ON METACYCLIC FIBONACCI GROUPS

by C. M. CAMPBELL and E. F. ROBERTSON
(Received 14th November 1973)

1. Introduction

Let F_{n} be the free group on $\left\{a_{i}: i \in \mathbf{Z}_{n}\right\}$, where the set of congruence classes $\bmod n$ is used as an index set for the generators. Let ϕ be the permutation $(1,2,3, \ldots, n)$ of Z_{n} and denote by θ the automorphism of F_{n} induced by ϕ, namely

$$
a_{i} \theta=a_{i \phi} .
$$

Let r and k be integers such that $r \geqq 2, k \geqq 0$ and let N be the normal closure of the set

$$
\left\{\left(a_{1} a_{2} \ldots a_{r} a_{r+k}^{-1}\right) \theta^{m}: 1 \leqq m \leqq n\right\}
$$

in F_{n}. Define the generalised Fibonacci group $\boldsymbol{F}(r, n, k)$ by

$$
F(r, n, k)=F_{n} / N
$$

We shall call $\left(a_{1} a_{2} \ldots a_{r} a_{r+k}^{-1}\right) \theta^{m-1}=1$ the relation (m) of $F(r, n, k)$. The groups $\boldsymbol{F}(r, n, 1)$ are the Fibonacci groups discussed in (3), where it is proved that these groups are metacyclic if $r \equiv 1 \bmod n$. In (3) two questions are posed relating to the case $r \equiv 1 \bmod n$, namely to find the orders of these groups and also 2-generator 2 -relation presentations for them. The first of these questions was solved in (2) and in this paper we solve the second problem.

The generalised Fibonacci groups $F(r, n, k)$ are discussed in (1) where it is stated that $F(6,5,3)$ is isomorphic to $F(6,5,1)$. We prove a generalisation of this result, namely that when $r \equiv 1 \bmod n F(r, n, k)$ is isomorphic to $F(r, n, 1)$ for any k coprime to n.

2. A 2-generator presentation for $\boldsymbol{F}(r, n, k)$

Suppose $r \equiv 1 \bmod n$ and let $r=n t+1$. Define $b_{0}=0, b_{1}=t$ and, inductively, $b_{j}=r b_{j-1}+t$. Denote by x the element $a_{1} a_{2} \ldots a_{n}$ of $F(r, n, k)$. In (2) we showed that $\langle x\rangle$ has index n in $F(r, n, k)$ when k is coprime to n and that x has order b_{n}. A coset enumeration was carried out using the modified Todd-Coxeter algorithm. Defining the cosets $2,3, \ldots, n$ by $i . a_{i}=i+1$, $1 \leqq i \leqq n-1$, the following relations between coset representatives were obtained

$$
i \cdot a_{a k+i}= \begin{cases}x^{b_{x}} \cdot(i+1) & 1 \leqq i \leqq n-1 \\ x^{b_{a}+1} \cdot 1 & i=n\end{cases}
$$

Let $y=a_{1+k}$. We show that x and y together generate $F(r, n, k)$ and obtain the following theorem.

Theorem 1. Let $r \equiv 1 \bmod n$ and let k be coprime to n. Then

$$
F(r, n, k)=\left\langle x, y \mid y^{-1} x y=x^{r h}, y^{n}=x^{\left(r^{n}-1\right) /(n(r-1))}, x^{\left(r^{n}-1\right) / n}=1\right\rangle
$$

where $h k \equiv 1 \bmod n$ and $1 \leqq h \leqq n-1$.
Proof. We use the modified Todd-Coxeter algorithm for the subgroup $H=\langle x, y\rangle$, making use of the results already stated for $\langle x\rangle$ and following through the collapses which occur with the addition of the information 1. $a_{1+k}=y .1$. Using relation (1) we obtain $1 . a_{1+k}=x^{t} .2$ and so $2=x^{-t} y .1$. But 1. $a_{a k+1}=x^{b_{\alpha}} \cdot 2=x^{b_{\alpha}-t} y .1$. Since k is coprime to n,

$$
1 \cdot a_{i}=x^{b_{n(t-1)}-t} y \cdot 1 ; \quad 1 \leqq i \leqq n
$$

Therefore the subgroup H has index one in $F(r, n, k)$ and thus

$$
F(r, n, k)=\langle x, y\rangle .
$$

Notice that we can always replace $x^{b_{\beta}}$ by $x^{b \bar{\beta}}$ where $\bar{\beta} \equiv \beta \bmod n$ and $0 \leqq \bar{\beta}<n$ since $x^{b_{n}}=1$.

In addition to the relation $x^{b_{n}}=1$ the modified Todd-Coxeter algorithm gives us the following relations for H. From the subgroup generator $x=a_{1} a_{2} \ldots a_{n-1} a_{n}$ we obtain

$$
\begin{equation*}
x=\prod_{i=1}^{n} x^{b_{h(i-1)}-t} y \tag{A}
\end{equation*}
$$

and from the relation (m) of $\boldsymbol{F}(r, n, k)$ we obtain

$$
\begin{equation*}
\left(\prod_{i=1}^{n} x^{b_{h(m-2+i n}-t} y\right)^{t} x^{b_{h(m-1)}-b_{h(m-1)+1}}=1 \tag{m}
\end{equation*}
$$

Notice that $\left(B_{1}\right)$ is the t th power of relation (A). Now $\left(B_{m}\right)$ and $\left(B_{m+1}\right)$ together imply

$$
y x^{b_{n m+1}-b_{n m}} y^{-1}=x^{b_{n(m-1)+1}-b_{n(m-1)}}
$$

But $b_{h(m-1)+1}-b_{h(m-1)}=n t b_{h(m-1)}+t$, and thus $y^{-1} x^{n t b_{m(m-1)}+t} y=x^{n t b_{m m}+t}$. We therefore obtain

$$
\begin{equation*}
y^{-1} x^{t^{h}(m-1)} y=x^{t r^{h} m} \tag{m}
\end{equation*}
$$

However $\left(C_{m}\right), 1 \leqq m \leqq n$, together with (A) imply $\left(B_{m}\right), 1 \leqq m \leqq n$.
The relation $\left(C_{1}\right)$ is $y^{-1} x^{t} y=x^{t r^{h}}$, and raising this relation to the power $r^{h(m-1)}$ gives the relation $\left(C_{m}\right)$. Hence a presentation for H, and therefore for $F(r, n, k)$, is given by the generators x and y subject to the relations $(A),\left(C_{1}\right)$ and $x^{b_{n}}=1$. Since $b_{h i}-t, 1 \leqq i \leqq n$, is divisible by t, relation (A) simplifies using $\left(C_{1}\right)$ to give $y^{n}=x^{\alpha}$ where

$$
\alpha=1-\sum_{i=1}^{n}\left(b_{h i}-t\right) r^{h(n-i)}
$$

But $b_{h i}-t=\left(r^{h i}-r\right) / n$ and so $\alpha=r\left(r^{n}-1\right) /(n(r-1))$. Relation (A) becomes $y^{n}=x^{\left(r^{n}-1\right) /(n(r-1))}$ since $r=1+(r-1)$ and $x^{(r-1)\left(r^{n-1) /(n(r-1))}\right.}=1$. Relation $\left(C_{1}\right)$ now simplifies using the modified relation (A). For $\alpha=v t+1$ for some $v \in \mathbf{Z}$, and so $y^{-1} x^{-v t} y=x^{-v t r^{h}}$ giving

$$
y^{-1} x y=x^{-v t r^{h}+\alpha}=x^{h^{h}} x^{\alpha\left(1-r^{h}\right)}
$$

Notice we have used the fact that $x^{\alpha} \in Z(H)$, the centre of H. However, $x^{\alpha\left(1-r^{h}\right)}=1$ since

$$
\alpha\left(1-r^{h}\right)=\frac{r^{n}-1}{n} \cdot \frac{\left(1-r^{h}\right)}{r-1}=u \cdot \frac{r^{n}-1}{n}
$$

for some $u \in \mathbf{Z}$. Thus $y^{-1} x y=x^{r^{h}}$.
Corollary 1. $F(r, n, 1)=\left\langle x, y \mid y^{-1} x y=x^{r}, y^{n}=x^{\left(r^{n}-1\right) /(n(r-1))}\right\rangle$, where $r \equiv \bmod n$.

Proof. It suffices to show that the relations $y^{-1} x y=x^{r}$ and

$$
y^{n}=x^{\left(r^{n}-1\right) /(n(r-1))}
$$

together imply $x^{\left(r^{n}-1\right) / n}=1$. Raising $y^{-1} x y=x^{r}$ to the power $\left(r^{n}-1\right) /(n(r-1))$ gives

$$
y^{-1} x^{\left(r^{n}-1\right) /(n(r-1))} y=x^{r\left(r^{n-1}\right) /(n(r-1))}
$$

Since $x^{\left(r^{n}-1\right) /(n(r-1))} \in Z(H), x^{\left(r^{n}-1\right) / n}=1$.
Corollary 2. $F(r, n, 1) \cong F(r, n, k)$ when $r \equiv 1 \bmod n$ and k is coprime to n.

Proof. Let Π be the set of prime factors of h.c.f. $\left(h,(r-1)\left(r^{n}-1\right)\right)$ and λ the maximal Π^{\prime}-number dividing $(r-1)\left(r^{n}-1\right)$, then $h+\lambda n$ is coprime to $(r-1)\left(r^{n}-1\right)$ and hence coprime to the order of x and the order of y. The group $F(r, n, 1)$ has a presentation

$$
\left\langle x, y \mid y^{-1} x y=x^{r}, y^{n}=x^{\left(r^{n}-1\right) /(n(r-1))}, x^{\left(r^{n}-1\right) / n}=1\right\rangle
$$

With this choice of $\lambda, x^{h+\lambda n}$ and $y^{h+\lambda n}$ together generate $F(r, n, 1)$. With $a=x^{h+\lambda n}, b=y^{h+\lambda n}$ it is straightforward to check that

$$
b^{-1} a b=a^{r^{h}}, \quad b^{n}=a^{\left(r^{n}-1\right) /(n(r-1))}, \quad a^{\left(r^{n}-1\right) / n}=1 .
$$

Hence $F(r, n, 1)$ is a homomorphic image of $F(r, n, k)$ and, using the fact proved in (2) that $|\boldsymbol{F}(r, n, 1)|=|\boldsymbol{F}(r, n, k)|$, the result follows.

An immediate consequence of Corollary 1 and Corollary 2 is the following theorem.

Theorem 2. Let $r \equiv 1 \bmod n$ and let k be coprime to n. Then $F(r, n, k)$ has a 2-generator 2 -relation presentation

$$
F(r, n, k)=\left\langle x, y \mid y^{-1} x y=x^{r}, y^{n}=x^{\left(r^{n}-1\right) /(n(r-1))}\right\rangle
$$

REFERENCES

(1) C. M. Campbell and E. F. Robertson, A note on a class of generalised Fibonacci groups (to appear).
(2) C. M. Campbell and E. F. Robertson, The orders of certain metacyclic groups, Bull. London Math. Soc. 6 (1974), 312-314.
(3) D. L. Johnson, J. W. Wamsley and D. Wright, The Fibonacci groups, Proc. London Math. Soc. (to appear).

Mathematical Institute
University of St. Andrews
St Andrews KY16 9SS

