d(x, y) \leqq r\} \tag{14}
\end{equation*}
$$

where r is the radius of Y. Let $x \in Y$. By (b) with $a_{i}=\alpha_{i}\left(x_{0}, x\right)$,

$$
\begin{align*}
d\left(T\left(x_{0}\right), T(x)\right) & \leqq a_{1} d\left(x_{0}, x\right)+a_{2} d\left(x_{0}, T(x)\right)+a_{3} d\left(x, T\left(x_{0}\right)\right) \tag{15}\\
& \leqq a_{1} r+a_{2} r+a_{3} r_{1}
\end{align*}
$$

where $r_{1}=\sup \left\{d\left(T\left(x_{0}\right), y\right): y \in Y\right\} . \operatorname{By}(\mathrm{a})$,

$$
r_{1}=\sup \left\{d\left(T\left(x_{0}\right), T(y)\right): y \in Y\right\}
$$

Arguing as the the proof of Theorem 4, $r_{1} \leqq r$. So

$$
T\left(x_{0}\right) \in \bigcap_{y \in Y}\{x \in Y: d(x, y) \leqq r\}
$$

So by (14), $T\left(x_{0}\right)=x_{0}$.
Let X be a weakly compact convex subset of a Banach space B. Let T be a self-mapping on $X . T$ is called a generalized nonexpansive mapping if there exist symmetric functions $\alpha_{i}, i=1,2, \cdots, 5$, of $X \times X$ into X such that $\sum_{i=1}^{5} \alpha_{i} \leqq 1$ and for all x, y in X,

$$
\begin{aligned}
d(T(x), T(y)) \leqq & a_{1} d(x, y)+a_{2} d(x, T(y))+a_{3} d(y, T(x)) \\
& a_{4} d(x, T(x))+a_{5} d(y, T(y))
\end{aligned}
$$

where $a_{i}=\alpha_{i}(x, y)$. Let T be a generalized nonexpansive self-mapping on X. We post the following open questions:
(a) $\inf \{d(x, T(x)): x \in X\}=0$?
(b) Does T have a fixed point?

By using the asymptotic center recently introduced by Edelstein [10], we can prove that if X is uniformly convex and if T is continuous, then the above questions are equivalent. It is also interesting to note that if T has a fixed point, then T must be quasi-nonexpansive [9].

We would like to mention here that the use of five monotonically nonincreasing functions α_{i} on ($0, \infty$) (with $\sum_{i=1}^{5} \alpha_{i}<1$) to contract self-mappings on a complete metric space is invented by Hardy and Rogers [13].

References

[1] L. P. Belluce and W.A. Kirk, 'Fixed-point theorems for families of contraction mappings', Pacific J. Math. 18 (1966), 213-217.
[2] L. P. Belluce and W. A. Kirk, 'Nonexpansive mappings and fixed-points in Banach spaces', Illinois J. Math. 11 (1967), 471-479.
[3] L. P. Belluce and W. A. Kirk, 'Fixed point theorems for certain classes of nonexpansive mappings', Proc. Amer. Math. Soc. 20 (1969), 141-146.
[4] L. P. Belluce and W. A. Kirk, 'Some fixed point theorems in a metric and Banach space', Canad. Math. Bull. 12 (1969), 481-489.
[5] D. W. Boyd and J. S. W. Wong, 'On nonlinear contractions', Proc. Amer. Math. Soc. 20 (1969), 458-464.
[6] M. S. Brodskii and D. P. Milman, 'On the center of a convex set', Dokl. Akad. Nauk. SSSR (N.S.) 59 (1948), 837-840.
[7] F. E. Browder, 'Nonexpansive nonlinear operators in a Banach space', Proc. Nat. Acad. Sci. U.S.A. (1966), 1041-1044.
[8] J. A. Clarkson, ‘Uniformly convex spaces’, Trans. Amer. Math. Soc. 40 (1936), 396-414.
[9] W. G. Dotson, Jr., 'Fixed points of quasi-nonexpansive mappings', J. Austral. Math. Soc. 13 (1972), 167-170.
[10] M. Edelstein, 'The construction of an asymptotic center with a fixed point property', Bull. Amer. Math. Soc. 18 (1972), 206-208.
[11] Klaus Floret, 'Eine Bermekung über a priori-Fixpunkte nicht-expansiver Abbildungen', Manuscripta math. 6 (1972), 321-326.
[12] Von Dretrich Göhde, 'Zum prinzip der Konstraktiven Abbildung', Math. Nachr. 30 (1965), 251-258.
[13] G. Hardy and T. Rogers, 'A generalization of a fixed point theorem of Reich', Canad. Math. Bull. 16 (1973), 201-206.
[14] R. D. Holmes and Anthony T. Lau, 'Non-expansive actions of topological semigroups' (to appear in J. London Math. Soc.).
[15] R. Kannan. 'Some results on fixed points II', Amer. Math. Monthly 76 (1969), 405-408.
[16] Yōichi Kijima and Wataru Takahashi, 'A fixed point theorem for nonexpansive mappings in metric space', Kodai Math. Sem. Rep. 21 (1969), 326-330.
[17] W. A. Kirk, 'A fixed point theorem for mappings which do not increase distance', Amer. Math. Monthly 72 (1965), 1004-1007.
[18] W. A. Kirk, 'On mappings with diminishing orbital diameters', J. London Math. Soc. 44 (1969), 107-111.
[19] W. A. Kirk, 'Fixed point theorems for nonexpansive mappings', Proc. Sympos. Pure Math. 18, Amer. Math. Soc., Providence, R.I. (1970), 162-168.
[20] W. A. Kirk and W. D. Royalty, 'Fixed point theorems for certain nonexpansive mappings', Illinois J. Math. 15 (1971), 656-663.
[21] Anthony To-Ming Lau, 'Invariant means on almost periodic functions and fixed point properties', (to appear in Rocky Mountain J. Math.).
[22] Ralph De Marr, 'Common fixed-points for commuting contraction mappings', Pacific J. Math. 13 (1963), 1139-1141.
[23] Theodore Mitchell, 'Fixed points of reversible semigroups of nonexpansive mappings', Kodai Math. Sem. Rep. 22 (1970), 322-323.
[24] B. J. Pettis, 'A proof that every uniformly convex space is reflexive', Duke Math. J. 5 (1939), 249-253.
[25] E. A. Rakotch, 'A note on contractive mappings', Proc. Amer. Math. Soc. 13 (1962), 459-465.
[26] Simon Reich, 'Some remarks concerning contraction mappings', Canad. Math. Bull. 14 (1971), 121-124.
[27] Pramila Srivastava and Vijay Kummer Gupta, 'A note on common fixed points', Yokohama Math. J. 19 (1971), 91-95.
[28] Wataru Takahashi, 'Fixed point theorem for amenable semigroups of nonexpansive mappings', Kodai Math. Sem. Rep. 21 (1969), 383-386.
[29] Wataru Takahashi, 'A convexity in metric space and nonexpansive mappings', I, Kodai Math. Sem. Rep. 22 (1970), 142-149.
[30] Chi Song Wong, 'Common fixed points of two mappings', Pacific J. Math. 48 (1973), 299-312.
[31] Chi Song Wong, 'Generalized contractions and fixed point theorems', Proc. Amer. Math. Soc. 42 (1974), 409-417.

Summer Research Institute
Department of Mathematics
University of Alberta
Edmonton, Alberta
Canada

Present address:
University of Windsor
Windsor, Ontario
Canada

[^0]: This research was supported by the National Research Council of Canada and by a grant from the Canadian Mathematical Congress.

