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WEAK BRINGS 

SAAD MOHAMED AND SURJEET SINGH 

Throughout this paper we assume that every ring has unity and all modules 
are unital right modules. A ring R is called a (right) q-ring if every right ideal 
of R is quasi-injective [4], In this paper we study a generalization of this con­
cept. A ring R is called a (right) weak q-ring (in short, wq-ring) if every right 
ideal of R, not isomorphic to RR, is quasi-injective. A ring R is called a right 
pq-ring if every proper right ideal of R is quasi-injective. Any upper triangular 
2 X 2 matrix ring over a division ring is a wq-r'mg, which is not a q-ring. In 
Section 1, some general properties of wq-r'mgs are established and, in particular, 
it is shown in (1.8) that a semiprime wq-ring has zero singular ideal. In Section 
2, wq-r'mgs with zero singular ideals are studied. (2.4) and (2.7) give the struc­
ture of such rings. (2.10) shows that any prime wq-ring R, which admits no 
proper right ideal isomorphic to RR, is simple artinian. The results (2.11) and 
(2.13) give some information about general prime wq-r'mgs. It is not clear 
whether every prime wq-ring with non-zero socle is artinian. 

For any ring R, R, Z(R) and Rad R will stand for the injective hull, the 
singular submodule and the Jacobson radical of RB, respectively. A ring R is 
said to be semilocal (local) if i?/Rad R is semi-simple artinian (a division ring). 
A right ideal A of a ring R is said to be closed if AR has no essential extension 
in RR. The lattice of closed right ideals of a ring R with Z(R) = 0 will be 
denoted by LS(R). For any subset X of R, r(X)(l(X)) will denote the right 
(left) annihilator of X in R. The notation, pri-ring (right PID) will stand for 
principal right ideal ring (principal right ideal domain). For any module M, 
N CZf M will denote that N is an essential or large submodule of M. 

1. The object of this section is to establish some fundamental properties of 
wq-r'mgs and pq-r'mgs. For a ring R, K will stand for Hom^ (R, R). If A is a 
right ideal of R, we define 

A* = {x £ R\Kx C A}. 

It is clear that A* is a right ideal of R contained in A. Also if B and C are 
right ideals of R such that B C C, then B* C C*. 

(1.1) LEMMA. Let R be any ring. Let A be a right ideal of R and E a large 
right ideal of R. Then 

1 ) A* is a left K-module and is a two sided ideal of R; 
2) A* is quasi-injective as a right R-module; and 
3) E is quasi-injective if and only if E* = E. 
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Proof. Using the result of Johnson and Wong [6, Theorem (1.1)] the lemma 

follows. 

The following two corollaries are immediate consequences of the above 
lemma. 

(1.2) COROLLARY. Let Rbe a right wq-ring. If A* = RRJOY some right ideal A 
of R, then Ris a right q-ring. 

(1.3) COROLLARY. (1) If R is a right wq-ring which is not a right q-ring, then 
R* C.' RR if and only if there exists a large right ideal E of R such that E •£ R. 

2) If R is a right pq-ringy then R* C ' RR> 

Johnson and Wong [5] have shown tha t if a ring R has Z(R) = 0, then R 
is a right self-injective regular ring having R as a subring. We now have the 
following. 

(1.4) PROPOSITION. Let R be any ring with Z{R) = 0. Then for every right 
ideal A of R, 

1 ) A* is a left ideal of R; 
2) if A* 5e 0, then it contains non-zero idempotents; and 

3) if A* contains a right regular element, then R is right self infective. 

Proof. 1) Z{R) = 0 yields K = HomR(R, R) = HomR(R, R) = R. Hence, 
t ha t A* is a left ideal of R follows by (1.1). 

2) Let 0 5^ a Ç A*. As R is a regular ring there exists x £ R such t ha t 
axa = a. Hence xa is a nonzero idempotent . By (1), xa £ A. 

3) Let a be a r ight regular element in A*. Since RR is injective, it is divisible 
by a. We have Ra = R. T h u s 

R = Ra C A* C R C R. 

This completes the proof. 

(1.5) LEMMA. Let R he a wq-ring. If R contains non-trivial central idempotents, 
then R is a right q-ring. 

Proof. Let R = A © B where A and B are non-zero ideals. Then AR jk RR Çjk 
BR. Hence AR and BR are quasi-injective. As A and B are ideals, we get A and 
B are r ight self-injective rings. Hence R = A 0 B is a r ight g-ring. 

(1.6) PROPOSITION. Let Rbe a right wq-ring. If e is an idempotent of R, then 
either eR or (1 — e)R is quasi-injective. 

Proof. Let A = eR, B = (1 — e)R. Let B be not quasi-injective. Then 
B ^ RR and this gives B = Bx 0 B2 where Bx ^ A, B9^B. Again B2 = 
C\ 0 Ci where C\ = A, Ci = B. This process can be continued indefinitely. 
Hence B contains an infinite direct sum 

E = Bl 0 Cx 0 
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in which every summand is isomorphic to A. Now E qk R and hence E is quasi-
injective. Consequently A is quasi-injective. 

(1.7) PROPOSITION. Let Rhea domain. Then Ris a right wq-ring if and only if 
Ris aright PID. 

Proof. Suppose that R is a right wq-r'mg. If R* ^ 0 by (1.4), since R* con­
tains an idempotent, R* = R and R = R, thus R is regular and hence a divi­
sion ring. If R* = 0, then every right ideal of R is isomorphic to R, and as a 
consequence R is a right PID. The converse is obvious. 

(1.8) PROPOSITION. A semiprime right wq-ring R has zero right singular ideal. 

Proof. If every large right ideal of R is isomorphic to RR, then R is right 
noetherian and hence Z(R) = 0 (see [2]). So assume that R contains a large 
right ideal E •}= R. Let x £ Z(R). Then r(x) = E' for some large right ideal 
E' of R. If E' $k RR, then E', being quasi-injective, is a two sided ideal; as R 
is semiprime this implies x = 0. Let E' = R. Then Ef = aR for some right 
regular element a £ R. Obviously then aE C ' aR = Er yields aE C ' R> Then it 
follows from aE — E that aE Çjk R, and that aE is a two sided ideal by (1.1). 
Now x(aE) C ocEf = 0. Then again x = 0, since 7? is semiprime. This com­
pletes the proof. 

2. In this section we study rings with Z{R) = 0. Johnson and Wong [5] 
proved that R is a right self-injective regular ring having R as a subring. This 
fact will be frequently used in this section without further comments. 

(2.1) LEMMA. Let R = e\R © e2R where e\ and e2 are orthogonal indecom­
posable idempotents of R, such that e\Re2 ^ 0 and e2Rex = 0. / / Z{R) = 0 and 
etR are quasi-injective, i = 1,2, then 

Ko i] 
where D = e\Re\, is a division ring. 

Proof. Since etR is indecomposable and quasi-injective, etR is a uniform 
right ideal. As R is a regular ring, the uniformity of etR implies that etR is a 
minimal right ideal of R. Hence e^Rei is a division ring. By [6, Theorem (1.1)] 
etRei = HomR(etR, etR) = HomR(etRt etR) = eiRe^ Hence eiRet is a division 
ring. Again e\Re2 ^ 0 implies that e2R is embeddable in eiR and hence e\R ~ 
e2R. As a result we get gji?^ = e2Re2. So if P = eiRei and D' = e2Re2, then 
£> 9Ë £>'. Now, 

i? = aRd + exRe2 + e2ifcj2 = D + D' + G, G = exRe2. 

G is an ideal of R such that G2 = 0 and i?/G = D ® Df. Hence i? is a semi-
primary ring with G as its Jacobson radical. G2 = 0 implies G is completely 
reducible as a right i?-module. Then as e\R is uniform and G C e\R, we get 
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that G is a minimal right ideal of R. Since exR is quasi-injective, G C ' &\R and 
Z(R) = 0, and we have 

HomR(G, G) = HomR(eiR, e\R) = e\Re\ = D. 

Now G is a right vector space over D' = e2Re2. It is clear that every sub-
module of GR is a D'-subspace and conversely. Consequently dim GD> = 1. 
Because every -D'-endomorphism of G is an i^-endomorphism, D = Hom^/ (G,G). 
Then dim GD> = 1 yields that dim DG = 1. Hence if x is a fixed non-zero 
element of G. then for every d (z D there corresponds a unique d' £ £>' such 
that dx = xd'. Then the map g: D —* Df given by 

g(d) = d' if and only if dx = xd' 

is a ring isomorphism. Let 

5 = 
D D 
0 2? 

Define/: S -> iî by 

/ 
d u di2 

0 ^22 
= dn + d12x + g(dn). 

T h i s / is a ring isomorphism. This completes the proof. 

By the dual of [8, Prof. 2.5] established by Wu and Jans we have: 

(2.2) LEMMA. Let M be a right R-module and A be a quasi-injective submodule 
of M. If M = Y^i=i © A i where Ai~ A, 1 ^ i ^ n, then M is quasi-injective. 

The following is obvious. 

(2.3) LEMMA. Let A and B be non-zero right R-modules such that A © B is 

quasi-injective. If 0 -^A —» B is exact, then <p splits. Further if B is indecom­
posable, (p is an isomorphism. 

(2.4) THEOREM. Let Rbe a ring such that Z(R) = 0 and LS(R) finite dimension­
al. Then Ris a right wq-ring if and only if: 

I. Ris a rightPID, or 
II. R is semi-simple artinian, or 

^\D D~] III. R = n n for some division ring D. 

Proof. Since LS(R) is finite dimensional, R = Y^i=i © £^> where 
{et: 1 ^ i ^ n\ is a set of orthogonal indecomposable idempotents of R. 
Notice that no proper summand of RR is isomorphic to RR. Suppose that R is 
a wq-r'mg. We consider two cases. 

1) n = 1. In this case RR is uniform and hence R is without zero divisors. 
If every non-zero right ideal of R is isomorphic to R then R is a right PID and 
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R is of type (I). So let R have a non-zero right ideal E ç£ R. Then E C' R and 
E* = E. In this case, by (1.4), E contains a non-zero idempotent and hence 
R = E. This is a contradiction. So R is of type (I). 

2) n > 1. In this case etR ^ R for every i. As a result each e{R is quasi-
injective and hence uniform. Then 

R = é © *i# 

being a direct sum of finitely many minimal right ideals is semi-simple artinian. 
Let H be a homogeneous component of R. Renumbering if necessary, let 

H = e.R + . . . + etR = (ei + e2 + ... + et)R 

where t ^ n. If t < n, then e\ + e2 + . . . + et is a central idempotent of R 
different from 0 and 1. Hence R = R by (1.5) and R is of type (II). Let 
/ = n. Then 

eiR = ejR, 1 ^ i,j ^ n. 

As e î? C ' e*^, it is easy to see that for all 1 S i ^ n, there exist non-zero 
right ideals A t C e{R such that Af—Ajîor all i, j . We consider two subcases: 

a) w > 2. As ê R © ejR is quasi-injective (for i 5e j) and e ^ = e ^ , by 
Harada [3], etR = ejR. Thus RR is quasi-injective by (2.2). So again R = R 
and R is of type (II). 

b) n = 2. If none of ^4i © e2^ and eiR © ^42 is isomorphic to R, then both 
of them are quasi-injective and by (2.3), e2R = A\ ~ A2 ~ etR so we again 
get that R is of type (II). li e^ ® A2 = R = Ax ® e2R, then as the rings of 
endomorphism of A\, A2} e\R and e2R are all local rings, by the Krull-Schmidt-
Azumaya Theorem, eiR ~ Ai, and e2R ~ A2. Hence again eiR ~ e2R and R is 
of type (II). So it remains to consider the case when 

Ai + e2R g R, eiR + A2^R. 

In this case, e2R ~ A\ C eiR. Hence eiRe2 ^ 0. Let e2Rei ^ 0, then we get 
a non-zero homomorphism of e\R into e2Rf which is a monomorphism, since 
e\R is uniform and Z(R) = 0. Consequently exR and e2R are embeddable in 
each other. Then by Bumby [1, Corollory 2] eiR ~ e2R. This again yields 
that R is of type (II). So we get that e2Rex = 0. Then by (2.1) 

R ["] 
where D = e\Re\ is a division ring. Hence R is of type (III). 

Conversely, if R is of type (I) or (II) then trivially R is a wq-r'mg. Finally 

suppose R 
= \ D D' 
~ L0 Dm 

for some division ring D. The only non-trivial right 
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ideals of R are 

A, 
0 D 

_0 0 

~o D' 
LO D_ B. 

2 ~ Lo D] 

and A 3, the set of all matrices of the form where a, & are fixed non-
0 aa 

zero elements of D, and a G Z). Ai ~ A%. T h u s as Au A2, Az are minimal 
right ideals, and B\ = A\ + A2 = socle (RR), these four right ideals are tri­
vially quasi-injective. We now prove tha t B2 is quasi-injective. T h e only proper 
subright ideal of B2 is Ai. Let <p\ A\ —> B2 be an i^-homomorphism. Let 

V 
0 1 

. 0 0_ 
= 

0 d\ 

_o oJ ' 
Define ??: B2 —> i^2 by 

V 
a b 

-0 0_ 
= 

da db 

Then ry is an i?-endomorphism of B2 extending <p. T h u s B2 is also quasi-injective. 
This completes the proof. 

Remark. Notice t ha t the rings of type ( I I ) or ( I I I ) are ^g-rings. Since a 
semiprime right Goldie ring R has Z(R) = 0 and has LS(R), finite dimensional, 
the above theorem gives the following. 

(2.5) COROLLARY. A semiprime right Goldie ring R is a wq-ring if and only if 
it is either a right PID or a semi-simple artinian ring. 

I t can be easily seen tha t the proof of (2.4) only depends upon Z(R) = 0 
and tha t 1 = e\ + e2 + . . . + en for some indecomposable orthogonal idem-
potents . Since a semilocal ring R cannot have an infinite set of orthogonal 
idempotents , we have 1 = e\ + e2 + . . . + en for some indecomposable 
orthogonal idempotents et in R. As a result, we obtain: 

(2.6) T H E O R E M . Let R be a semi-local right wq-ring, with Z(R) = 0. Then 
either Ris a right PID or R is a right pq-ring. 

(2.7) T H E O R E M . Let R be a ring such that Z(R) = 0. If R is a right wq-ring, 
then either R is a right PID, or R is a strongly regular right self-infective ring or 
R has non-zero right socle. 

Proof. If R* ~ RR: then R = R and hence R is.a regular r ight q-ring. Then 
by [4, Lemma 2.11] either R is strongly regular or R has non-zero right socle. 
So, assume tha t R* Çjk RR. Hence R contains a proper large right ideal. We 
consider two cases. 
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1 ) Every large right ideal of R is isomorphic to R. Then R is right noetherian 
and hereditary and by (2.5), R is a right P I D or R has non-zero socle. 

2) R contains a large right ideal which is not isomorphic to R. In this case 
R* C RR- Let M be a maximal right ideal of R such tha t M C' RR. li M gk R, 
then M C R* gives R* = M. Let M ^ R, whence M = aR for some right 
regular element a of R. Then ai?* C ' i ? . As ai?* ^ i?*, aR* is a left ideal in R 
by (1.1) and (1.4). As R is a regular ring, and r(a) = 0, there exist x Ç R such 
tha t xa = 1. Now R* = (xa)R* = x(aR*) C aR* C R*. T h u s /?* = ai?* C 
M. This all shows tha t any maximal right ideal of R which is large, contains R*. 
Hence if every maximal right ideal of R is large, then R* C Rad R. But this 
contradicts the fact tha t R* contains non-zero idempotents by (1.4). So some 
maximal right ideal of R is not large. Hence R has non-zero right socle. 

T h e above theorem and (1.8) give: 

(2.8) COROLLARY. Let R be a semiprime right wq-ring. If socle R = 0, then 
either R is a right PID or R is strongly regular right self-injective. 

Consequently we have: 

(2.9) COROLLARY. Let Rbe a prime right wq-ring. If R is not a right PID, then 
R has non-zero socle and is primitive. 

I t is expected tha t a primitive right wq-r'mg with non-zero socle must be 
art inian. In this connection we first of all prove the following theorem. 

(2.10) T H E O R E M . Let Rbe a prime right wq-ring such that no proper right ideal 
of R is isomorphic to R. Then R is simple artinian. 

Proof. The hypothesis on R gives tha t R is a right pq-r'mg. So R cannot be 
a right P I D , unless it is a division ring. Hence by (2.9) R is primitive ring 
with non-zero socle. By [4, Theorem (2.13)] we only need to show tha t RR is 
injective. Suppose the contrary. As soc R ^ 0, soc R is not finitely generated 
and hence by [7, Theorem (3.1)], R = H o m ^ F , V) for some infinite dimen­
sional right vector space V over a division ring D. 

Let e be an indecomposable idempotent in R; such an idempotent exists in 
R, since soc R ^ 0. Then dim D(eV) = 1. Hence VD ^ (1 - e)VD. Let Vi = 
(1 - e)V. Then R = UomD(V, V) = Hom Z ) (F 1 , Fi) = (1 - e) R (1 - e). 
Also (1 — e)R is quasi-injective gives (1 — e)R (1 — e) = Hom / E ( ( l — e)R, 
(1 _ e)R) = H o m B ( ( l - e)R, (1 - e)R) = (1 - e)R(l - e). Let S = 
(1 — e)R(l — e). Then S ~ R gives tha t 5 is a right self-injective ring with 
soc S not finitely generated as an 5-module. Fur ther as 5 is also primitive, we 
can find countably infinite sets of indecomposable orthogonal idempotents , 
{/i»/2, • • . , gu g2, • • •} in 5 such tha t 

Z e fts ^ E © g*s = E e f<s © E © g*s. 
Let fS and gS be the injective hulls in 5 of the right 5-modules X) © fiS 

and E © gjS • We can take / and g to be orthogonal. As fS ~ (f + g)S, as 
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5-modules, this implies the existence of u and v in S such that uv = f and vu = 
f + g. But since u, v G R we get fR ^ (/ + g)R. Now R = (/ + g)R © 
(1 - / - g ) ^ =fR® (1 - / - g)i?. This contradicts the hypothesis that 
no proper right ideal of R is isomorphic to R. Hence R is simple artinian. 

We now prove some result on primitive right T^g-rings, whose socles are 
not finitely generated. 

(2.11) PROPOSITION. Let R be a primitive right wq-ring such that soc R is not 
finitely generated. Then for any 0 ^ a G R, either aR is completely reducible or 
every complement of aR is completely reducible and finitely generated. 

Proof. Suppose that aR is not completely reducible, Now aR P soc R C ' aR, 
since soc R C' RR- If aR P soc R is finitely generated, then aR P Soc R = eR 
and as a result aR = soc R P aR which is a contradiction. Hence soc R P aR 
is not finitely generated. Let B be a complement of aR in i?. If B is not a finite 
direct sum of minimal right ideals, then as above, B P soc R is not finitely 
generated. Hence B contains an infinite direct sum 53 *€/ © e%R of minimal 
right ideals of R. We take / to be countable. Hence as soc R P aR is not 
finitely generated, we get an i^-monomorphism 

/ : 52 ® etR-+ aR. 

Now 531€/ © eiR © aR Çjk R. So this direct sum is quasi-injective. Conse­
quently by (2.3), / splits. But this implies that 2*e / © eiR ^s a finite direct 
sum, which is a contradiction. Hence B is a finite direct sum of minimal right 
ideals. This completes the proof. 

(2.12) COROLLARY. Let R be as in (2.11). Then for any idempotent e of R 
either eR or (1 — e)R is completely reducible. 

(2.13) PROPOSITION. Let R be as in (2.11). Let A = £ * € / © etR be an infinite 
direct sum of minimal right ideals. If A has a complement in R which is not a 
finite direct sum of minimal right ideals, then A is a closed right ideal of R. 

Proof. On the contrary, let B be a proper essential extension of A in RR. 
Then B is not completely reducible. So there exists b £ B such that bR is not 
completely reducible. Let C be a complement of A in R satisfying the 
hypothesis. Then B Pi C = 0 = bR Pi C. We can have a complement C oîbR 
containing C. By (2.11) C is completely reducible and finitely generated; so 
the same hold for C. This contradicts our hypothesis. Hence A = B. This 
completes the proof. 
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