WEAK q-RINGS

SAAD MOHAMED AND SURJEET SINGH

Throughout this paper we assume that every ring has unity and all modules are unital right modules. A ring R is called a (right) q-ring if every right ideal of R is quasi-injective [4]. In this paper we study a generalization of this concept. A ring R is called a (right) weak q-ring (in short, wq-ring) if every right ideal of R, not isomorphic to R_R , is quasi-injective. A ring R is called a right pq-ring if every proper right ideal of R is quasi-injective. Any upper triangular 2×2 matrix ring over a division ring is a wq-ring, which is not a q-ring. In Section 1, some general properties of wq-rings are established and, in particular, it is shown in (1.8) that a semiprime wq-ring has zero singular ideal. In Section 2, wq-rings with zero singular ideals are studied. (2.4) and (2.7) give the structure of such rings. (2.10) shows that any prime wq-ring R, which admits no proper right ideal isomorphic to R_R , is simple artinian. The results (2.11) and (2.13) give some information about general prime wq-rings. It is not clear whether every prime wq-ring with non-zero socle is artinian.

For any ring R, \hat{R} , Z(R) and Rad R will stand for the injective hull, the singular submodule and the Jacobson radical of R_R , respectively. A ring R is said to be semilocal (local) if R/Rad R is semi-simple artinian (a division ring). A right ideal A of a ring R is said to be closed if A_R has no essential extension in R_R . The lattice of closed right ideals of a ring R with Z(R) = 0 will be denoted by $L^S(R)$. For any subset X of R, r(X)(l(X)) will denote the right (left) annihilator of X in R. The notation, pri-ring (right PID) will stand for principal right ideal ring (principal right ideal domain). For any module M, $N \subset M$ will denote that N is an essential or large submodule of M.

1. The object of this section is to establish some fundamental properties of wq-rings and pq-rings. For a ring R, K will stand for $\operatorname{Hom}_R(\hat{R}, \hat{R})$. If A is a right ideal of R, we define

$$A^* = \{x \in R | Kx \subset A\}.$$

It is clear that A^* is a right ideal of R contained in A. Also if B and C are right ideals of R such that $B \subset C$, then $B^* \subset C^*$.

- (1.1) Lemma. Let R be any ring. Let A be a right ideal of R and E a large right ideal of R. Then
 - 1) A^* is a left K-module and is a two sided ideal of R;
 - 2) A* is quasi-injective as a right R-module; and
 - 3) E is quasi-injective if and only if $E^* = E$.

Received August 27, 1975 and in revised form, January 4, 1977.

Proof. Using the result of Johnson and Wong [6, Theorem (1.1)] the lemma follows.

The following two corollaries are immediate consequences of the above lemma.

- (1.2) COROLLARY. Let R be a right wq-ring. If $A^* \cong R_R$ for some right ideal A of R, then R is a right q-ring.
- (1.3) COROLLARY. (1) If R is a right wq-ring which is not a right q-ring, then $R^* \subset' R_R$ if and only if there exists a large right ideal E of R such that $E \ncong R$. 2) If R is a right pq-ring, then $R^* \subset' R_R$.

Johnson and Wong [5] have shown that if a ring R has Z(R) = 0, then \hat{R} is a right self-injective regular ring having R as a subring. We now have the following.

- (1.4) Proposition. Let R be any ring with Z(R) = 0. Then for every right ideal A of R,
 - 1) A^* is a left ideal of \hat{R} ;
 - 2) if $A^* \neq 0$, then it contains non-zero idempotents; and
 - 3) if A^* contains a right regular element, then R is right self injective.
- *Proof.* 1) Z(R) = 0 yields $K = \operatorname{Hom}_{R}(\hat{R}, \hat{R}) = \operatorname{Hom}_{\hat{R}}(\hat{R}, \hat{R}) = \hat{R}$. Hence, that A^* is a left ideal of \hat{R} follows by (1.1).
- 2) Let $0 \neq a \in A^*$. As \hat{R} is a regular ring there exists $x \in \hat{R}$ such that axa = a. Hence xa is a nonzero idempotent. By (1), $xa \in A$.
- 3) Let a be a right regular element in A^* . Since \hat{R}_R is injective, it is divisible by a. We have $\hat{R}a = \hat{R}$. Thus

$$\hat{R} = \hat{R} a \subset A^* \subset R \subset \hat{R}$$
.

This completes the proof.

(1.5) Lemma. Let R be a wq-ring. If R contains non-trivial central idempotents, then R is a right q-ring.

Proof. Let $R = A \oplus B$ where A and B are non-zero ideals. Then $A_R \ncong B_R$. Hence A_R and B_R are quasi-injective. As A and B are ideals, we get A and B are right self-injective rings. Hence $R = A \oplus B$ is a right q-ring.

(1.6) PROPOSITION. Let R be a right wq-ring. If e is an idempotent of R, then either eR or (1 - e)R is quasi-injective.

Proof. Let A = eR, B = (1 - e)R. Let B be not quasi-injective. Then $B \cong R_R$ and this gives $B = B_1 \oplus B_2$ where $B_1 \cong A$, $B_2 \cong B$. Again $B_2 = C_1 \oplus C_2$ where $C_1 \cong A$, $C_2 \cong B$. This process can be continued indefinitely. Hence B contains an infinite direct sum

$$E = B_1 \oplus C_1 \oplus \ldots$$

in which every summand is isomorphic to A. Now $E \not\cong R$ and hence E is quasi-injective. Consequently A is quasi-injective.

(1.7) PROPOSITION. Let R be a domain. Then R is a right wq-ring if and only if R is a right PID.

Proof. Suppose that R is a right wq-ring. If $R^* \neq 0$ by (1.4), since R^* contains an idempotent, $R^* = R$ and $R = \hat{R}$, thus R is regular and hence a division ring. If $R^* = 0$, then every right ideal of R is isomorphic to R, and as a consequence R is a right PID. The converse is obvious.

(1.8) Proposition. A semiprime right wq-ring R has zero right singular ideal.

Proof. If every large right ideal of R is isomorphic to R_R , then R is right noetherian and hence Z(R)=0 (see [2]). So assume that R contains a large right ideal $E \not\cong R$. Let $x \in Z(R)$. Then r(x)=E' for some large right ideal E' of R. If $E' \not\cong R_R$, then E', being quasi-injective, is a two sided ideal; as R is semiprime this implies x=0. Let $E' \cong R$. Then E'=aR for some right regular element $a \in R$. Obviously then $aE \subset aR = E'$ yields $aE \subset R$. Then it follows from $aE \cong E$ that $aE \not\cong R$, and that aE is a two sided ideal by (1.1). Now $x(aE) \subset xE' = 0$. Then again x=0, since R is semiprime. This completes the proof.

- **2.** In this section we study rings with Z(R) = 0. Johnson and Wong [5] proved that \hat{R} is a right self-injective regular ring having R as a subring. This fact will be frequently used in this section without further comments.
- (2.1) Lemma. Let $R = e_1R \oplus e_2R$ where e_1 and e_2 are orthogonal indecomposable idempotents of R, such that $e_1Re_2 \neq 0$ and $e_2Re_1 = 0$. If Z(R) = 0 and e_4R are quasi-injective, i = 1, 2, then

$$R \cong \begin{bmatrix} D & D \\ 0 & D \end{bmatrix}$$

where $D = e_1 Re_1$, is a division ring.

Proof. Since e_iR is indecomposable and quasi-injective, e_iR is a uniform right ideal. As \hat{R} is a regular ring, the uniformity of $e_i\hat{R}$ implies that $e_i\hat{R}$ is a minimal right ideal of R. Hence $e_i\hat{R}e_i$ is a division ring. By $[\mathbf{6}$, Theorem (1.1)] $e_iRe_i = \operatorname{Hom}_R(e_iR, e_iR) = \operatorname{Hom}_R(e_i\hat{R}, e_i\hat{R}) = e_i\hat{R}e_i$. Hence e_iRe_i is a division ring. Again $e_1Re_2 \neq 0$ implies that e_2R is embeddable in e_1R and hence $e_1\hat{R} \cong e_2\hat{R}$. As a result we get $e_1Re_1 \cong e_2Re_2$. So if $D = e_1Re_1$ and $D' = e_2Re_2$, then $D \cong D'$. Now,

$$R = e_1Re_1 + e_1Re_2 + e_2Re_2 = D + D' + G, G = e_1Re_2.$$

G is an ideal of R such that $G^2 = 0$ and $R/G \cong D \oplus D'$. Hence R is a semi-primary ring with G as its Jacobson radical. $G^2 = 0$ implies G is completely reducible as a right R-module. Then as e_1R is uniform and $G \subset e_1R$, we get

that G is a minimal right ideal of R. Since e_1R is quasi-injective, $G \subset e_1R$ and Z(R) = 0, and we have

$$\text{Hom}_{R}(G, G) = \text{Hom}_{R}(e_{1}R, e_{1}R) = e_{1}Re_{1} = D.$$

Now G is a right vector space over $D' = e_2Re_2$. It is clear that every submodule of G_R is a D'-subspace and conversely. Consequently dim $G_{D'} = 1$. Because every D'-endomorphism of G is an R-endomorphism, $D = \operatorname{Hom}_{D'}(G, G)$. Then dim $G_{D'} = 1$ yields that dim ${}_DG = 1$. Hence if x is a fixed non-zero element of G, then for every $d \in D$ there corresponds a unique $d' \in D'$ such that dx = xd'. Then the map $g: D \to D'$ given by

$$g(d) = d'$$
 if and only if $dx = xd'$

is a ring isomorphism. Let

$$S = \begin{bmatrix} D & D \\ 0 & D \end{bmatrix}$$

Define $f: S \to R$ by

$$f \begin{bmatrix} d_{11} & d_{12} \\ 0 & d_{22} \end{bmatrix} = d_{11} + d_{12}x + g(d_{22}).$$

This f is a ring isomorphism. This completes the proof.

By the dual of [8, Prof. 2.5] established by Wu and Jans we have:

(2.2) Lemma. Let M be a right R-module and A be a quasi-injective submodule of M. If $M = \sum_{i=1}^{n} \oplus A_i$ where $A_i \cong A$, $1 \leq i \leq n$, then M is quasi-injective.

The following is obvious.

- (2.3) Lemma. Let A and B be non-zero right R-modules such that $A \oplus B$ is quasi-injective. If $0 \to A \xrightarrow{\varphi} B$ is exact, then φ splits. Further if B is indecomposable, φ is an isomorphism.
- (2.4) THEOREM. Let R be a ring such that Z(R) = 0 and $L^s(R)$ finite dimensional. Then R is a right wq-ring if and only if:
 - I. R is a right PID, or
 - II. R is semi-simple artinian, or

III.
$$R \cong \begin{bmatrix} D & D \\ 0 & D \end{bmatrix}$$
 for some division ring D .

Proof. Since $L^{S}(R)$ is finite dimensional, $R = \sum_{i=1}^{n} \oplus e_{i}R$, where $\{e_{i}: 1 \leq i \leq n\}$ is a set of orthogonal indecomposable idempotents of R. Notice that no proper summand of R_{R} is isomorphic to R_{R} . Suppose that R is a wq-ring. We consider two cases.

1) n = 1. In this case R_R is uniform and hence R is without zero divisors. If every non-zero right ideal of R is isomorphic to R then R is a right PID and

R is of type (I). So let R have a non-zero right ideal $E \ncong R$. Then $E \subset R$ and $E^* = E$. In this case, by (1.4), E contains a non-zero idempotent and hence E = E. This is a contradiction. So E is of type (I).

2) n > 1. In this case $e_i R \ncong R$ for every i. As a result each $e_i R$ is quasi-injective and hence uniform. Then

$$\hat{R} = \sum_{i=1}^{n} \oplus e_{i}\hat{R}$$

being a direct sum of finitely many minimal right ideals is semi-simple artinian. Let H be a homogeneous component of \hat{R} . Renumbering if necessary, let

$$H = e_1 \hat{R} + \ldots + e_t \hat{R} = (e_1 + e_2 + \ldots + e_t) \hat{R}$$

where $t \leq n$. If t < n, then $e_1 + e_2 + \ldots + e_t$ is a central idempotent of R different from 0 and 1. Hence $R = \hat{R}$ by (1.5) and R is of type (II). Let t = n. Then

$$e_i \hat{R} = e_i \hat{R}, \quad 1 \leq i, j \leq n.$$

As $e_k R \subset e_k \hat{R}$, it is easy to see that for all $1 \leq i \leq n$, there exist non-zero right ideals $A_i \subset e_i R$ such that $A_i \cong A_j$ for all i, j. We consider two subcases:

- a) n > 2. As $e_i R \oplus e_j R$ is quasi-injective (for $i \neq j$) and $e_i \hat{R} \cong e_j \hat{R}$, by Harada [3], $e_i R \cong e_j R$. Thus R_R is quasi-injective by (2.2). So again $R = \hat{R}$ and R is of type (II).
- b) n=2. If none of $A_1 \oplus e_2R$ and $e_1R \oplus A_2$ is isomorphic to R, then both of them are quasi-injective and by (2.3), $e_2R \cong A_1 \cong A_2 \cong e_1R$ so we again get that R is of type (II). If $e_1R \oplus A_2 \cong R \cong A_1 \oplus e_2R$, then as the rings of endomorphism of A_1 , A_2 , e_1R and e_2R are all local rings, by the Krull-Schmidt-Azumaya Theorem, $e_1R \cong A_1$, and $e_2R \cong A_2$. Hence again $e_1R \cong e_2R$ and R is of type (II). So it remains to consider the case when

$$A_1 + e_2 R \not\cong R$$
, $e_1 R + A_2 \cong R$.

In this case, $e_2R \cong A_1 \subset e_1R$. Hence $e_1Re_2 \neq 0$. Let $e_2Re_1 \neq 0$, then we get a non-zero homomorphism of e_1R into e_2R , which is a monomorphism, since e_1R is uniform and Z(R) = 0. Consequently e_1R and e_2R are embeddable in each other. Then by Bumby [1, Corollory 2] $e_1R \cong e_2R$. This again yields that R is of type (II). So we get that $e_2Re_1 = 0$. Then by (2.1)

$$R \cong \begin{bmatrix} D & D \\ 0 & D \end{bmatrix}$$

where $D = e_1 R e_1$ is a division ring. Hence R is of type (III).

Conversely, if R is of type (I) or (II) then trivially R is a wq-ring. Finally suppose $R = \begin{bmatrix} D & D \\ 0 & D \end{bmatrix}$ for some division ring D. The only non-trivial right

ideals of R are

$$A_1 = \begin{bmatrix} 0 & D \\ 0 & 0 \end{bmatrix} \quad A_2 = \begin{bmatrix} 0 & 0 \\ 0 & D \end{bmatrix}$$
$$B_1 = \begin{bmatrix} 0 & D \\ 0 & D \end{bmatrix} \quad B_2 = \begin{bmatrix} D & D \\ 0 & 0 \end{bmatrix}$$

and A_3 , the set of all matrices of the form $\begin{bmatrix} 0 & a\alpha \\ 0 & b\alpha \end{bmatrix}$ where a, b are fixed non-zero elements of D, and $\alpha \in D$. $A_1 \cong A_3$. Thus as A_1 , A_2 , A_3 are minimal right ideals, and $B_1 = A_1 + A_2 = \operatorname{socle}(R_R)$, these four right ideals are trivially quasi-injective. We now prove that B_2 is quasi-injective. The only proper subright ideal of B_2 is A_1 . Let $\varphi \colon A_1 \to B_2$ be an R-homomorphism. Let

$$\varphi \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & d \\ 0 & 0 \end{bmatrix}.$$

Define $\eta: B_2 \to B_2$ by

$$\eta \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} da & db \\ 0 & 0 \end{bmatrix}.$$

Then η is an R-endomorphism of B_2 extending φ . Thus B_2 is also quasi-injective. This completes the proof.

Remark. Notice that the rings of type (II) or (III) are pq-rings. Since a semiprime right Goldie ring R has Z(R) = 0 and has $L^{s}(R)$, finite dimensional, the above theorem gives the following.

(2.5) COROLLARY. A semiprime right Goldie ring R is a wq-ring if and only if it is either a right PID or a semi-simple artinian ring.

It can be easily seen that the proof of (2.4) only depends upon Z(R) = 0 and that $1 = e_1 + e_2 + \ldots + e_n$ for some indecomposable orthogonal idempotents. Since a semilocal ring R cannot have an infinite set of orthogonal idempotents, we have $1 = e_1 + e_2 + \ldots + e_n$ for some indecomposable orthogonal idempotents e_i in R. As a result, we obtain:

- (2.6) THEOREM. Let R be a semi-local right wq-ring, with Z(R) = 0. Then either R is a right PID or R is a right pq-ring.
- (2.7) THEOREM. Let R be a ring such that Z(R) = 0. If R is a right wq-ring, then either R is a right PID, or R is a strongly regular right self-injective ring or R has non-zero right socle.

Proof. If $R^* \cong R_R$: then $R = \hat{R}$ and hence R is a regular right q-ring. Then by [4, Lemma 2.11] either R is strongly regular or R has non-zero right socle. So, assume that $R^* \ncong R_R$. Hence R contains a proper large right ideal. We consider two cases.

- 1) Every large right ideal of R is isomorphic to R. Then R is right noetherian and hereditary and by (2.5), R is a right PID or R has non-zero socle.
- 2) R contains a large right ideal which is not isomorphic to R. In this case $R^* \subset R_R$. Let M be a maximal right ideal of R such that $M \subset R_R$. If $M \ncong R$, then $M \subset R^*$ gives $R^* = M$. Let $M \cong R$, whence M = aR for some right regular element R of R. Then $R^* \subset R$. As $R^* \cong R^*$, R^* is a left ideal in R by (1.1) and (1.4). As R is a regular ring, and R is a left ideal in R that R is a regular ring, and R is a left ideal in R which is all shows that any maximal right ideal of R which is large, contains R^* . Hence if every maximal right ideal of R is large, then $R^* \subset R$ and R. But this contradicts the fact that R^* contains non-zero idempotents by (1.4). So some maximal right ideal of R is not large. Hence R has non-zero right socle.

The above theorem and (1.8) give:

(2.8) COROLLARY. Let R be a semiprime right wq-ring. If socle R = 0, then either R is a right PID or R is strongly regular right self-injective.

Consequently we have:

(2.9) COROLLARY. Let R be a prime right wq-ring. If R is not a right PID, then R has non-zero socle and is primitive.

It is expected that a primitive right wq-ring with non-zero socle must be artinian. In this connection we first of all prove the following theorem.

(2.10) THEOREM. Let R be a prime right wq-ring such that no proper right ideal of R is isomorphic to R. Then R is simple artinian.

Proof. The hypothesis on R gives that R is a right pq-ring. So R cannot be a right PID, unless it is a division ring. Hence by (2.9) R is primitive ring with non-zero socle. By [4, Theorem (2.13)] we only need to show that R_R is injective. Suppose the contrary. As soc $R \neq 0$, soc R is not finitely generated and hence by [7, Theorem (3.1)], $\hat{R} = \operatorname{Hom}_{D}(V, V)$ for some infinite dimensional right vector space V over a division ring D.

Let e be an indecomposable idempotent in R; such an idempotent exists in R, since soc $R \neq 0$. Then $\dim_D(eV) = 1$. Hence $V_D \cong (1-e)V_D$. Let $V_1 = (1-e)V$. Then $\hat{R} = \operatorname{Hom}_D(V, V) = \operatorname{Hom}_D(V_1, V_1) = (1-e)\hat{R}$ (1-e). Also (1-e)R is quasi-injective gives (1-e)R $(1-e) = \operatorname{Hom}_R((1-e)R, (1-e)R) = \operatorname{Hom}_R((1-e)\hat{R}, (1-e)\hat{R}) = (1-e)\hat{R}(1-e)$. Let S = (1-e)R(1-e). Then $S \cong \hat{R}$ gives that S is a right self-injective ring with soc S not finitely generated as an S-module. Further as S is also primitive, we can find countably infinite sets of indecomposable orthogonal idempotents, $\{f_1, f_2, \ldots, g_1, g_2, \ldots\}$ in S such that

$$\sum \,\oplus \, f_i S \ \cong \ \sum \,\oplus \, g_j S \ = \ \sum \,\oplus \, f_i S \,\oplus \, \sum \,\oplus \, g_j S.$$

Let fS and gS be the injective hulls in S of the right S-modules $\Sigma \oplus f_iS$ and $\Sigma \oplus g_jS$. We can take f and g to be orthogonal. As $fS \cong (f+g)S$, as

S-modules, this implies the existence of u and v in S such that uv = f and vu = f + g. But since $u, v \in R$ we get $fR \cong (f + g)R$. Now $R = (f + g)R \oplus (1 - f - g)R \cong fR \oplus (1 - f - g)R$. This contradicts the hypothesis that no proper right ideal of R is isomorphic to R. Hence R is simple artinian.

We now prove some result on primitive right wq-rings, whose socles are not finitely generated.

(2.11) PROPOSITION. Let R be a primitive right wq-ring such that soc R is not finitely generated. Then for any $0 \neq a \in R$, either aR is completely reducible or every complement of aR is completely reducible and finitely generated.

Proof. Suppose that aR is not completely reducible, Now $aR \cap \operatorname{soc} R \subset aR$, since $\operatorname{soc} R \subset R$. If $aR \cap \operatorname{soc} R$ is finitely generated, then $aR \cap \operatorname{Soc} R = eR$ and as a result $aR = \operatorname{soc} R \cap aR$ which is a contradiction. Hence $\operatorname{soc} R \cap aR$ is not finitely generated. Let B be a complement of aR in R. If B is not a finite direct sum of minimal right ideals, then as above, $B \cap \operatorname{soc} R$ is not finitely generated. Hence B contains an infinite direct sum $\sum_{i \in I} e_i R$ of minimal right ideals of R. We take R to be countable. Hence as $\operatorname{soc} R \cap aR$ is not finitely generated, we get an R-monomorphism

$$f: \sum_{i \in I} \oplus e_i R \to aR.$$

Now $\sum_{i \in I} \oplus e_i R \oplus aR \ncong R$. So this direct sum is quasi-injective. Consequently by (2.3), f splits. But this implies that $\sum_{i \in I} \oplus e_i R$ is a finite direct sum, which is a contradiction. Hence B is a finite direct sum of minimal right ideals. This completes the proof.

- (2.12) COROLLARY. Let R be as in (2.11). Then for any idempotent e of R either eR or (1 e)R is completely reducible.
- (2.13) PROPOSITION. Let R be as in (2.11). Let $A = \sum_{i \in I} \oplus e_i R$ be an infinite direct sum of minimal right ideals. If A has a complement in R which is not a finite direct sum of minimal right ideals, then A is a closed right ideal of R.

Proof. On the contrary, let B be a proper essential extension of A in R_R . Then B is not completely reducible. So there exists $b \in B$ such that bR is not completely reducible. Let C be a complement of A in R satisfying the hypothesis. Then $B \cap C = 0 = bR \cap C$. We can have a complement C' of bR containing C. By (2.11) C' is completely reducible and finitely generated; so the same hold for C. This contradicts our hypothesis. Hence A = B. This completes the proof.

Acknowledgement. The authors are extremely thankful to the referee for pointing out some misprints and for other suggestions.

REFERENCES

 R. T. Bumby, Modules which are isomorphic to submodules of each other, Arch. Math. 16 (1965), 184-185.

- 2. A. W. Goldie, Semiprime rings with maximum conditions, Proc. London, Math. Soc. 10 (1960), 201-220.
- 3. M. Harada, Note on quasi-injective modules, Osaka Math J. 2 (1965), 351-356.
- S. K. Jain, S. H. Mohamed and Surject Singh, Rings in which every right ideal is quasiinjective, Pacific J. Math. 31 (1969), 73-79.
- 5. R. E. Johnson and E. T. Wong, Self-injective rings, Canadian Math. Bull. 2 (1959), 167-173.
- 6. Quasi-injective modules and irreducible rings, J. London, Math. Soc. 36 (1961), 260-268.
- R. E. Johnson, Quotient rings of rings with zero singular ideals, Pacific J. Math. 11 (1961), 1385–1392.
- 8. L. E. T. Wu and J. P. Jans, On quasi-projectives, Illinois J. Math. 11 (1967), 439-448.

Kuwait University, Kuwait; Guru Nanak Dev University, Amritsar, India