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Abstract
The box-ball system (BBS), which was introduced by Takahashi and Satsuma in 1990, is a soliton cellular automaton.
Its dynamics can be linearized by a few methods, among which the best known is the Kerov–Kirillov–Reschetikhin
(KKR) bijection using rigged partitions. Recently, a new linearization method in terms of ‘slot configurations’ was
introduced by Ferrari–Nguyen–Rolla–Wang, but its relations to existing ones have not been clarified. In this paper,
we investigate this issue and clarify the relation between the two linearizations. For this, we introduce a novel way
of describing the BBS dynamics using a carrier with seat numbers. We show that the seat number configuration also
linearizes the BBS and reveals explicit relations between the KKR bijection and the slot configuration. In addition,
by using these explicit relations, we also show that even in case of finite carrier capacity the BBS can be linearized
via the slot configuration.
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1. Introduction

We consider the box-ball system (BBS) introduced by Takahashi–Satsuma [TS] and a class of its
generalizations BBS(ℓ) introduced in [TM], which are cellular automata. The states of the system are
configurations of particles (balls) on the half line N = {1, 2, . . . } denoted by 𝜂 ∈ Ω = {0, 1}N, and we
will assume that the site 𝑥 = 0 is always vacant (box). The dynamics of the BBS(ℓ) can be described
in terms of a carrier with capacity ℓ. At each time step, the carrier enters the system empty from the
leftmost site (𝑥 = 0) and starts travelling to the right. It visits each site x of the lattice updating its local
state as follows:

◦ If there is a ball at site x and the carrier is not full, then the carrier picks up the ball;
◦ If the site x is empty and the carrier is not empty, then the carrier puts down a ball;
◦ Otherwise, the carrier just passes through.

The above updating rules can be summarized by recording in a function 𝑊ℓ : Z≥0 → {0, 1, . . . , ℓ} the
number of balls transported by the carrier as it visits each site of the lattice N, that is, we recursively
define 𝑊ℓ : Z≥0 → {0, 1, . . . , ℓ} as 𝑊ℓ (0) = 0 and

𝑊ℓ (𝑥) = 𝑊ℓ (𝑥 − 1) + min{𝜂(𝑥), ℓ −𝑊ℓ (𝑥 − 1)} − min{1 − 𝜂(𝑥),𝑊ℓ (𝑥 − 1)}.

Then by using 𝑊ℓ , the one step time evolution of the BBS(ℓ) is described by the operator

𝑇ℓ : Ω → Ω

which acts on states as

𝑇ℓ𝜂(𝑥) = 𝜂(𝑥) +𝑊ℓ (𝑥 − 1) −𝑊ℓ (𝑥).

The original model, namely the BBS introduced by [TS], corresponds to the case with infinite capacity
carrier, that is ℓ = ∞. Throughout this paper, by abuse of notation, for any function 𝑓 : Ω → R we will
denote 𝑓 (𝑇ℓ𝜂) by 𝑇ℓ 𝑓 and often omit the variable 𝜂. Also, we denote 𝑇∞ by T.

The BBS has been widely studied from the viewpoint of the integrable system. In particular, the BBS
can be obtained via a certain discretization of the Korteweg–de Vries equation (KdV equation)

𝜕𝑡𝑢 + 6𝑢𝜕𝑥𝑢 + 𝜕3
𝑥𝑢 = 0.

As the KdV equation is known to be a soliton equation, the BBS also exhibits solitonic behavior; indeed,
this property is a consequence of the solitonic nature of a certain discretized KdV equation [TTMS].
A k-soliton of a given ball configuration 𝜂 is a certain substring of 𝜂 consisting of k ‘1’s and ‘0’s. If
distances of solitons are large enough, then a k-soliton is identified as consecutive k ‘1’s followed by k
‘0’s – here, we look at the ball configuration from left to right. Even when the distance between some
solitons is small or solitons are interacting, we can identify them precisely, via the Takahashi–Satsuma
(TS) algorithm, which is recalled in Appendix A. For example, Figure 1 shows the time evolution of the
configuration 𝜂 = 111000010010 . . . , which includes one 3-soliton and two 1-solitons, and the distance
of these solitons is large enough in 𝜂, 𝑇4𝜂 but they interact in 𝑇𝜂, 𝑇2𝜂, 𝑇3𝜂. In addition, it is also known
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Figure 1. How the ball configuration 𝜂 = 1110000100 . . . evolves with time, where 𝑇𝑛𝜂 is recursively
defined as 𝑇𝑛𝜂 = 𝑇

(
𝑇𝑛−1𝜂

)
, 𝑇0𝜂 = 𝜂. The 3-soliton and two 1-solitons identified by the TS algorithm

are colored by red, blue and green, respectively.

that the BBS can be obtained via the zero temperature limit of a certain spin chain model, and the
BBS inherits the symmetry of the model before taking the limit; see [IKT] for details. Thus, despite the
simple description of the dynamics, the BBS is considered an important model in mathematical physics
since it has the properties of both classical and quantum integrable systems.

For some classical integrable systems such as the KdV equation, the initial value problems are
explicitly solved via the linearization of their dynamics. The BBS, as well as BBS(ℓ), are clearly
nonlinear dynamics, yet they are also known to be linearized by the Kerov–Kirillov–Reschetikhin
(KKR) bijection [KOSTY] using the language of rigged Young diagrams and also by a procedure
called 10-elimination [MIT]. A relation between the two linearizations was studied in [KS]. Recently,
another linearization using the notion of the slot configuration and the k-slots has been introduced
in [FNRW]. The latter linearization is known to be useful to study the randomized BBS and its
generalized hydrodynamics [CS, FG, FNRW], where generalized hydrodynamics is a relatively new
theory of hydrodynamics for integrable systems; see the review [D] for details. The aim of this paper
is to introduce a new algorithm which also linearizes the BBS dynamics and reveals relations between
the KKR bijection and the slot configuration. In a forthcoming paper [S], the relation between the
10-elimination and the slot configuration will be considered.

To describe the explicit relation between these linearizations, we introduce two novel ways to encode
the ball configuration 𝜂 ∈ Ω:

(i) In Section 2.1, we introduce a carrier with seat numbers and the corresponding seat number
configuration 𝜂𝜎

𝑘 ∈ Ω, for any 𝑘 ∈ N and𝜎 ∈ {↑, ↓}. We will show that the seat number configuration
is a sequential generalization of the slot configuration, namely 𝜂𝜎

𝑘 (𝑥) depends only on (𝜂(𝑦))0≤𝑦≤𝑥
but contains full information of the slot configuration; see Proposition 2.3 for details.

(ii) In Section 4.2, we introduce a new algorithm to produce a growing sequence of pairs of interlacing
Young diagrams

(
𝜇↑(𝑥), 𝜇↓(𝑥)

)
𝑥∈N as well as refined riggings (J𝜎 (𝑥))𝑥∈N for each 𝜎 ∈ {↑, ↓} from

any ball configuration 𝜂 ∈ Ω. This procedure turns out to be useful in order to establish connections
between the KKR bijection and the seat number configuration; see Proposition 2.2 for details. In
particular, we give an intuitive meaning to the KKR bijection, which was a purely combinatorial
object by means of the carrier with seat numbers.

As a result, we obtain an explicit relation between the KKR bijection and the slot configuration, an
open problem addressed in [FNRW]. Our results reveal that the slot configuration can be defined
independently of the notion of solitons; see Section 2.1 and Proposition 2.3 for details. In addition, we
will see that the slot configuration is more related to ‘energy functions’ than solitons; see Proposition 2.2
and the discussion following it. We also explain an interpretation of our result. First, we note that the
original slot configuration is defined via the notion of solitons identified by the TS algorithm. In this
sense, the slot configuration sees the BBS as a classical integrable system. On the other hand, the
linearization property of the rigged configuration obtained via the KKR bijection is closely related to a
combinatorial R matrix which satisfies the Yang–Baxter equation, that is, in this formalism the BBS is
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treated as a quantum integrable system [IKT]. Therefore, the present result can be considered as a new
way to connect two different perspectives (classical and quantum) on the BBS.

1.1. Outline

The rest of the paper is organized as follows. In Section 2, we first define the seat number configuration
(𝜂𝜎

𝑘 )𝑘∈N. Then we explain how the original BBS is linearized by simple observations on seat numbers;
see Theorem 2.1. In the subsequent subsection, we briefly summarize the relationships between other
linearizations and the seat number configuration, where the main results in this direction are Proposi-
tions 2.2 and 2.3. Finally, we state the relation between the KKR bijection and the slot configuration in
Theorem 2.2. As a direct consequence of Theorem 2.2, we show that the BBS(ℓ) can be linearized by
the slot decomposition for any ℓ < ∞ as well as the seat number configuration; see Theorem 2.3. Some
possible extensions for other models and applications to generalized hydrodynamics of our results are
also discussed at the end of Section 2.2. In Section 3, we describe some basic properties of seat number
configurations and we give a proof of Theorem 2.1. In Section 4, first we recall the definition of rigged
configurations and of the KKR bijection. Then, we introduce the interlacing Young diagrams algorithm
and prove Proposition 2.2 by using this algorithm. In Section 5, first we recall the definition of the slot
configuration and the corresponding slot decomposition. Then, we prove Proposition 2.3, Theorem 2.2
and Theorem 2.3.

2. Main results

In this section, we introduce a carrier with seat numbers, and corresponding seat number configuration.
Unlike the exisiting methods (KKR bijection and the slot configuration), the seat number configuration
can always be defined for any 𝜂 ∈ Ω, and linearize the dynamics of the BBS starting from 𝜂. When
𝜂 satisfies

∑
𝑥∈N 𝜂(𝑥) < ∞, we can obtain an explicit relation between the KKR bijection / slot

configuration and the seat number configuration. As a result, we determine relationships between the
KKR bijection and the slot configuration.

2.1. Seat number configuration

Now, we consider a situation in which the seats of the carrier, introduced in the previous section, are
indexed by N and the refined update rule of such a carrier is given as follows:

◦ If there is a ball at site x, namely 𝜂(𝑥) = 1, then the carrier picks the ball and puts it at the empty seat
with the smallest seat number;

◦ If the site x is empty, namely 𝜂(𝑥) = 0, and if there is at least one occupied seat, then the carrier puts
down the ball at the occupied seat with the smallest seat number;

◦ Otherwise, the carrier just passes through.

The above rule can also be summarized by recording in functions W = (W𝑘 )𝑘∈N, W𝑘 : Z≥0 → {0, 1}
whether the seat No. k is occupied at site x, that is, we recursively define W as W𝑘 (0) = 0 for any 𝑘 ∈ N

and

W𝑘 (𝑥) = W𝑘 (𝑥 − 1) + 𝜂(𝑥) (1 −W𝑘 (𝑥 − 1))
𝑘−1∏
ℓ=1

Wℓ (𝑥 − 1) (2.1)

− (1 − 𝜂(𝑥))W𝑘 (𝑥 − 1)
𝑘−1∏
ℓ=1

(1 −Wℓ (𝑥 − 1)).

Then, W𝑘 (𝑥) = 0 means that the seat No.k of the carrier passing at site x is empty, while W𝑘 (𝑥) = 1
means that the seat No. k of the carrier is occupied. We call W = (W𝑘 )𝑘 the carrier with seat numbers.
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It is obvious by definition that for the classical carrier 𝑊ℓ with capacity ℓ ∈ N ∪ {∞},

𝑊ℓ (𝑥) =
ℓ∑

𝑘=1
W𝑘 (𝑥) (2.2)

holds, and we see that W is a refinement of 𝑊ℓ . Now, we say that a site x is (𝑘, ↑)-seat if 𝜂(𝑥) = 1 and
the ball picked at x sits at the seat No. k. In the same way, we say that a site x is (𝑘, ↓)-seat if 𝜂(𝑥) = 0
and the ball seated at No. k is put down at x. Then by using this notion, we define the seat number
configuration 𝜂𝜎

𝑘 ∈ Ω, 𝑘 ∈ N, 𝜎 ∈ {↑, ↓}, as

𝜂↑𝑘 (𝑥) :=

{
1 if 𝑥 is a (𝑘, ↑)-seat
0 otherwise

= 1{W𝑘 (𝑥)>W𝑘 (𝑥−1) }

= 𝜂(𝑥) (1 −W𝑘 (𝑥 − 1))
𝑘−1∏
ℓ=1

Wℓ (𝑥 − 1), (2.3)

𝜂↓𝑘 (𝑥) :=

{
1 if 𝑥 is a (𝑘, ↓)-seat
0 otherwise

= 1{W𝑘 (𝑥)<W𝑘 (𝑥−1) }

= (1 − 𝜂(𝑥))W𝑘 (𝑥 − 1)
𝑘−1∏
ℓ=1

(1 −Wℓ (𝑥 − 1)), (2.4)

where the third equalities in Equations (2.3) and (2.4) are consequences of Equation (2.1). For later use,
we note that

𝜂↑𝑘 (𝑥) − 𝜂↓𝑘 (𝑥) = 1{W𝑘 (𝑥)>W𝑘 (𝑥−1) } − 1{W𝑘 (𝑥)<W𝑘 (𝑥−1) }

= W𝑘 (𝑥) −W𝑘 (𝑥 − 1),

and thus we obtain

W𝑘 (𝑥) =
𝑥∑

𝑦=1
(𝜂↑𝑘 (𝑦) − 𝜂↓𝑘 (𝑦)). (2.5)

Observe that there is at most one ball getting in and out at each site. Hence, if a ball gets in or out at
site x, that is, 𝑊∞(𝑥 − 1) ≠ 𝑊∞(𝑥), then the seat number of x, that is the (𝑘, 𝜎) satisfying 𝜂𝜎

𝑘 (𝑥) = 1,
is uniquely determined. On the other hand, if site x is empty and any seat is vacant at 𝑥 − 1, that is,
𝑊∞(𝑥 − 1) = 𝑊∞(𝑥) = 0, then we call such x a record, following [FNRW]. We note that the operator
𝑇 : Ω → Ω can be regarded as a flip operator of 0s and 1s except for records, that is,

𝑇𝜂(𝑥) =

{
1 − 𝜂(𝑥) if 𝑥 is not a record,
𝜂(𝑥) otherwise.

(2.6)

For later use, we define 𝑟 (𝑥) ∈ {0, 1} as the function such that 𝑟 (𝑥) = 1 if and only if x is a record. From
the above observations, we see that any site of given ball configuration can be distinguished either as a
(𝑘, 𝜎)-seat for some 𝑘, 𝜎 or a record. In formulas, we have∑

𝑘∈N

𝜂↑𝑘 (𝑥) = 𝜂(𝑥), 𝑟 (𝑥) +
∑
𝑘∈N

𝜂↓𝑘 (𝑥) = 1 − 𝜂(𝑥)
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𝑥 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

𝜂 (𝑥) 1 1 0 0 1 1 1 0 1 1 0 0 0 1 1 0 0 0 0

𝑊4 (𝑥) 0 1 2 1 0 1 2 3 2 3 4 3 2 1 2 3 2 1 0 0

W1 (𝑥) 0 1 1 0 0 1 1 1 0 1 1 0 0 0 1 1 0 0 0 0

𝜂
↑

1 (𝑥) 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

𝜂
↓

1 (𝑥) 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0

W2 (𝑥) 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0

𝜂
↑

2 (𝑥) 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

𝜂
↓

2 (𝑥) 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

W3 (𝑥) 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0

𝜂
↑

3 (𝑥) 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

𝜂
↓

3 (𝑥) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

W4 (𝑥) 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0

𝜂
↑

4 (𝑥) 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

𝜂
↓

4 (𝑥) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

𝑟 (𝑥) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 2. Seat number configurations and records.

for any x. Hence, it is obvious that 𝑟 (𝑥) is given by

𝑟 (𝑥) = 1 −
∑
𝑘∈N

(𝜂↑𝑘 (𝑥) + 𝜂↓𝑘 (𝑥)).

Figure 2 shows the values of W𝑘 (·) and the seat number configuration for the ball configuration
𝜂 = 11001110110001100 . . . . Note that the same specific ball configuration will be repeatedly used
throughout this paper to facilitate comparison of multiple methods.

Now, we observe the relationship between the seat number configuration and the solitons identified
by the TS algorithm. As we will see in Section 3, for any 𝜂 ∈ Ω<∞, the total number of (𝑘, ↑)-seats is
the same as that of (𝑘, ↓)-seats for each 𝑘 ∈ N, where Ω<∞ ⊂ Ω is the set of all finite ball configurations

Ω<∞ :=

{
𝜂 ∈ Ω;

∑
𝑥∈N

𝜂(𝑥) < ∞

}
.

Moreover, the total number of (𝑘, 𝜎)-seats is conserved in time for each 𝑘 ∈ N and 𝜎 ∈ {↑, ↓}, that is,∑
𝑥∈N 𝜂

↑

𝑘 (𝑥) =
∑

𝑥∈N 𝜂
↓

𝑘 (𝑥) =
∑

𝑥∈N 𝑇𝜂
↑

𝑘 (𝑥). This relation will be established below in Equation (3.1);
see also Remark 3.1. On the other hand, for a configuration where all entries are ‘0′ except for k
consecutive ‘1”s, that is there is only one soliton and its size is k, we can easily see that such k-soliton
is composed by one of each (ℓ, 𝜎)-seat for 1 ≤ ℓ ≤ 𝑘 and 𝜎 ∈ {↑, ↓}; see Figure 3 for example. For
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𝜂 (𝑥) . . . 1 1 1 1 0 0 0 0 . . .

𝜂
↑

1 (𝑥) . . . 1 0 0 0 0 0 0 0 . . .

𝜂
↓

1 (𝑥) . . . 0 0 0 0 1 0 0 0 . . .

𝜂
↑

2 (𝑥) . . . 0 1 0 0 0 0 0 0 . . .

𝜂
↓

2 (𝑥) . . . 0 0 0 0 0 1 0 0 . . .

𝜂
↑

3 (𝑥) . . . 0 0 1 0 0 0 0 0 . . .

𝜂
↓

3 (𝑥) . . . 0 0 0 0 0 0 1 0 . . .

𝜂
↑

4 (𝑥) . . . 0 0 0 1 0 0 0 0 . . .

𝜂
↓

4 (𝑥) . . . 0 0 0 0 0 0 0 1 . . .

Figure 3. For the case where only one 4-soliton is included in 𝜂.

any configuration in Ω<∞, we will show that such a relation between the seat number configuration
and solitons is also valid, that is, any k-soliton is composed by one of each (ℓ, 𝜎)-seat for 1 ≤ ℓ ≤ 𝑘
and 𝜎 ∈ {↑, ↓}; see Proposition 2.3 and Section 5 for details. Hence, for any 𝜂 ∈ Ω<∞ we have the
formula

|{𝑘-solitons in 𝜂}| =
∑
𝑥∈N

(
𝜂↑𝑘 (𝑥) − 𝜂↑𝑘+1(𝑥)

)
=
∑
𝑥∈N

(
𝜂↓𝑘 (𝑥) − 𝜂↓𝑘+1(𝑥)

)
.

In addition, if x is a record, then by following the TS algorithm, all solitons in (𝜂(𝑦))1≤𝑦≤𝑥 can be
identified independently of (𝜂(𝑦))𝑦≥𝑥+1, and we claim that the following equation

��{𝑘-solitons in (𝜂(𝑦))1≤𝑦≤𝑥
}�� = 𝑥∑

𝑦=1

(
𝜂↑𝑘 (𝑦) − 𝜂↑𝑘+1(𝑦)

)
=

𝑥∑
𝑦=1

(
𝜂↓𝑘 (𝑦) − 𝜂↓𝑘+1(𝑦)

)
(2.7)

holds for any 𝑘 ∈ N, while for general 𝑥 ∈ N Equation (2.7) may not hold. Since any element of 𝜂 ∈ Ω<∞

consists of records except for a finite number of sites, 𝜂𝜎
𝑘 (·) − 𝜂𝜎

𝑘+1(·) can be considered as the local
density of k-solitons for each 𝜎 ∈ {↑, ↓}. Note that the above claim will be justified by Proposition 2.3.

When we consider a general ball configuration 𝜂 ∈ Ω, the TS algorithm may not work because there
can be infinite number of balls, and thus we may not be able to identify solitons in 𝜂. However, since the
construction of the seat number configuration is sequential, that is, the value of 𝜂𝜎

𝑘 (𝑥) can be determined
by (𝜂(𝑦))1≤𝑦≤𝑥 for any 𝑘 ∈ N and 𝜎 ∈ {↑, ↓}, we can always define 𝜂𝜎

𝑘 (·) for any 𝜂 ∈ Ω. Therefore,
motivated by the above discussion, to study the dynamical behavior of the BBS for general 𝜂 ∈ Ω, we
define 𝑚𝜎

𝑘 : Z≥0 → Z≥0 as 𝑚𝜎
𝑘 (0) := 0, and

𝑚𝜎
𝑘 (𝑥) :=

𝑥∑
𝑦=1

(
𝜂𝜎
𝑘 (𝑦) − 𝜂𝜎

𝑘+1(𝑦)
)
, (2.8)

for any 𝑘 ∈ N, 𝑥 ∈ N and 𝜎 ∈ {↑, ↓}. Note that from Equations (2.5) and (2.8), we get

𝑚↑

𝑘 (𝑥) − 𝑚↓

𝑘 (𝑥) = W𝑘 (𝑥) −W𝑘+1(𝑥) ∈ {−1, 0, 1}, (2.9)

𝑚𝜎
𝑘 (𝑥 + 1) − 𝑚𝜎

𝑘 (𝑥) = 𝜂𝜎
𝑘 (𝑥 + 1) − 𝜂𝜎

𝑘+1(𝑥 + 1) ∈ {−1, 0, 1}, (2.10)
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for any 𝑘 ∈ N, 𝑥 ∈ Z≥0 and 𝜎 ∈ {↑, ↓}. We then introduce the j-th leftmost matching point 𝜏𝑘 ( 𝑗) as

𝜏𝑘 ( 𝑗) := min
{
𝑥 ∈ Z≥0; 𝑚𝜎

𝑘 (𝑥) ≥ 𝑗 for both 𝜎 ∈ {↑, ↓}
}

= min
{
𝑥 ∈ Z≥0; 𝑚↑

𝑘 (𝑥) = 𝑚↓

𝑘 (𝑥) = 𝑗
}
, (2.11)

for any 𝑘, 𝑗 ∈ N, where the second equality in Equation (2.11) is a consequence of Equations (2.9) and
(2.10). In terms of solitons, 𝜏𝑘 ( 𝑗) is the site where the j-th k-soliton is identified by the TS algorithm;
see Proposition 5.1 for details. For example, in Figure 4, the ball configuration 𝜂 contains one 4-soliton
colored in brown, two 2-solitons colored in red and green and one 1-soliton colored in blue, and one
can check that the rightmost component of each soliton 𝑥 = 4, 9, 17, 18 are 𝜏2(1), 𝜏1(1), 𝜏2 (2), 𝜏4(1),
respectively. Indeed, the following proposition justifies the above observation and its proof will be
presented in Subsection 3.3.

Proposition 2.1. Suppose that 𝜂 ∈ Ω and 𝜏𝑘 ( 𝑗) < ∞ for some 𝑘 ∈ N and 𝑗 ∈ N. Then,

𝑥 ≥ 𝜏𝑘 ( 𝑗) if and only if 𝑚𝜎
𝑘 (𝑥) ≥ 𝑗 for both 𝜎 ∈ {↑, ↓}.

Now, we introduce a way to determine the effective position of 𝜏𝑘 (·). First, we introduce the functions
𝜉𝑘 (𝑥) counting the total number of (ℓ, ↑), (ℓ, ↓)-seats satisfying ℓ ≥ 𝑘 + 1 and records up to x as
𝜉𝑘 (0) := 0 and

𝜉𝑘 (𝑥) :=
∑

ℓ≥𝑘+1

𝑥∑
𝑦=1

(
𝜂↑ℓ (𝑦) + 𝜂↓ℓ (𝑦)

)
+

𝑥∑
𝑦=1

𝑟 (𝑥)

= 𝑥 −
𝑘∑

ℓ=1

𝑥∑
𝑦=1

(
𝜂↑ℓ (𝑦) + 𝜂↓ℓ (𝑦)

)

for any 𝑘 ∈ N, 𝑥 ∈ Z≥0 and 𝜎 ∈ {↑, ↓}. Figure 4 also shows an example of 𝜉𝑘 (·). Then, the effective
position of 𝜏𝑘 ( 𝑗) is defined as 𝜉𝑘 (𝜏𝑘 ( 𝑗)) for any 𝑗 ∈ N. We explain the reason of the definition of
the effective position from the viewpoint of solitons. First, we recall that each 𝜏𝑘 ( 𝑗) corresponds to a
k-soliton as pointed out above. Next, we note that the function 𝜉𝑘 (·) is a nondecreasing function but
constant on sites included in ℓ-solitons with ℓ ≤ 𝑘 . In particular, if 𝛾 ⊂ N is a k-soliton, then the
rightmost component of 𝛾 is 𝜏𝑘 ( 𝑗) for some 𝑗 ∈ N, and we have 𝜉𝑘 (𝑥) = 𝜉𝑘 (𝜏𝑘 ( 𝑗)) for any 𝑥 ∈ 𝛾.
Thus, by associating 𝜏𝑘 ( 𝑗)’s to each k-soliton, we can consider k-solitons as points via 𝜉𝑘 (·), and the
function 𝜉𝑘 (𝜏𝑘 ( · )) can be regarded as measuring certain distances between 𝜏𝑘 ( 𝑗)’s ignoring ℓ-seats
with ℓ ≤ 𝑘 between them. Now, we claim that at each time step, 𝜉𝑘 (𝜏𝑘 (·)) will be shifted by k, that is,
𝑇𝜉𝑘 (𝑇𝜏𝑘 (·)) = 𝜉𝑘 (𝜏𝑘 (·)) + 𝑘 , and in this sense we say that 𝜉𝑘 (·) gives the effective positions of k-solitons
considering the effect of the interaction between other solitons. In addition, if there are no interactions
between solitons, then the effective positions are essentially equivalent to the original positions of the
solitons in 𝜂. In Figure 5, we give an example of 𝜉𝑘 (·) for the ball configuration 𝜂 = 111000010010 . . . ,
which is the same configuration used in Figure 1, and it can be seen that the effective positions are
shifted by k at one step time evolution, while the components of the solitons are not linearly changed in
time due to the interaction. Hereafter, we will justify the above claims not from the viewpoint of solitons
but rather from the viewpoint of the seat number configuration.

From now on, we return to the viewpoint of the seat number configuration. We introduce 𝜁𝑘 (𝑖) as
the total number of 𝜏𝑘’s located at effective position i in the above sense, that is,

𝜁𝑘 (𝑖) := |{ 𝑗 ∈ N; 𝜏𝑘 ( 𝑗) ∈ {𝑥 ∈ Z≥0; 𝜉𝑘 (𝑥) = 𝑖}}|. (2.12)
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Figure 4. How the value of the functions 𝑚𝜎
𝑘 and 𝜉𝑘 change for the ball configuration

𝜂 = 11001110110001100 . . .. The solitons identified by the TS algorithm and leftmost matching points of
𝑚𝜎

𝑘 are highlighted in color, and one can see that for each 𝑘 ∈ N, the rightmost component of a k-soliton
is a leftmost matching point of 𝑚𝜎

𝑘 , respectively. We note that the functions 𝜉𝑘 (𝑥), 𝑘 ∈ N, 𝑥 ∈ Z≥0 are
defined immediately after Proposition 2.1.

For the ball configuration in Figure 4, 𝜁 is given by

𝜁𝑘 (𝑖) =

{
1 (𝑘, 𝑖) = (4, 0), (2, 0), (2, 3), (1, 4),
0 otherwise.

Now, we present one of our main theorems, which claims that the effective position of 𝜏𝑘 (·) is shifted
by k in one step time evolution, that is, the dynamics of the BBS is linearized in terms of 𝜁 . Before
describing the statement, we will give an example. Observe that Figure 6 shows the seat numbers of 𝑇𝜂,
where 𝜂 is the same configuration as in Figures 2 and 4. From the figure, we see that

𝑇𝜁𝑘 (𝑖) =

{
1 (𝑘, 𝑖) = (4, 4), (2, 2), (2, 5), (1, 5),
0 otherwise.
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Figure 5. At each time step, the effective positions of k-solitons are shifted by k.

Figure 6. Linearization property of the (𝑘, 𝜎)-seats.
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In particular, we have

𝑇𝜁𝑘 (𝑖) = 𝜁𝑘 (𝑖 − 𝑘),

for any 𝑘 ∈ N and 𝑖 ∈ Z≥0, with convention 𝜁𝑘 (𝑖) = 0 for 𝑖 < 0. Our claim is that this relationship holds
true for general configurations as well.

Theorem 2.1. Suppose that 𝜂 ∈ Ω and 0 < |{𝑥 ∈ Z≥0; 𝜉𝑘 (𝑥) = 𝑖}| < ∞ for some 𝑘 ∈ N and 𝑖 ∈ Z≥0.
Then we have 0 < |{𝑥 ∈ Z≥0; 𝑇𝜉𝑘 (𝑥) = 𝑖}| < ∞ and

(𝑇𝜁)𝑘 (𝑖) = 𝜁𝑘 (𝑖 − 𝑘), (2.13)

with convention that 𝜁𝑘 (𝑖) = 0 for any 𝑖 < 0.

In particular, since the function 𝜉𝑘 (·) strictly increases at each record for any 𝑘 ∈ N, we have the
following corollary of Theorem 2.1.

Corollary 2.1. Suppose that 𝜂 ∈ Ω<∞. For any 𝑘 ∈ N and 𝑖 ∈ Z≥0, we have

(𝑇𝜁)𝑘 (𝑖) = 𝜁𝑘 (𝑖 − 𝑘),

with convention that 𝜁𝑘 (𝑖) = 0 for any 𝑖 < 0.

We give the proof of Theorem 2.1 in Section 3. We emphasize that the proof is self-contained and
none of the relations with other linearization methods are used, and the definitions of 𝜂𝜎

𝑘 , 𝑚
𝜎
𝑘 , 𝜏𝑘 , 𝜉𝑘 , 𝜁𝑘

are independent of the notion of solitons. Note that under slightly stronger assumptions than that of
Theorem 2.1, one can reconstruct 𝜂 from 𝜁 via the relation to the slot decomposition; see Remark 5.1 and
[CS, Section 2.2] for a constructive proof of this claim. We also note that, in fact, their reconstruction
algorithm only depends on the value of 𝜁 and does not require the notion of solitons. Hence, the above
results mean that the seat number configuration gives a new linearization method for the BBS.

Remark 2.1. From the relation with the rigged configuration obtained by KKR bijection shown in
Section 4, under the same assumption as Theorem 2.1, the above theorem can be generalized to the BBS
with capacity ℓ as

(𝑇ℓ 𝜁)𝑘 (𝑖) = 𝜁𝑘 (𝑖 − (𝑘 ∧ ℓ)).

We believe that there should be a direct proof of this linearization without using the relation with KKR
bijection but do not pursue it in this paper.

Remark 2.2. The following is one example of a configuration that does not satisfy the assumption of
Theorem 2.1 for some k and i.

𝜂(𝑥) =

{
1 𝑥 = 1, 2, 3, 7, 8, 11, 4𝑛 + 1, 4𝑛 + 2 for some 𝑛 ≥ 3,
0 otherwise.

In other words, 𝜂 = 111000110010(1100)⊗∞; see also Figure 7. In this example, we see that
0 < |{𝑥 ∈ Z≥0; 𝜉1(𝑥) = 𝑖}| < ∞ for any 𝑖 ∈ Z≥0, and 𝑇𝜁1 (𝑖) = 𝜁1 (𝑖 − 1). However, for 𝑘 = 2, 3, we have

|{𝑥 ∈ Z≥0; 𝜉2 (𝑥) = 𝑖}| =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3 𝑖 = 0, 1,
∞ 𝑖 = 2,
0 𝑖 ≥ 3,

|{𝑥 ∈ Z≥0; 𝜉3 (𝑥) = 𝑖}| =

{
∞ 𝑖 = 0,
0 𝑖 ≥ 1.
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Figure 7. An example of 𝜂 which does not satisfy the assumption of Theorem 2.1 for 𝑘 ≥ 2. 𝜏𝑘 ( 𝑗)’s and
𝑇𝜏𝑘 ( 𝑗)’s are colored by red.

On the other hand, we see that 𝑇𝜏3 (1) = ∞, and thus we get

𝑇𝜁3 (3) = 0 ≠ 𝜁3 (0) = 1.

From the soliton viewpoint, this is a situation where a 3-soliton overtakes an infinite number of 2-solitons
and thus escapes to infinity at once. We note that by direct computation,

𝜏2 ( 𝑗) = 𝑇𝜏2 ( 𝑗) =

{
10 𝑗 = 1,
16 + 4( 𝑗 − 1) 𝑗 ≥ 2,

and thus 𝜁2 (2) = ∞ and 𝑇𝜁2 (4) = ∞ for this 𝜂. Hence, Equation (2.13) formally holds for 𝑘 = 2. We
also note that this configuration also violates the condition described in Remark 2.3, discussed later in
Section 2.2.

2.2. Relationships between various linearizations

The seat number configuration has a strong advantage that its relation to known linearization methods
is clear, and hence it reveals equivalences between them. In Section 4, we will see the relation to the
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KKR bijection, which gives a sequential construction of growing sequences of pairs of partitions and
riggings, called rigged configurations, from given ball configurations, where a rigging of a partition
𝜇 is a collection of integers assigned to each element of 𝜇. The term sequential means that starting
from 𝜂, we will sequentially construct rigged configurations (𝜇(𝑥), J(𝑥)) for 𝑥 = 0, 1, . . . in such a
way that (𝜇(𝑥), J(𝑥)) is a function of 𝜂(1), . . . , 𝜂(𝑥) and (𝜇, J) = lim𝑥→∞(𝜇(𝑥), J(𝑥)) will be the
rigged configuration associated with 𝜂. For example, the rigged configuration corresponding to the ball
configuration (𝜂(𝑥))1≤𝑥≤19, 𝜂 = 1100111011000110000 . . . is given by the partition 𝜇 = (4, 2, 2, 1)
and the rigging J = (𝐽1, 𝐽2, 𝐽4), 𝐽1 = (3), 𝐽2 = (−2, 1), 𝐽4 = (−4), where 𝐽𝑘 is the sequence of integers
assigned to k’s in the partition 𝜇 ordered from the smallest to largest, and it can be represented as follows.

−4
1
−2
3.

See also Figure 11 to see how (𝜇(𝑥), J(𝑥)) grows as x changes.
To state the claim, let 𝜇(𝑥) = (𝜇𝑖 (𝑥)) be the partitions obtained by the KKR bijection and

𝜆(𝑥) = (𝜆𝑘 (𝑥)) be the conjugate of 𝜇(𝑥), that is, 𝜆𝑘 (𝑥) := |{𝑖 ∈ N; 𝜇𝑖 (𝑥) ≥ 𝑘}|. Also, let 𝑚𝑘 (𝑥) :=
𝜆𝑘 (𝑥) − 𝜆𝑘+1(𝑥) be the multiplicity of k in 𝜇(𝑥), J(𝑥) = (𝐽𝑘 (𝑥), 𝑘 ∈ N) be the rigging, and
𝑝𝑘 (𝑥) := 𝑥 − 2𝐸𝑘 (𝑥) be the vacancy, where 𝐸𝑘 (𝑥) is the k-th energy defined as

𝐸𝑘 (𝑥) :=
∑
𝑖∈N

min{𝜇𝑖 (𝑥), 𝑘},

for any 𝑘 ∈ N and 𝑥 ∈ Z≥0. We note that the number of components in 𝐽𝑘 (𝑥) is equal to 𝑚𝑘 (𝑥). We also
recall that the seat number configuration 𝜂𝜎

𝑘 and the function 𝑚𝜎
𝑘 are defined in Equations (2.3),(2.4)

and (2.8) for 𝑘 ∈ N and 𝜎 ∈ {↑, ↓}. Then, we have the following relation between the quantities from
the KKR bijection and those from the seat number configuration.

Proposition 2.2 (Seat-KKR). Suppose that 𝜂 ∈ Ω. For any 𝑘 ∈ N and 𝑥 ∈ Z≥0, we have

𝜆𝑘 (𝑥) =
𝑥∑

𝑦=1
𝜂↑𝑘 (𝑦),

𝑝𝑘 (𝑥) = 𝑥 − 2
𝑘∑

ℓ=1

𝑥∑
𝑦=1

𝜂↑ℓ (𝑦), (2.14)

and

𝐽𝑘 (𝑥) = (𝐽𝑘, 𝑗 (𝑥) = 𝑝𝑘 (𝑡𝑘 (𝑥, 𝑗)); 𝑗 = 1, . . . , 𝑚↑

𝑘 (𝑥)),

where

𝑡𝑘 (𝑥, 𝑗) := max{1 ≤ 𝑦 ≤ 𝑥; 𝑚↑

𝑘 (𝑦) = 𝑗 , 𝜂↑𝑘 (𝑦) = 1}.

In particular, from Equation (2.14) we see that
∑𝑘

ℓ=1 𝜂
↑

ℓ (𝑥) is the local k-th energy at 𝑥 ∈ N. Obviously,
there is a direct relationship between (𝑘, ↑)-seats and the local energy function H used in the crystal
theory formulation of the BBS [FOY]; see Remark 4.1 for details. We emphasize that since the rigged
configuration is constructed sequentially, (𝜇(𝑥), J(𝑥)) can always be defined for any 𝑥 ∈ Z≥0 and
Proposition 2.2 is valid for any 𝜂 ∈ Ω, which is not necessarily in Ω<∞.

In Section 5, we will establish the relation between the seat number configuration and the slot
configuration. Compared to the KKR bijection, the slot configuration defined via the algorithm in
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𝑥 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

𝜂 (𝑥) 1 1 0 0 1 1 1 0 1 1 0 0 0 1 1 0 0 0 0

𝜈 (𝑥) 0 1 0 1 0 1 2 0 0 3 0 1 2 0 1 0 1 3 ∞

𝜂
↑

1 (𝑥) 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0

𝜂
↓

1 (𝑥) 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0

𝜂
↑

2 (𝑥) 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

𝜂
↓

2 (𝑥) 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

𝜂
↑

3 (𝑥) 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

𝜂
↓

3 (𝑥) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

𝜂
↑

4 (𝑥) 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

𝜂
↓

4 (𝑥) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Figure 8. The slot configuration and the seat number configuration.

[FNRW], denoted by 𝜈(𝑥), needs a parallel construction, that is, to define the value of 𝜈(𝑥), we need
the entire information of (𝜂(𝑦))𝑦∈N (or at least (𝜂(𝑦))𝑦∈[1,𝑥′ ] for some 𝑥 ′ > 𝑥 in general). However, in
this paper, we will prove that slot configuration can be constructed sequentially. In particular, we show
that

(
𝜂𝜎
𝑘 (𝑥)

)
𝜎∈{↑,↓},𝑘∈N,𝑥∈N

can be considered as a sequential construction of the slot configuration.
To describe the statement, let 𝜉𝑘 (𝑥) be the number of k-slots in [1, 𝑥], and (𝜁𝑘 )𝑘∈N = (𝜁𝑘 (𝑖))𝑘∈N,𝑖∈Z≥0

be the slot configuration. For example, the slot configuration corresponding to the ball configuration
𝜂 = 1100111011000110000 . . . is given as follows.

Precise definitions of these quantities are given in Section 5. Then, we have the following relation
between the quantities from the slot configuration and those from the seat number configuration.

Proposition 2.3 (Seat-slot). Suppose that 𝜂 ∈ Ω<∞. Then for any 𝑘 ∈ N and 𝑥 ∈ N, we have the
following equivalence:

𝜂↑𝑘 (𝑥) + 𝜂↓𝑘 (𝑥) = 1 if and only if 𝜈(𝑥) = 𝑘 − 1. (2.15)

In particular, for any 𝑘 ∈ N, 𝑖 ∈ Z≥0 and 𝑥 ∈ Z≥0, we have 𝜉𝑘 (𝑥) = 𝜉𝑘 (𝑥) and 𝜁𝑘 (𝑖) = 𝜁𝑘 (𝑖).

The reader can check the relation (2.15) for the ball configuration 𝜂 = 1100111011000110000 . . .
from Figure 8. Since the construction of the slot configuration requires the TS algorithm, 𝜈(𝑥) cannot
be defined for general 𝜂 ∈ Ω due to the existence of infinitely many balls, and so the above proposition
is also restricted to Ω<∞. In particular, if the number of records in 𝜂 ∈ Ω is finite, then we may not be
able to identify solitons in 𝜂; see the description of the TS algorithm given in the appendix for details.
However, the seat number configuration can be defined for any 𝜂 ∈ Ω, and thus it can be considered as
a generalization of the slot configuration.

Using Propositions 2.2 and 2.3, we find for the first time that the relationship between local energy
and slots can be understood via the seat number configuration. We highlight that KKR-bijection does
not distinguish roles of 0’s in 𝜂, but the seat number configuration and slot configuration do so via the
(𝑘, ↓)-seats and k-slots, respectively. In other words, the seat number configuration and slot configuration
also give energy to 0’s. On the other hand, the slot configuration does not distinguish 1’s and 0’s if
they are both k-slots, while the seat number configuration distinguishes them as (𝑘, ↑) and (𝑘, ↓). By
introducing such a distinction, we obtain the nontrivial relation between the dynamics of (𝑘, ↑) and
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(𝑘, ↓) configurations; see Proposition 3.1. See also [FNRW, Proposition 1.3] for an equivalent claim as
that of Proposition 3.1 via the language of the slots.

From the above propositions, we have an explicit relation between the riggings of KKR-bijection
and the slot configuration. In the next theorem, we denote J = lim

𝑥→∞
J(𝑥) the rigging for a configuration

𝜂 ∈ Ω<∞, which is well defined since J(𝑥) becomes constant in x eventually. The indexes of the rigging
J will be 𝐽𝑘, 𝑗 for 𝑘, 𝑗 in a suitable range.

Theorem 2.2 (KKR-slot). Suppose that 𝜂 ∈ Ω<∞. Then for any 𝑘 ∈ N and 𝑖 ∈ Z≥0, we have

𝜁𝑘 (𝑖) = |{ 𝑗 ∈ N; 𝐽𝑘, 𝑗 = 𝑖 − 𝑘}|.

Theorem 2.2 means that the elements of 𝐽𝑘 are the effective positions of 𝜏𝑘 (·) shifted by k, and the slot
decomposition counts the total number of 𝜏𝑘 (·) at the same effective position. As a direct consequence
of Theorem 2.2 and the result in [KOSTY] quoted as Theorem 4.1 in Section 4, we see that the slot
configuration linearizes the BBS with finite capacity BBS(ℓ). More precisely, we obtain the following
theorem, which is a generalization of [FNRW, Theorem 1.4] for the case ℓ < ∞.

Theorem 2.3. Suppose that 𝜂 ∈ Ω<∞. For any 𝑘 ∈ N, 𝑖 ∈ Z≥0 and 𝑙 ∈ N ∪ {∞}, we have

(𝑇ℓ 𝜁)𝑘 (𝑖) = 𝜁𝑘 (𝑖 − (𝑘 ∧ ℓ)).

We mention some possible extensions of Proposition 2.2 and Theorem 2.2. In literature, various
extensions of the BBS have been defined and studied [HHIKTT, HKT, IKT, KMP2, KOY, T, TTM].
One such generalization is given by the multicolor BBS with finite/infinite carrier capacity, and it is
known that such model can also be linearized by the KKR bijection. Nevertheless, in the colored setting
such linearization techniques do not allow to study general hydrodynamic properties of the model in a
rigorous way. To attack such probabilistic questions, a linearization method more close in spirit to that of
slot configurations seems to be required, yet no such result is, at this moment, available. We expect that
Proposition 2.2 and Theorem 2.2 might give a blueprint to generalize the idea of the slot/seat number
configuration for multicolor BBS and hence to carry out hydrodynamic studies of these generalized
models.

Finally, we note an application of Theorem 2.3 to the derivation of the generalized hydrodynamic
limit (GHD limit) for the BBS(ℓ), ℓ < ∞. In [CS], the GHD limit for the BBS with infinite carrier
capacity (ℓ = ∞) is rigorously derived, and the use of the slot decomposition is crucial in their strategy
of the proof. However, the assumption ℓ = ∞ is not necessary for most of the proof and is only needed to
use [FNRW, Theorem 1.4], the linearization property of the slot decomposition. Therefore, combining
Theorem 2.3 and the strategy in [CS], the GHD limit for the BBS(ℓ) can be also derived in a rigorous
way.

Remark 2.3. Since the main purpose of this paper is to investigate the relationships between the KKR
bijection and the slot configuration and the KKR bijection is only defined for semi-infinite sequences, we
consider the BBS on {0, 1}N. On the other hand, the slot configuration and the seat number configuration
can be also defined for 𝜂 ∈ {0, 1}Z satisfying

lim
𝑥→∞

1
𝑥

𝑥∑
𝑦=1

𝜂(𝑦) <
1
2
, lim
𝑥→∞

1
𝑥

−1∑
𝑦=−𝑥

𝜂(𝑦) <
1
2
,

and the relation (2.15) also holds. That is, for the whole line case, the seat number configuration is also
a generalization of the slot configuration; see [S, Section 4] for the construction of the seat number
configuration on the whole line and the proof of an analogue of Proposition 2.3. We note that for the
whole line case, since there are seats in both directions, the function 𝜉𝑘 may take values in (−∞,∞), and
an ambiguity arises as to where to assign the value of 0 for 𝜉𝑘 . As a result, to describe an analogue of
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Theorem 2.1, we need an offset, which is also the case for the slot configuration; see [FNRW, Theorem
3.1] and [S, Theorem 4.1] for details.

3. Linearization property of the seat number configuration

In this section, we first state some simple observations obtained by the definition of the seat number
configuration. Then, we prove Theorem 2.1.

3.1. Basic properties of the seat number configuration

Lemma 3.1. For any 𝜂 ∈ Ω, the following statements hold:

(i) For any 𝑘 ∈ N, 𝜂↑𝑘 (𝑥) = 1 implies
∑𝑥

𝑦=1(𝜂
↑

ℓ (𝑦) − 𝜂↓ℓ (𝑦)) = 1 for any 1 ≤ ℓ ≤ 𝑘 .
(ii) For any 𝑘 ∈ N, 𝜂↓𝑘 (𝑥) = 1 implies

∑𝑥
𝑦=1(𝜂

↑

ℓ (𝑦) − 𝜂↓ℓ (𝑦)) = 0 for any 1 ≤ ℓ ≤ 𝑘 .
(iii) 𝑟 (𝑥) = 1 implies

∑𝑥
𝑦=1(𝜂

↑

𝑘 (𝑦) − 𝜂↓𝑘 (𝑦)) = 0 for any 𝑘 ∈ N.
Proof. From Equation (2.5), it is sufficient to show the following statements:

(i)’ For any 𝑘 ∈ N, 𝜂↑𝑘 (𝑥) = 1 implies Wℓ (𝑥) = 1 for any 1 ≤ ℓ ≤ 𝑘 .
(ii)’ For any 𝑘 ∈ N, 𝜂↓𝑘 (𝑥) = 1 implies Wℓ (𝑥) = 0 for any 1 ≤ ℓ ≤ 𝑘 .

(iii)’ 𝑟 (𝑥) = 1 implies W𝑘 (𝑥) = 0 for any 𝑘 ∈ N.
We prove them one by one.

(i)’ Assume that 𝜂↑𝑘 (𝑥) = 1. Then, from the update rule of W (·), the seats of No.ℓ for 1 ≤ ℓ ≤ 𝑘 are
all occupied at x. In formulas, from Equation (2.3) we have

𝜂(𝑥) = 1, W𝑘 (𝑥 − 1) = 0,
𝑘−1∏
ℓ=1

Wℓ (𝑥 − 1) = 1,

and thus from Equation (2.1) we obtain Wℓ (𝑥) = 1 for any 1 ≤ ℓ ≤ 𝑘 .
(ii)’ Assume that 𝜂↓𝑘 (𝑥) = 1. Then, from the update rule of W (·), the seats of No.ℓ for 1 ≤ ℓ ≤ 𝑘 are

all empty at x. In formulas, from Equation (2.4) we have

𝜂(𝑥) = 0, W𝑘 (𝑥 − 1) = 1,
𝑘−1∏
ℓ=1

(1 −Wℓ (𝑥 − 1)) = 1,

and thus from Equation (2.1) we obtain Wℓ (𝑥) = 0 for any 1 ≤ ℓ ≤ 𝑘 .
(iii)’ Assume that 𝑟 (𝑥) = 1. Then the seat of No.k for 𝑘 ∈ N are all empty at x. In formulas, 𝑟 (𝑥) = 1 if

and only if 𝑊∞(𝑥 − 1) = 𝑊∞(𝑥) = 0 where 𝑊∞(𝑥) =
∑

𝑘∈NW𝑘 (𝑥), and thus we have W𝑘 (𝑥) = 0
for any 𝑘 ∈ N. �

The next proposition is crucial for understanding the dynamics of the BBS.
Proposition 3.1. For any 𝜂 ∈ Ω, 𝑥 ∈ N and 𝑘 ∈ N,

𝜂↓𝑘 (𝑥) = 𝑇𝜂↑𝑘 (𝑥). (3.1)

In addition, if 𝜂↑𝑘 (𝑥) = 1, then we have ∑
ℓ≥𝑘

𝑇𝜂↓ℓ (𝑥) + 𝑇𝑟 (𝑥) = 1. (3.2)

The proof of Proposition 3.1 is in the next subsection.
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Remark 3.1. By Lemma 3.1 (iii) and Equation (3.1), we see that if 𝑟 (𝑥) = 1, then we have

𝑥∑
𝑦=1

𝜂↑𝑘 (𝑦) =
𝑥∑

𝑦=1
𝜂↓𝑘 (𝑦) =

𝑥∑
𝑦=1

𝑇𝜂↑𝑘 (𝑦),

for any 𝑘 ∈ N. In particular, under the assumption 𝜂 ∈ Ω<∞, we have∑
𝑥∈N

𝜂↑𝑘 (𝑥) =
∑
𝑥∈N

𝜂↓𝑘 (𝑥) =
∑
𝑥∈N

𝑇𝜂↑𝑘 (𝑥) =
∑
𝑥∈N

𝑇𝜂↓𝑘 (𝑥)

since x must be a record of 𝜂 and 𝑇𝜂 if x is sufficiently large. Hence, the total number of (𝑘, 𝜎)-seats is
conserved in time for each 𝑘 ∈ N and 𝜎 ∈ {↑, ↓}. When

∑
𝑥∈N 𝜂(𝑥) = ∞, the above conservation law

does not necessarily hold.

Remark 3.2. Relation (3.1) is essentially equivalent to Proposition 1.3 of [FNRW] but generalized to
configurations with infinitely many balls.

3.2. Proof of Proposition 3.1

First, note that if (W𝑘 )𝑘 is the carrier with seat numbers for the configuration 𝜂, then (1 − W𝑘 )𝑘 is
the carrier with seat numbers for the configuration 1 − 𝜂, namely (1 − W𝑘 )𝑘 satisfies Equation (2.1)
for 1 − 𝜂, but with the boundary condition (1 − W𝑘 ) (0) = 1 for all 𝑘 ∈ N. Now, let 𝜂 = 1 − 𝑇𝜂 and
W̃𝑘 = 1 − 𝑇W𝑘 . Then, W̃ = (W̃𝑘 ) is the carrier with seat numbers for the configuration 𝜂 with the
boundary condition W̃𝑘 (0) = 1 for all 𝑘 ∈ N. More precisely, W̃ = (W̃𝑘 ) satisfies Equation (2.1) for 𝜂.
Moreover, from Equation (2.6),

𝜂(𝑥) =

{
𝜂(𝑥) if 𝑟 (𝑥) = 0,
1 − 𝜂(𝑥) if 𝑟 (𝑥) = 1.

Then, Equation (3.1) is equivalent to the claim that

W̃𝑘 (𝑥) − W̃𝑘 (𝑥 − 1) = −1 (3.3)

if and only if 𝜂↓𝑘 (𝑥) = 1. To prove this, we first prove that W̃𝑘 dominates W𝑘 .

Lemma 3.2. For any 𝑥 ∈ Z≥0 and 𝑘 ∈ N,

W̃𝑘 (𝑥) ≥ W𝑘 (𝑥).

Proof. We prove it by induction on x. For 𝑥 = 0, the inequality holds since W̃𝑘 (0) = 1 and W𝑘 (0) = 0
for 𝑘 ∈ N. Suppose

W̃𝑘 (𝑥 − 1) ≥ W𝑘 (𝑥 − 1),

for all 𝑘 ∈ N. If 𝑟 (𝑥) = 1, W𝑘 (𝑥 − 1) = W𝑘 (𝑥) = 0 for all 𝑘 ∈ N, so

W̃𝑘 (𝑥) ≥ W𝑘 (𝑥)

holds for all 𝑘 ∈ N. If 𝑟 (𝑥) = 0, then 𝜂(𝑥) = 𝜂(𝑥). If 𝜂(𝑥) = 𝜂(𝑥) = 1, then 𝜂↑𝑘∗ (𝑥) = 1 for some 𝑘∗ ∈ N.
Therefore, W𝑘 (𝑥 − 1) = 1 for all 1 ≤ 𝑘 < 𝑘∗ and so W̃𝑘 (𝑥 − 1) = 1 by the induction assumption. This
implies that W̃𝑘∗ (𝑥) = 1 holds for both cases W̃𝑘∗ (𝑥 − 1) = 0 or 1. Hence,

W̃𝑘∗ (𝑥) = W𝑘∗ (𝑥) = 1
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and for 𝑘 ≠ 𝑘∗,

W̃𝑘 (𝑥) ≥ W̃𝑘 (𝑥 − 1) ≥ W𝑘 (𝑥 − 1) = W𝑘 (𝑥).

Similarly, if 𝜂(𝑥) = 𝜂(𝑥) = 0, then there exists 𝑘∗ ∈ N such that W̃𝑘∗ (𝑥) − W̃𝑘∗ (𝑥 − 1) = −1. Then,
W̃𝑘 (𝑥−1) = 0 for all 1 ≤ 𝑘 < 𝑘∗ and soW𝑘 (𝑥−1) = 0 by the induction assumption. Hence,W𝑘∗ (𝑥) = 0
holds for both cases W𝑘∗ (𝑥 − 1) = 0 or 1. Hence,

W̃𝑘∗ (𝑥) = W𝑘∗ (𝑥) = 0

and for 𝑘 ≠ 𝑘∗,

W̃𝑘 (𝑥) = W̃𝑘 (𝑥 − 1) ≥ W𝑘 (𝑥 − 1) ≥ W𝑘 (𝑥),

which completes the inductive step. �

Next, we prove that W̃𝑘 and W𝑘 coincide on sufficiently large intervals.

Lemma 3.3. Suppose 𝑥 ′ < 𝑥, 𝜂↑𝑘 (𝑥
′) = 1 and 𝑟 (𝑦) = 0 for all 𝑥 ′ < 𝑦 ≤ 𝑥. Then,

Wℓ (𝑦) = W̃ℓ (𝑦)

for any 𝑥 ′ ≤ 𝑦 ≤ 𝑥 and 1 ≤ ℓ ≤ 𝑘 .

Proof. Since 𝜂↑𝑘 (𝑥
′) = 1 implies Wℓ (𝑥

′) = 1 for 1 ≤ ℓ ≤ 𝑘 , by Lemma 3.2, we have W̃ℓ (𝑥
′) = 1

for 1 ≤ ℓ ≤ 𝑘 . In particular, Wℓ (𝑥
′) = W̃ℓ (𝑥

′) for 1 ≤ ℓ ≤ 𝑘 . Also, 𝑟 (𝑦) = 0 for 𝑥 ′ < 𝑦 ≤ 𝑥
implies 𝜂(𝑦) = 𝜂(𝑦) for 𝑥 ′ < 𝑦 ≤ 𝑥. Then, since {Wℓ (𝑦)}𝑥′<𝑦≤𝑥,1≤ℓ≤𝑘 (resp. {W̃ℓ (𝑦)}𝑥′<𝑦≤𝑥,1≤ℓ≤𝑘 )
is determined by {Wℓ (𝑥

′)}1≤ℓ≤𝑘 and {𝜂(𝑦)}𝑥′<𝑦≤𝑥 ( resp. {W̃ℓ (𝑥
′)}1≤ℓ≤𝑘 and {𝜂(𝑦)}𝑥′<𝑦≤𝑥) through

the recursive equation (2.1), we conclude that Wℓ (𝑦) = W̃ℓ (𝑦) for 𝑥 ′ ≤ 𝑦 ≤ 𝑥 and 1 ≤ ℓ ≤ 𝑘 . �

Proof of Proposition 3.1. We first show that 𝜂↓𝑘 (𝑥) = 1 implies Equation (3.3), that is W̃𝑘 (𝑥) −

W̃𝑘 (𝑥 − 1) = −1. Then we will prove the opposite implication. Suppose 𝜂↓𝑘 (𝑥) = 1. This means

W𝑘 (𝑥 − 1) = 1, W𝑘 (𝑥) = 0.

Let

𝑥 ′ := max{𝑦 ∈ N; 𝜂↑𝑘 (𝑦) = 1, 𝑦 < 𝑥},

that is the rightmost site to the left of x where a ball is picked up and seated at No.k seat. We can also
characterize 𝑥 ′ as

𝑥 ′ = min{𝑦 ∈ N; W𝑘 (𝑧) = 1 for all 𝑦 ≤ 𝑧 ≤ 𝑥 − 1}.

Then, it is obvious that 𝜂↑𝑘 (𝑥
′) = 1, 𝑥 ′ < 𝑥 and 𝑟 (𝑦) = 0 for all 𝑥 ′ < 𝑦 ≤ 𝑥 since 𝑟 (𝑦) = 1 implies

W𝑘 (𝑦) = W𝑘 (𝑦 − 1) = 0. Then, by Lemma 3.3,

W𝑘 (𝑥 − 1) = W̃𝑘 (𝑥 − 1) = 1

and

W𝑘 (𝑥) = W̃𝑘 (𝑥) = 0
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hold. In particular, Equation (3.3) holds. Next, we assume Equation (3.3) holds and prove 𝜂↓𝑘 (𝑥) = 1.
Since the relation W̃𝑘 (𝑥) − W̃𝑘 (𝑥 − 1) = −1 implies 𝑇𝜂(𝑥) = 1 and 𝜂(𝑥) = 0, we have 𝑟 (𝑥) = 0 and
𝜂(𝑥) = 0. Hence, there exists 𝑘∗ ≥ 1 such that 𝜂↓𝑘∗ (𝑥) = 1. Then, by the first part of this proof, this implies

W̃𝑘∗ (𝑥) − W̃𝑘∗ (𝑥 − 1) = −1,

which means 𝑘 = 𝑘∗, and so 𝜂↓𝑘 (𝑥) = 1.
Finally, we prove Equation (3.2). If 𝜂↑𝑘 (𝑥) = 1, then 𝑇𝜂(𝑥) = 0 and thus we have∑

ℓ∈N

𝑇𝜂↓ℓ (𝑥) + 𝑇𝑟 (𝑥) = 1.

Hence, it is sufficient to show that 𝜂↑𝑘 (𝑥) = 1 implies 𝑇𝜂↓ℓ (𝑥) = 0 for 1 ≤ ℓ ≤ 𝑘 − 1. We observe that
𝑇Wℓ (𝑥−1) = 𝑇Wℓ (𝑥) = 0 implies𝑇𝜂↓ℓ (𝑥) = 0. Since𝑇Wℓ (𝑥) = 1−W̃ℓ (𝑥),𝑇Wℓ (𝑥−1) = 𝑇Wℓ (𝑥) = 0
is equivalent to W̃ℓ (𝑥 − 1) = W̃ℓ (𝑥) = 1. On the other hand, 𝜂↑𝑘 (𝑥) = 1 implies Wℓ (𝑥 − 1) = Wℓ (𝑥) = 1
for 1 ≤ ℓ ≤ 𝑘 − 1, and thus from Lemma 3.2 we have W̃ℓ (𝑥 − 1) = W̃ℓ (𝑥) = 1. Therefore, 𝜂↑𝑘 (𝑥) = 1
implies 𝑇𝜂↓ℓ (𝑥) = 0 for 1 ≤ ℓ ≤ 𝑘 − 1. �

3.3. Proof of Proposition 2.1

In this subsection, we will show Proposition 2.1. First, we define for any 𝑖 ∈ Z≥0 and 𝑘 ∈ N

𝑠𝑘 (𝑖) := min{𝑥 ∈ Z≥0; 𝜉𝑘 (𝑥) = 𝑖},

with the convention that min ∅ = ∞. Since 𝜉𝑘 (𝑥 + 1) − 𝜉𝑘 (𝑥) ∈ {0, 1}, the equivalence

𝜉𝑘 (𝑥) = 𝑖 if and only if 𝑠𝑘 (𝑖) ≤ 𝑥 < 𝑠𝑘 (𝑖 + 1)

holds, where 𝑠𝑘 (𝑖 + 1) can be infinite.
Since 𝑠𝑘 (𝑖) is a (ℓ, 𝜎)-seat for some ℓ > 𝑘 and 𝜎 ∈ {↑, ↓} or a record, by using Equation (2.9) and

Lemma 3.1, the following result is straightforward.

Lemma 3.4. Suppose that 𝑠𝑘 (𝑖) < ∞ for some 𝑘 ∈ N and 𝑖 ∈ Z≥0. Then we have

𝑚↑

𝑘
(𝑠𝑘 (𝑖)) = 𝑚↓

𝑘
(𝑠𝑘 (𝑖)).

Next, we show that the sequence
(
𝑚𝜎

𝑘 (𝑠𝑘 (𝑖))
)
𝑖∈N

, 𝜎 ∈ {↑, ↓} is nondecreasing.

Lemma 3.5. Suppose that 𝑠𝑘 (𝑖+1) < ∞ for some 𝑘 ∈ N and 𝑖 ∈ Z≥0. Then for each 𝜎 ∈ {↑, ↓}, we have

𝑚𝜎
𝑘 (𝑠𝑘 (𝑖 + 1)) − 𝑚𝜎

𝑘 (𝑠𝑘 (𝑖)) ≥ 0. (3.4)

Proof. From Lemma 3.4, it is sufficient to prove the case 𝜎 =↑. Observe that

𝑚↑

𝑘
(𝑠𝑘 (𝑖 + 1)) − 𝑚↑

𝑘
(𝑠𝑘 (𝑖)) =

𝑠𝑘 (𝑖+1)∑
𝑦=𝑠𝑘 (𝑖)+1

(𝜂↑𝑘 (𝑦) − 𝜂↑𝑘+1(𝑦))

=
𝑠𝑘 (𝑖+1)∑

𝑦=𝑠𝑘 (𝑖)+1
𝜂↑𝑘 (𝑦) − 𝜂↑𝑘+1(𝑠𝑘 (𝑖 + 1)).
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From the above expression, Equation (3.4) clearly holds for the case 𝜂↑𝑘+1(𝑠𝑘 (𝑖 + 1)) = 0. From now on,
we will consider the case 𝜂↑𝑘+1(𝑠𝑘 (𝑖 + 1)) = 1. Then, to show Equation (3.4) it is sufficient to show

𝑠𝑘 (𝑖+1)∑
𝑦=𝑠𝑘 (𝑖)+1

𝜂↑𝑘 (𝑦) ≥ 1.

From Lemma 3.4, we have

𝑠𝑘 (𝑖+1)∑
𝑦=𝑠𝑘 (𝑖)+1

(
𝜂↑𝑘 (𝑦) − 𝜂↓𝑘 (𝑦)

)
=

𝑠𝑘 (𝑖+1)∑
𝑦=𝑠𝑘 (𝑖)+1

(
𝜂↑𝑘+1(𝑦) − 𝜂↓𝑘+1(𝑦)

)
= 𝜂↑𝑘+1(𝑠𝑘 (𝑖 + 1)) − 𝜂↓𝑘+1(𝑠𝑘 (𝑖 + 1)).

Hence, we obtain

𝑠𝑘 (𝑖+1)∑
𝑦=𝑠𝑘 (𝑖)+1

𝜂↑𝑘 (𝑦) ≥ 𝜂↑𝑘+1(𝑠𝑘 (𝑖 + 1)) − 𝜂↓𝑘+1(𝑠𝑘 (𝑖 + 1))

≥ 1,

and this completes the proof. �

Proof of Proposition 2.1. From the definition of 𝜏𝑘 (·) given by Equation (2.11), it is sufficient to show
that 𝑥 ≥ 𝜏𝑘 ( 𝑗) implies 𝑚𝜎

𝑘 (𝑥) ≥ 𝑗 for each 𝜎 ∈ {↑, ↓}. Since 𝑚𝜎
𝑘 decreases only at (𝑘 + 1, 𝜎)-seats, it

suffices to prove the following claim: For any 𝑥 ≥ 𝜏𝑘 ( 𝑗),

𝜂↑𝑘+1(𝑥) + 𝜂↓𝑘+1(𝑥) = 1 implies 𝑚𝜎
𝑘 (𝑥) ≥ 𝑗 for each 𝜎 ∈ {↑, ↓}.

Define 𝑥 ′ := min{𝑦 ≥ 𝜏𝑘 ( 𝑗); 𝑦 = 𝑠𝑘 (𝑖) for some 𝑖 ∈ N}. Note that 𝑥 ′ < ∞ and in particular 𝑥 ′ ≤ 𝑥 since
𝜂↑𝑘+1(𝑥) + 𝜂↓𝑘+1(𝑥) = 1 and so 𝑥 = 𝑠𝑘 (𝑖

′) for some 𝑖′. Then, again by using the fact that 𝑚𝜎
𝑘 decreases

only at (𝑘 + 1, 𝜎)-seats, we see that either 𝑚↑

𝑘 (𝑥
′) ≥ 𝑗 or 𝑚↓

𝑘 (𝑥
′) ≥ 𝑗 holds. Thus, by using Lemma 3.4

we have 𝑚↑

𝑘 (𝑥
′) = 𝑚↓

𝑘 (𝑥
′) ≥ 𝑗 . Then from Lemma 3.5, we obtain 𝑚𝜎

𝑘 (𝑥) ≥ 𝑚𝜎
𝑘 (𝑥 ′) ≥ 𝑗 for 𝜎 ∈ {↑, ↓}.

Therefore, Proposition 2.1 is proved. �

We conclude this subsection by pointing out that similar argument used above yields other represen-
tations of 𝜁𝑘 (𝑖) defined in Equation (2.12) as follows.

Lemma 3.6. Suppose that 𝑠𝑘 (𝑖 + 1) < ∞ for some 𝑘 ∈ N and 𝑖 ∈ Z≥0. Then for each 𝜎 ∈ {↑, ↓} we have

𝜁𝑘 (𝑖) = 𝑚𝜎
𝑘 (𝑠𝑘 (𝑖 + 1)) − 𝑚𝜎

𝑘 (𝑠𝑘 (𝑖))

=
��{𝑥 ∈ N; 𝜂𝜎

𝑘 (𝑥) = 1, 𝜉𝑘 (𝑥) = 𝑖
}�� − ��{𝑥 ∈ N; 𝜂𝜎

𝑘+1(𝑥) = 1, 𝜉𝑘 (𝑥) = 𝑖 + 1
}��.

Proof of Lemma 3.6. Let 𝑗∗ = max{ 𝑗 ∈ N; 𝜏𝑘 ( 𝑗) < 𝑠𝑘 (𝑖 + 1)} with the convention that max ∅ = 0.
Then, we have

𝑗∗ =
𝑖∑
𝑗=0

|{ℎ ∈ N; 𝜏𝑘 (ℎ) ∈ {𝑥 ∈ Z≥0; 𝜉𝑘 (𝑥) = 𝑗}}| =
𝑖∑
𝑗=0

𝜁𝑘 ( 𝑗).

On the other hand, since 𝜏𝑘 ( 𝑗∗) < 𝑠𝑘 (𝑖+1) < 𝜏𝑘 ( 𝑗
∗ +1), from Equation (2.11) and from Proposition 2.1,

we get
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min
{
𝑚↑

𝑘
(𝑠𝑘 (𝑖 + 1)), 𝑚↓

𝑘
(𝑠𝑘 (𝑖 + 1))

}
= 𝑗∗.

Hence, from the above and Lemma 3.4, for each 𝜎 ∈ {↑, ↓} we have

𝑚𝜎
𝑘 (𝑠𝑘 (𝑖 + 1)) = min

{
𝑚↑

𝑘
(𝑠𝑘 (𝑖 + 1)), 𝑚↓

𝑘
(𝑠𝑘 (𝑖 + 1))

}
= 𝑗∗ =

𝑖∑
𝑗=0

𝜁𝑘 ( 𝑗),

and thus we obtain

𝜁𝑘 (𝑖) = 𝑚𝜎
𝑘 (𝑠𝑘 (𝑖 + 1)) − 𝑚𝜎

𝑘 (𝑠𝑘 (𝑖))

=
𝑠𝑘 (𝑖+1)∑

𝑥=𝑠𝑘 (𝑖)+1
𝜂𝜎
𝑘 (𝑥) − 𝜂𝜎

𝑘+1(𝑠𝑘 (𝑖 + 1))

=
��{𝑥 ∈ N; 𝜂𝜎

𝑘 (𝑥) = 1, 𝜉𝑘 (𝑥) = 𝑖
}�� − ��{𝑥 ∈ N; 𝜂𝜎

𝑘+1(𝑥) = 1, 𝜉𝑘 (𝑥) = 𝑖 + 1
}��. �

3.4. Proof of Theorem 2.1

In this subsection, we give the proof of Theorem 2.1. First, we prove that the difference between 𝜉𝑘 and
𝑇𝜉𝑘 is constant under a certain condition.

Lemma 3.7. For any 𝑘 ∈ N and 𝑥 ∈ Z≥0, we have

𝑇𝜉𝑘 (𝑥) − 𝜉𝑘 (𝑥) ≥ 0. (3.5)

In addition, if 𝜂↓ℓ (𝑥) = 1 and ℓ ≥ 𝑘 , then

𝑇𝜉𝑘 (𝑥) − 𝜉𝑘 (𝑥) = 𝑘. (3.6)

Proof. From Equations (2.2), (2.5) and (3.1), we have

𝑇𝜉𝑘 (𝑥) − 𝜉𝑘 (𝑥) =
𝑘∑

ℓ=1

𝑥∑
𝑦=1

(
𝜂↑ℓ (𝑦) − 𝑇𝜂↑ℓ (𝑦)

)
+

𝑘∑
ℓ=1

𝑥∑
𝑦=1

(
𝜂↓ℓ (𝑦) − 𝑇𝜂↓ℓ (𝑦)

)

=
𝑘∑

ℓ=1

𝑥∑
𝑦=1

(
𝜂↑ℓ (𝑦) − 𝜂↓ℓ (𝑦)

)
+

𝑘∑
ℓ=1

𝑥∑
𝑦=1

(
𝑇𝜂↑ℓ (𝑦) − 𝑇𝜂↓ℓ (𝑦)

)
= 𝑊𝑘 (𝑥) + 𝑇𝑊𝑘 (𝑥) ≥ 0.

Suppose 𝜂↓ℓ (𝑥) = 1 and ℓ ≥ 𝑘 . By Equation (2.2), Equation (2.5) and Lemma 3.1(ii), 𝑊𝑘 (𝑥) = 0. Also,
by (3.1), 𝑇𝜂↑ℓ (𝑥) = 1 and so by Equation (2.2), Equation (2.5) and Lemma 3.1(i), 𝑇𝑊𝑘 (𝑥) = 𝑘 . Hence,

𝑇𝜉𝑘 (𝑥) − 𝜉𝑘 (𝑥) = 𝑊𝑘 (𝑥) + 𝑇𝑊𝑘 (𝑥) = 𝑘. �

Now, we give the proof of Theorem 2.1.

Proof of Theorem 2.1. First, we note that 0 < |{𝑥 ∈ Z≥0; 𝜉𝑘 (𝑥) = 𝑖}| < ∞ if and only if 𝑠𝑘 (𝑖 + 1) < ∞.
In addition, from Equation (3.5), we have 𝑇𝑠𝑘 (𝑖) ≤ 𝑠𝑘 (𝑖) for any 𝑘 ∈ N and 𝑖 ∈ Z≥0. Hence, we see that
0 < |{𝑥 ∈ Z≥0; 𝜉𝑘 (𝑥) = 𝑖}| < ∞ implies 0 < |{𝑥 ∈ Z≥0; 𝑇𝜉𝑘 (𝑥) = 𝑖}| < ∞.

Next, by Lemma 3.6 and Equation (3.1),

(𝑇𝜁)𝑘 (𝑖) = |{𝑥 ∈ N; 𝑇𝜂↑𝑘 (𝑥) = 1, 𝑇𝜉𝑘 (𝑥) = 𝑖}| − |{𝑥 ∈ N; 𝑇𝜂↑𝑘+1(𝑥) = 1, 𝑇𝜉𝑘 (𝑥) = 𝑖 + 1}|

= |{𝑥 ∈ N; 𝜂↓𝑘 (𝑥) = 1, 𝑇𝜉𝑘 (𝑥) = 𝑖}| − |{𝑥 ∈ N; 𝜂↓𝑘+1(𝑥) = 1, 𝑇𝜉𝑘 (𝑥) = 𝑖 + 1}|.
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𝜇 = (4, 2, 2, 1)

𝜆 = (4, 3, 1, 1)

𝐽4,1
𝐽2,2
𝐽2,1
𝐽1,1

Figure 9. A partition 𝜇 and its conjugate on the left and a rigged configuration (𝜇, J) on the right.

Then, by Equation (3.6),

|{𝑥 ∈ N; 𝜂↓𝑘 (𝑥) = 1, 𝑇𝜉𝑘 (𝑥) = 𝑖}| = |{𝑥 ∈ N 𝜂↓𝑘 (𝑥) = 1, 𝜉𝑘 (𝑥) = 𝑖 − 𝑘}|,

and similarly,

|{𝑥 ∈ N; 𝜂↓𝑘+1(𝑥) = 1, 𝑇𝜉𝑘 (𝑥) = 𝑖 + 1}| = |{𝑥 ∈ N; 𝜂↓𝑘+1(𝑥) = 1, 𝜉𝑘 (𝑥) = 𝑖 − 𝑘 + 1}|.

Hence, by Lemma 3.6,

(𝑇𝜁)𝑘 (𝑖) = |{𝑥 ∈ N; 𝜂↓𝑘 (𝑥) = 1, 𝜉𝑘 (𝑥) = 𝑖 − 𝑘}|

− |{𝑥 ∈ N; 𝜂↓𝑘+1(𝑥) = 1, 𝜉𝑘 (𝑥) = 𝑖 − 𝑘 + 1}|
= 𝜁𝑘 (𝑖 − 𝑘). �

4. Relation to KKR-bijection

4.1. Definition of the rigged configuration

Let us recall some basic notions. A partition 𝜇 = (𝜇1 ≥ 𝜇2 ≥ · · · ≥ 0) is a weakly decreasing sequence
of nonnegative integers that eventually becomes zero. Partitions are naturally represented by their Young
diagrams and often the two notions are interchanged. The conjugate partition of 𝜇, denoted by 𝜆, is
the partition defined by 𝜆𝑘 = |{𝑖 ∈ N : 𝜇𝑖 ≥ 𝑘}|, for 𝑘 ∈ N. For any k, the multiplicity of k in 𝜇 is
𝑚𝑘 (𝜇) := 𝜆𝑘 − 𝜆𝑘+1; we will often suppress the dependence from 𝜇 to lighten the notation. A rigging
of a partition 𝜇 is a collection of arrays J = {𝐽𝑘 : 1 ≤ 𝑘 ≤ 𝜇1} such that

𝐽𝑘 = (𝐽𝑘,1, . . . , 𝐽𝑘,𝑚𝑘 ), with − 𝑘 ≤ 𝐽𝑘,1 ≤ · · · ≤ 𝐽𝑘,𝑚𝑘

and 𝐽𝑘 = ∅ if 𝑚𝑘 = 0. A pair (𝜇, J) consisting of a partition and its rigging is called a (rank one) rigged
configuration and we denote the set of them by 𝑅𝐶. See Figure 9 for example of a rigged configuration.

Rigged configurations are in bijections with ball configurations 𝜂 ∈ Ω<∞. In the literature, such
a bijection takes the name of the Kerov–Kirillov–Reschetikhin (KKR) bijection [KKR, KOSTY]
and we recall it below. Starting from 𝜂, we will sequentially construct rigged configurations
(𝜇(𝑥), J(𝑥)) for 𝑥 = 0, 1, . . . in such a way that (𝜇(𝑥), J(𝑥)) is a function of 𝜂(1), . . . , 𝜂(𝑥) and
(𝜇, J) = lim𝑥→∞(𝜇(𝑥), J(𝑥)) will be the rigged configuration associated with 𝜂. Abusing notation,
we will denote the arrays in rigging J(𝑥) by 𝐽𝑘 (𝑥). For any 𝑘 ∈ N and 𝑥 ≥ 0, define the k-th vacancy
at x as

𝑝𝑘 (𝑥) = 𝑥 − 2𝐸𝑘 (𝑥),

where 𝐸𝑘 (𝑥) is called the k-th energy defined as

𝐸𝑘 (𝑥) :=
∑
𝑖∈N

min{𝜇𝑖 (𝑥), 𝑘}.
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−1

−3
−1

−3
1

−1
1

−3
−1

0
2

Figure 10. Some examples of partitions with riggings and vacancies. We note that the leftmost rigged
configuration corresponds to 𝜂 = 1110011, the middle one to 𝜂 = 111000011 and the rightmost one to
𝜂 = 1110001100. We highlighted singular rows writing the corresponding rigging in boldface.

Figure 11. The computation of the KKR bijection corresponding to the configuration 𝜂 =
110011101100011000 . . . . Integers at the left of each partition represent the vacancies 𝑝𝑘 (𝑥) asso-
ciated with each group of rows of the same length k, while the integers at the right of each diagram
represent the rigging J. We have highlighted singular rows by writing the corresponding component of
the rigging in boldface.

In case 𝜇𝑖 (𝑥) = 𝑘 and 𝑝𝑘 (𝑥) = 𝐽𝑘,𝑚𝑘 (𝑥) for some i and k, we say that (𝜇𝑖 (𝑥), 𝐽𝑘,𝑚𝑘 (𝑥)) is a singular row
of length k of (𝜇(𝑥), J(𝑥)). For examples of singular rows, see Figure 10. Each partition corresponds
to 𝜇(𝑥), and the number on the left-hand (resp. right-hand) side of the row with length k is the value of
𝑝𝑘 (𝑥) (resp. 𝐽𝑘 (𝑥)) at some x. The leftmost rigged configuration has two singular rows, and the middle
one has one singular row, but the rightmost one has no singular row.

To construct the sequence (𝜇(𝑥), J(𝑥)), we set 𝜇(0) = ∅ and J(0) = ∅. Assuming that we have
determined (𝜇(𝑥), J(𝑥)), we will construct (𝜇(𝑥 +1), J(𝑥 +1)) as a function of 𝜂(𝑥 +1). If 𝜂(𝑥 +1) = 0,
then we set (𝜇(𝑥+1), J(𝑥+1)) = (𝜇(𝑥), J(𝑥)). On the other hand, if 𝜂(𝑥+1) = 1, we look for the singular
row (𝜇(𝑥), 𝐽𝑘,𝑚𝑘 (𝑥)) of (𝜇(𝑥), J(𝑥)) of maximal length k. Then we replace such row with a singular
row of length 𝑘 + 1. If there are no singular rows, then we simply create a singular row of length 1.
Since we assume that 𝜂 has only finitely many balls, it is clear that from a certain x onward (𝜇(𝑥), J(𝑥))
stabilizes and the result is the desired rigged configuration (𝜇, J). Note that even for general 𝜂 ∈ Ω,
(𝜇(𝑥), J(𝑥)) is well defined for any 𝑥 ∈ Z≥0, but it may not stabilize. One can easily see that, starting
from a rigged configuration (𝜇, J), it is possible to compute the algorithm just described in reverse and
associate uniquely a ball configuration 𝜂 ∈ Ω<∞.

In Figure 11, we show the computation of the KKR bijection relating the ball configuration 𝜂 =
11001110110001100000 . . . with the rigged configuration
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−4
1
−2
3.

For further examples and for generalizations of the KKR bijection, we invite the reader to consult [IKT]
and references therein.

The KKR bijection is extremely important in the study of the BBS as in the rigged configuration, the
dynamics becomes linear. The following proposition recalls a result from [KOSTY].

Theorem 4.1 [KOSTY]. Let 𝜂 ∈ Ω<∞ be a configuration associated with the rigged configuration (𝜇, J)
under the KKR bijection. Then for any 𝑘 ∈ N and ℓ ∈ N ∪ {∞}, we have 𝑇𝜇 = 𝜇, and

(𝑇ℓJ)𝑘 =
(
𝐽𝑘, 𝑗 + 𝑘 ∧ ℓ; 1 ≤ 𝑗 ≤ 𝑚𝑘

)
.

Remark 4.1. In [IKT], relations between rigged configurations and BBS were explained through the
formalism of the theory of crystals. In this formalism, the energy function 𝐸𝑘 can be expressed as a certain
sum over a more refined quantity called local energy which is function of a tensor product of two crystals
[FOY]. For our model, such local energy can be given in term of the function �̃� : {0, 1} × 𝐵 → {0, 1},
𝐵 := {(𝑘, ℓ); 𝑘 ∈ N, 0 ≤ ℓ ≤ 𝑘}, given by

�̃� (𝑎, (𝑘, ℓ)) := min{𝑎, 𝑘 − ℓ},

using which we can represent 𝐸𝑘 as

𝐸𝑘 (𝑥) =
𝑥∑

𝑦=1
�̃� (𝜂(𝑦), (𝑘,𝑊𝑘 (𝑦 − 1))).

Here, recall that𝑊𝑘 is the carrier with capacity k. There is a direct relation between �̃� and seat numbers.
Actually, from the above representation of 𝐸𝑘 and Equation (2.14), we obtain

�̃� (𝜂(𝑥), (𝑘,𝑊𝑘 (𝑥 − 1))) =
𝑘∑

ℓ=1
𝜂↑ℓ (𝑥).

From this relation, we can also deduce that values of 𝜂↑𝑘 (𝑥), or rather their sums, represent the local
energy of the BBS.

4.2. A pair of interlacing Young diagrams with riggings

In this subsection, we introduce a new algorithm to obtain a sequence of pairs of Young diagrams from
a ball configuration 𝜂 ∈ Ω. Then, we prove that the rigged configuration obtained by the KKR bijection
is understood as a projection from the pair of Young diagrams to the first component.

For a pair of Young diagrams (𝜇↑, 𝜇↓), we say that the pair is interlacing if

𝜇↑

1 ≥ 𝜇↓

1 ≥ 𝜇↑

2 ≥ 𝜇↓

2 ≥ . . .

holds, where we use the convention that for a given partition 𝜇, 𝜇𝑖 = 0 for any 𝑖 > 𝜆1. The interlacing
condition is equivalent to

𝜆↑

𝑘 − 𝜆↓

𝑘 ∈ {0, 1}, (4.1)

for any 𝑘 ≥ 1 where 𝜆𝜎 is the conjugate of 𝜇𝜎 for 𝜎 ∈ {↑, ↓}.
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We introduce

𝑘↑ := sup{𝑘 ≥ 1; 𝜆↑

ℓ − 𝜆↓

ℓ = 1, 1 ≤ ∀ℓ ≤ 𝑘}

= sup{𝑘 ≥ 1;
𝑘∑

ℓ=1
(𝜆↑

ℓ − 𝜆↓

ℓ) = 𝑘}

and

𝑘↓ := sup{𝑘 ≥ 1; 𝜆↑

ℓ − 𝜆↓

ℓ = 0, 1 ≤ ∀ℓ ≤ 𝑘}

= sup{𝑘 ≥ 1;
𝑘∑

ℓ=1
(𝜆↑

ℓ − 𝜆↓

ℓ) = 0}

with convention sup ∅ = 0. Note that 𝑘↑ < ∞ for any pair of interlacing Young diagrams (𝜇↑, 𝜇↓) but
𝑘↓ = ∞ if and only if 𝜇↑ = 𝜇↓.

The next lemma is rather straightforward, but we state it for clarity.

Lemma 4.1. Take a pair of interlacing Young diagrams (𝜇↑, 𝜇↓). For 𝜎 ∈ {↑, ↓}, let �̃�𝜎 be the Young
diagram obtained from 𝜇𝜎 by adding a box to one of the row(s) satisfying 𝜇𝜎

𝑖 = 𝑘𝜎 . In other words,
we replace a row with length 𝑘𝜎 by a row with length 𝑘𝜎 + 1. Here, if 𝑘𝜎 = 0, then we simply add a
row with length one to 𝜇𝜎 . Then, the pair ( �̃�↑, 𝜇↓) is still a pair of interlacing Young diagrams. Also, if
𝜇↑ ≠ 𝜇↓, the pair (𝜇↑, �̃�↓) is still a pair of interlacing Young diagrams.

Proof. Since �̃�𝜎
𝑘 = 𝜆𝜎

𝑘 for 𝑘 ≠ 𝑘𝜎 + 1 and �̃�𝜎
𝑘𝜎+1 = 𝜆𝜎

𝑘𝜎+1 + 1, the condition (4.1) is satisfied by the
definition of 𝑘𝜎 . �

Now, for a given 𝜂 ∈ Ω, we construct a growing sequence of pairs of interlacing Young diagrams
(𝜇↑(𝑥), 𝜇↓(𝑥))𝑥∈Z≥0 .

Set 𝜇𝜎 (0) = ∅ for 𝜎 =↑, ↓. For 𝑥 ≥ 0, we construct 𝜇↑(𝑥 + 1), 𝜇↓(𝑥 + 1) as a function of 𝜇↑(𝑥), 𝜇↓(𝑥)
and 𝜂(𝑥 + 1) by the algorithm explained below.

1. If 𝜂(𝑥 + 1) = 1, then 𝜇↓(𝑥 + 1) = 𝜇↓(𝑥) and 𝜇↑(𝑥 + 1) is obtained by adding a box to 𝜇↑(𝑥) at one of
the row(s) satisfying 𝜇↑

𝑖 (𝑥) = 𝑘↑(𝑥). In other words,

𝜆↑

𝑘 (𝑥 + 1) = 𝜆↑

𝑘 (𝑥)

for any 𝑘 ≠ 𝑘↑(𝑥) + 1 and

𝜆↑

𝑘↑ (𝑥)+1(𝑥 + 1) = 𝜆↑

𝑘↑ (𝑥)+1(𝑥) + 1.

Then, by Lemma 4.1, (𝜇↑(𝑥 + 1), 𝜇↓(𝑥 + 1)) is also a pair of interlacing Young diagrams.
2. If 𝜂(𝑥 + 1) = 0 and 𝜇↑(𝑥) ≠ 𝜇↓(𝑥), then 𝜇↑(𝑥 + 1) = 𝜇↑(𝑥) and 𝜇↓(𝑥 + 1) is obtained by adding a

box to 𝜇↓(𝑥) at one of the row(s) satisfying 𝜇↓
𝑖 (𝑥) = 𝑘↓(𝑥) as for the first case. Then, by Lemma 4.1

again, (𝜇↑(𝑥 + 1), 𝜇↓(𝑥 + 1)) is also a pair of interlacing Young diagrams.
3. If 𝜂(𝑥 + 1) = 0 and 𝜇↑(𝑥) = 𝜇↓(𝑥), then we set (𝜇↑(𝑥 + 1), 𝜇↓(𝑥 + 1)) = (𝜇↑(𝑥), 𝜇↓(𝑥)).

In Figure 12, an example of the process of construction of (𝜇↑(𝑥), 𝜇↓(𝑥)) is shown. Now, we observe
that by comparing Figures 2 and 12, the relation 𝜆↑

𝑘 (𝑥) −𝜆
↓

𝑘 (𝑥) = W𝑘 (𝑥) holds for our working example.
Actually, we can prove the same relation for any ball configuration 𝜂 ∈ Ω as follows.
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∅ ↑ ↑ ↑ ↑↓ ↑

↑↓ ↑↓
↑↓ ↑↓
↑

↑↓ ↑↓
↑ ↑

↑↓ ↑↓ ↑
↑ ↑

↑↓ ↑↓ ↑
↑↓ ↑

↑↓ ↑↓ ↑
↑↓ ↑
↑

↑↓ ↑↓ ↑ ↑
↑↓ ↑
↑

↑↓ ↑↓ ↑ ↑
↑↓ ↑
↑↓

↑↓ ↑↓ ↑ ↑
↑↓ ↑↓
↑↓

↑↓ ↑↓ ↑↓ ↑
↑↓ ↑↓
↑↓

↑↓ ↑↓ ↑↓ ↑
↑↓ ↑↓
↑↓
↑

↑↓ ↑↓ ↑↓ ↑
↑↓ ↑↓
↑↓ ↑
↑

↑↓ ↑↓ ↑↓ ↑
↑↓ ↑↓
↑↓ ↑
↑↓

↑↓ ↑↓ ↑↓ ↑
↑↓ ↑↓
↑↓ ↑↓
↑↓

↑↓ ↑↓ ↑↓ ↑↓
↑↓ ↑↓
↑↓ ↑↓
↑↓

. . . . . .

Figure 12. Construction of the pair of interlacing Young diagrams from the ball configuration 𝜂 =
110011101100011000 . . . . In this figure, (𝜇↑(𝑥), 𝜇↓(𝑥)) are superimposed. The symbols ↑and↓ indicate
the shape of Young diagram 𝜇↑(𝑥) and 𝜇↓(𝑥), respectively, and ↑↓ indicates the overlapped area.

Proposition 4.1. Suppose that 𝜂 ∈ Ω. Then, the following relation between the seat-numbers and the
pair of interlacing Young diagrams

𝜆𝜎
𝑘 (𝑥) =

𝑥∑
𝑦=1

𝜂𝜎
𝑘 (𝑦), (4.2)

holds for any 𝜎 =↑, ↓, 𝑥 ≥ 0 and 𝑘 ∈ N. In particular, we have

Wℓ (𝑥) = 𝜆↑

ℓ (𝑥) − 𝜆↓

ℓ (𝑥),

and

𝑚𝜎
𝑘 (𝑥) = 𝜆𝜎

𝑘 (𝑥) − 𝜆𝜎
𝑘+1(𝑥),

where 𝑚𝜎
𝑘 (𝑥) is defined in Equation (2.8). In addition,

𝑘↑(𝑥) = sup{𝑘 ≥ 1; Wℓ (𝑥) = 1, for all 1 ≤ ℓ ≤ 𝑘}, (4.3)

𝑘↓(𝑥) = sup{𝑘 ≥ 1; Wℓ (𝑥) = 0, for all 1 ≤ ℓ ≤ 𝑘}.

Proof. We prove this by induction on x. The statement clearly holds if 𝑥 = 0. Then, suppose Equation
(4.2) holds for some 𝑥 ∈ Z≥0 for any 𝜎 =↑, ↓ and 𝑘 ∈ N. Then,
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𝜆↑

𝑘 (𝑥) − 𝜆↓

𝑘 (𝑥) =
𝑥∑

𝑦=1
𝜂↑𝑘 (𝑦) −

𝑥∑
𝑦=1

𝜂↓𝑘 (𝑦) = W𝑘 (𝑥).

Now, suppose 𝜂(𝑥 + 1) = 1. Then, by this characterization and the definition of the seat-number
configuration, 𝜂↑

𝑘↑ (𝑥)+1(𝑥 + 1) = 1. This implies

𝑥+1∑
𝑦=1

𝜂𝜎
𝑘 (𝑦) −

𝑥∑
𝑦=1

𝜂𝜎
𝑘 (𝑦) = 1{𝑘=𝑘↑ (𝑥)+1,𝜎=↑} .

On the other hand, by construction of the sequence of interlacing Young diagrams,

𝜆𝜎
𝑘 (𝑥 + 1) − 𝜆𝜎

𝑘 (𝑥) = 1{𝑘=𝑘↑ (𝑥)+1,𝜎=↑} . (4.4)

Hence, by combining Equation (4.4) with the induction assumption, the equality

𝜆𝜎
𝑘 (𝑥 + 1) =

𝑥+1∑
𝑦=1

𝜂𝜎
𝑘 (𝑦)

holds for any 𝜎 and k if 𝜂(𝑥 + 1) = 1. For the case 𝜂(𝑥 + 1) = 0, 𝑟 (𝑥 + 1) = 1 if 𝑊∞(𝑥) = 0 and
𝜂↓
𝑘↓ (𝑥)+1(𝑥 + 1) = 1 if 𝑊∞(𝑥) ≠ 0. Noting that 𝜇↑(𝑥) = 𝜇↓(𝑥) is equivalent to 𝑘↓(𝑥) = ∞, and so to

𝑊∞(𝑥) = 0, we can also prove the result in the same manner. �

Remark 4.2. Note that from Equation (4.2), if we obtain the seat number configuration of 𝜂 ∈ Ω,
then the sequence of pairs of interlacing Young diagrams corresponding to 𝜂 can be obtained via the
following simple rules. Assume that we have constructed

(
𝜇↑(𝑥), 𝜇↓(𝑥)

)
.

(1’) If 𝜂↑𝑘 (𝑥 + 1) = 1 for some 𝑘 ∈ N, then 𝜇↓(𝑥 + 1) = 𝜇↓(𝑥) and 𝜇↑(𝑥 + 1) is obtained by adding a
box to 𝜇↑(𝑥) at one of the rows with length 𝑘 − 1.

(2’) If 𝜂↓𝑘 (𝑥 + 1) = 1 for some 𝑘 ∈ N, then 𝜇↑(𝑥 + 1) = 𝜇↑(𝑥) and 𝜇↓(𝑥 + 1) is obtained by adding a
box to 𝜇↓(𝑥) at one of the rows with length 𝑘 − 1.

(3’) If 𝑟 (𝑥 + 1) = 1, then we set
(
𝜇↑(𝑥 + 1), 𝜇↓(𝑥 + 1)

)
=
(
𝜇↑(𝑥), 𝜇↓(𝑥)

)
.

For example, by following the above rules, we obtain the same sequence of the pairs of the interlacing
Young diagrams in Figure 12 from the seat number configuration of 𝜂 = 110011101100011000 . . .
shown in Figure 12.

Next, to reveal the relation with the original KKR bijection, we introduce the k-th 𝜎 energy 𝐸𝜎
𝑘 (𝑥)

and the k-th 𝜎 vacancy 𝑝𝜎
𝑘 (𝑥) as

𝐸𝜎
𝑘 (𝑥) :=

∑
𝑖∈N

min{𝜇𝜎
𝑖 (𝑥), 𝑘}, 𝑝𝜎

𝑘 (𝑥) := 𝑥 − 2𝐸𝜎
𝑘 (𝑥).

Since

∑
𝑖∈N

min{𝜇𝜎
𝑖 (𝑥), 𝑘} =

∑
𝑖∈N

𝑘∑
ℓ=1

1{𝜇𝜎
𝑖 (𝑥) ≥ℓ } =

𝑘∑
ℓ=1

𝜆𝜎
ℓ (𝑥),

by Proposition 4.1, we can also rewrite

𝐸𝜎
𝑘 (𝑥) =

𝑘∑
ℓ=1

𝑥∑
𝑦=1

𝜂𝜎
𝑘 (𝑦)
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and

𝑝𝜎
𝑘 (𝑥) = 𝑥 − 2

𝑘∑
ℓ=1

𝑥∑
𝑦=1

𝜂𝜎
𝑘 (𝑦) = 𝑥 −

𝑘∑
ℓ=1

𝑥∑
𝑦=1

(𝜂𝜎
𝑘 (𝑦) + 𝜂 �̌�

𝑘 (𝑦)) −
𝑘∑

ℓ=1

𝑥∑
𝑦=1

(𝜂𝜎
𝑘 (𝑦) − 𝜂 �̌�

𝑘 (𝑦))

= 𝜉𝑘 (𝑥) −
𝑘∑

ℓ=1
W𝜎

ℓ (𝑥),

where �̌� is the opposite arrow to 𝜎, W ↑

𝑘 = W𝑘 and W ↓

𝑘 = −W𝑘 .
The following property of the k-th 𝜎 vacancy is useful for understanding the relation between the

seat number configuration and the riggings.

Lemma 4.2. Consider a ball configuration 𝜂 ∈ Ω. Then, the following statements hold.

1. Suppose 𝜂↑𝑘 (𝑥) = 1. Then

𝑝↑𝑘 (𝑥) = 𝜉𝑘 (𝑥) − 𝑘 (4.5)

and for any 𝑥 ′ ≥ 𝑥, 𝑝↑𝑘 (𝑥) ≤ 𝑝↑𝑘 (𝑥
′). Moreover, for 𝑥 ′ ≥ 𝑥, 𝑝↑𝑘 (𝑥) = 𝑝↑𝑘 (𝑥

′) holds if and only if

𝑥′∑
𝑦=𝑥+1

∑
ℓ≥𝑘+1

(𝜂↑ℓ (𝑦) + 𝜂↓ℓ (𝑦)) +
𝑥′∑

𝑦=𝑥+1
𝑟 (𝑦) = 0 and

𝑘∑
ℓ=1

Wℓ (𝑥
′) = 𝑘.

2. Suppose 𝜂↓𝑘 (𝑥) = 1. Then

𝑝↓𝑘 (𝑥) = 𝜉𝑘 (𝑥)

and for any 𝑥 ′ ≥ 𝑥, 𝑝↓𝑘 (𝑥) ≤ 𝑝↓𝑘 (𝑥
′). Moreover, for 𝑥 ′ ≥ 𝑥, 𝑝↓𝑘 (𝑥) = 𝑝↓𝑘 (𝑥

′) holds if and only if

𝑥′∑
𝑦=𝑥+1

∑
ℓ≥𝑘+1

(𝜂↑ℓ (𝑦) + 𝜂↓ℓ (𝑦)) +
𝑥′∑

𝑦=𝑥+1
𝑟 (𝑦) = 0 and

𝑘∑
ℓ=1

Wℓ (𝑥
′) = 0.

Proof. Let us only show (1); as the proof (2) is completely analogous. Since 𝜂↑𝑘 (𝑥) = 1 implies
Wℓ (𝑥) = 1 for all 1 ≤ ℓ ≤ 𝑘 , Equation (4.5) holds. Let 𝑥 ′ ≥ 𝑥. Then,

𝑝↑𝑘 (𝑥
′) − 𝑝↑𝑘 (𝑥) = 𝜉𝑘 (𝑥

′) − 𝜉𝑘 (𝑥) + 𝑘 −
𝑘∑

ℓ=1
Wℓ (𝑥

′)

and 𝜉𝑘 (𝑥
′) − 𝜉𝑘 (𝑥) ≥ 0, 𝑘 −

∑𝑘
ℓ=1 Wℓ (𝑥

′) ≥ 0 implies the inequality 𝑝↑𝑘 (𝑥) ≤ 𝑝↑𝑘 (𝑥
′). The last condition

in the statement is equivalent to 𝜉𝑘 (𝑥
′) − 𝜉𝑘 (𝑥) = 0 and 𝑘 −

∑𝑘
ℓ=1 Wℓ (𝑥

′) = 0, which is obviously
equivalent to 𝑝↑𝑘 (𝑥) = 𝑝↑𝑘 (𝑥

′). �

We now introduce refined riggings J𝜎 (𝑥) = (𝐽𝜎𝑘 (𝑥), 1 ≤ 𝑘 ≤ 𝜇𝜎
1 (𝑥)) such that

𝐽𝜎𝑘 (𝑥) = (𝐽𝜎𝑘, 𝑗 (𝑥), 1 ≤ 𝑗 ≤ 𝑚𝜎
𝑘 (𝑥)), where 𝑚𝜎

𝑘 (𝑥) = 𝜆𝜎
𝑘 (𝑥) − 𝜆𝜎

𝑘+1(𝑥) = |{𝑖; 𝜇𝜎
𝑖 (𝑥) = 𝑘}| from

Proposition 4.1. We order them as

𝐽𝜎𝑘,1 (𝑥) ≤ 𝐽𝜎𝑘,2(𝑥) · · · ≤ 𝐽𝜎𝑘,𝑚𝜎
𝑘
(𝑥) (𝑥)

to make the notation simple in the following argument. We define the riggings recursively, although later
in the same subsection, we will show that they can be defined more directly in terms of seat numbers.
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Let J𝜎 (0) = ∅ for 𝜎 =↑, ↓. We will construct J𝜎 (𝑥 + 1) from J𝜎 (𝑥) by considering three cases
separately.

Case 1: 𝜂k
𝜎(x + 1) = 0 for all k. If 𝜂𝜎

𝑘 (𝑥 + 1) = 0 for all k, or equivalently 𝜇𝜎 (𝑥 + 1) = 𝜇𝜎 (𝑥), then
we also keep the rigging as J𝜎 (𝑥 + 1) = J𝜎 (𝑥).

Case 2: 𝜂1
𝜎(x + 1) = 1. If 𝜂𝜎

1 (𝑥+1) = 1, or equivalently a row of length 1 is added to obtain 𝜇𝜎 (𝑥+1)
from 𝜇𝜎 (𝑥), we append the value 𝑝𝜎

1 (𝑥 + 1) to 𝐽𝜎1 (𝑥) and obtain 𝐽𝜎1 (𝑥 + 1). More precisely,

𝐽𝜎ℓ (𝑥 + 1) = 𝐽𝜎ℓ (𝑥) ℓ ≠ 1

and

𝐽𝜎1 (𝑥 + 1) = (𝐽𝜎1,1 (𝑥), . . . 𝐽
𝜎
1,𝑚𝜎

1 (𝑥) (𝑥), 𝑝
𝜎
1 (𝑥 + 1)).

Case 3: 𝜂k+1
𝜎(x + 1) = 1 for some k ≥ 1. If 𝜂𝜎

𝑘+1(𝑥 + 1) = 1 for some 𝑘 ≥ 1, or equivalently a row of
length k is replaced by one of length 𝑘 + 1 to obtain 𝜇𝜎 (𝑥 + 1) from 𝜇𝜎 (𝑥), we remove the largest entry
from 𝐽𝜎𝑘 (𝑥) and append 𝑝𝜎

𝑘+1 (𝑥 + 1) to 𝐽𝜎𝑘+1(𝑥) to obtain rigging J𝜎 (𝑥 + 1). More precisely,

𝐽𝜎ℓ (𝑥 + 1) = 𝐽𝜎ℓ (𝑥) ℓ ≠ 𝑘, 𝑘 + 1,

𝐽𝜎𝑘 (𝑥 + 1) = (𝐽𝜎𝑘,1 (𝑥), . . . , 𝐽
𝜎
𝑘,𝑚𝜎

𝑘
(𝑥)−1 (𝑥))

and

𝐽𝜎𝑘+1(𝑥 + 1) = (𝐽𝜎𝑘+1, 𝑗 (𝑥), . . . , 𝐽
𝜎
𝑘+1,𝑚𝜎

𝑘+1 (𝑥)
(𝑥), 𝑝𝜎

𝑘+1 (𝑥 + 1)).

Now, we analyze properties of this newly defined rigging. By the way of construction, it is clear that
for any 𝐽𝜎𝑘, 𝑗 (𝑥) in the rigging J𝜎 (𝑥), there exists 𝑦 ≤ 𝑥 such that 𝜂𝜎

𝑘 (𝑦) = 1 and 𝐽𝜎𝑘, 𝑗 (𝑥) = 𝑝𝜎
𝑘 (𝑦),

which is not necessarily unique. In the next proposition, we give an explicit expression of one of such
𝑦 = 𝑦(𝑥, 𝑘, 𝑗 , 𝜎). For 1 ≤ 𝑗 ≤ 𝑚𝜎

𝑘 (𝑥), let

𝑡𝜎𝑘 (𝑥, 𝑗) := max{𝑦 ≤ 𝑥; 𝑚𝜎
𝑘 (𝑦) = 𝑗 , 𝜂𝜎

𝑘 (𝑦) = 1}.

Since |𝑚𝜎
𝑘 (𝑦 + 1) − 𝑚𝜎

𝑘 (𝑦) | ≤ 1 for any y, 𝑚𝜎
𝑘 (0) = 0 and 𝑚𝜎

𝑘 (𝑦) increases only when 𝜂𝜎
𝑘 (𝑦) = 1, the

above set is not empty, namely 1 ≤ 𝑡𝜎𝑘 (𝑥, 𝑗) ≤ 𝑥. Moreover, 𝑡𝜎𝑘 (𝑥, 1) < 𝑡𝜎𝑘 (𝑥, 2) < · · · < 𝑡𝜎𝑘 (𝑥, 𝑚𝜎
𝑘 (𝑥)).

Proposition 4.2. For any 𝑥 ∈ Z≥0, 𝑘 ∈ N, 𝜎 ∈ {↑, ↓} and 1 ≤ 𝑗 ≤ 𝑚𝜎
𝑘 (𝑥), we have

𝐽𝜎𝑘, 𝑗 (𝑥) = 𝑝𝜎
𝑘 (𝑡𝜎𝑘 (𝑥, 𝑗)). (4.6)

Proof. We prove Equation (4.6) by induction on x. For 𝑥 = 0, the equality trivially holds as there is no
j satisfying 1 ≤ 𝑗 ≤ 𝑚𝜎

𝑘 (𝑥). Next, suppose Equation (4.6) holds for some 𝑥 ∈ Z≥0 and for any 𝑘, 𝜎 and
1 ≤ 𝑗 ≤ 𝑚𝜎

𝑘 (𝑥). We prove that the same holds for 𝑥 + 1 by considering three cases separately as above.
Case 1: 𝜂k

𝜎(x + 1) = 0 for all k. Then by definition, 𝑚𝜎
𝑘 (𝑥 + 1) = 𝑚𝜎

𝑘 (𝑥) and 𝑡𝜎𝑘 (𝑥 + 1, 𝑗) = 𝑡𝜎𝑘 (𝑥, 𝑗)
for any 𝑘, 𝜎 and 1 ≤ 𝑗 ≤ 𝑚𝜎

𝑘 (𝑥 + 1). Also, J𝜎 (𝑥 + 1) = J𝜎 (𝑥). Hence,

𝐽𝜎𝑘, 𝑗 (𝑥 + 1) = 𝐽𝜎𝑘, 𝑗 (𝑥) = 𝑝𝜎
𝑘 (𝑡𝜎𝑘 (𝑥, 𝑗)) = 𝑝𝜎

𝑘 (𝑡𝜎𝑘 (𝑥 + 1, 𝑗))

holds for any 𝑘, 𝜎 and 1 ≤ 𝑗 ≤ 𝑚𝜎
𝑘 (𝑥 + 1).

Case 2: 𝜂1
𝜎(x + 1) = 1. If 𝜂𝜎

1 (𝑥 + 1) = 1, then as in Case 1, for any ℓ ≠ 1 and 1 ≤ 𝑗 ≤ 𝑚𝜎
ℓ (𝑥 + 1),

𝐽𝜎ℓ, 𝑗 (𝑥 + 1) = 𝐽𝜎ℓ, 𝑗 (𝑥) = 𝑝𝜎
ℓ (𝑡𝜎ℓ (𝑥, 𝑗)) = 𝑝𝜎

ℓ (𝑡𝜎ℓ (𝑥 + 1, 𝑗))
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holds. On the other hand, for ℓ = 1, 𝑚𝜎
1 (𝑥 +1) = 𝑚𝜎

1 (𝑥) +1 and 𝑡𝜎1 (𝑥 +1, 𝑚𝜎
1 (𝑥 +1)) = 𝑥 +1. Moreover,

by Lemma 4.2, for any 1 ≤ 𝑗 ≤ 𝑚𝜎
1 (𝑥),

𝐽𝜎1, 𝑗 (𝑥) = 𝑝𝜎
1 (𝑡𝜎1 (𝑥, 𝑗)) ≤ 𝑝𝜎

1 (𝑥 + 1)

since 𝜂𝜎
1 (𝑡𝜎1 (𝑥, 𝑗)) = 1. Hence, as we order

𝐽𝜎𝑘,1(𝑥 + 1) ≤ 𝐽𝜎𝑘,2(𝑥 + 1) ≤ · · · ≤ 𝐽𝜎𝑘,𝑚𝜎
1 (𝑥+1) (𝑥 + 1),

we have 𝐽𝜎1, 𝑗 (𝑥 + 1) = 𝐽𝜎1, 𝑗 (𝑥) for any 1 ≤ 𝑗 ≤ 𝑚𝜎
1 (𝑥) and 𝐽𝜎1,𝑚𝜎

1 (𝑥+1) = 𝑝𝜎
1 (𝑥 + 1). Hence, for

𝑗 = 𝑚𝜎
1 (𝑥 + 1),

𝐽𝜎1, 𝑗 (𝑥 + 1) = 𝑝𝜎
1 (𝑥 + 1) = 𝑝𝜎

1 (𝑡𝜎1 (𝑥 + 1, 𝑚𝜎
1 (𝑥 + 1))) = 𝑝𝜎

1 (𝑡𝜎1 (𝑥 + 1, 𝑗))

holds. Also, for 1 ≤ 𝑗 ≤ 𝑚𝜎
1 (𝑥), by the definition of 𝑡𝜎1 (𝑥, 𝑗), it is obvious that 𝑡𝜎1 (𝑥 + 1, 𝑗) = 𝑡𝜎1 (𝑥, 𝑗)

and so

𝐽𝜎1, 𝑗 (𝑥 + 1) = 𝑝𝜎
1 (𝑡𝜎1 (𝑥 + 1, 𝑗))

holds as well.
Case 3: 𝜂k+1

𝜎(x + 1) = 1 for some k ≥ 1. If 𝜂𝜎
𝑘+1(𝑥 + 1) = 1, then as in Case 1, for any ℓ ≠ 𝑘, 𝑘 + 1

and 1 ≤ 𝑗 ≤ 𝑚𝜎
ℓ (𝑥 + 1),

𝐽𝜎ℓ, 𝑗 (𝑥 + 1) = 𝑝𝜎
ℓ (𝑡𝜎ℓ (𝑥 + 1, 𝑗))

holds. Also, for ℓ = 𝑘 + 1, the same relation holds by exactly the same argument as in Case 2. Finally,
for ℓ = 𝑘 , 𝑚𝜎

𝑘 (𝑥 + 1) = 𝑚𝜎
𝑘 (𝑥) − 1 and for any 1 ≤ 𝑗 ≤ 𝑚𝜎

𝑘 (𝑥 + 1), we have 𝑡𝜎𝑘 (𝑥 + 1, 𝑗) = 𝑡𝜎𝑘 (𝑥, 𝑗),
𝐽𝜎𝑘, 𝑗 (𝑥 + 1) = 𝐽𝜎𝑘, 𝑗 (𝑥) by definition. Hence,

𝐽𝜎𝑘, 𝑗 (𝑥 + 1) = 𝑝𝜎
𝑘 (𝑡𝜎𝑘 (𝑥 + 1, 𝑗))

holds for any 1 ≤ 𝑗 ≤ 𝑚𝜎
𝑘 (𝑥 + 1). This completes the proof. �

Finally, we prove that 𝑘↑ and 𝑘↓ can be characterized in terms of the rigging and the traditional
singular condition. We say 𝜇𝜎

𝑖 (𝑥) is a singular row of (𝜇𝜎 (𝑥), J𝜎 (𝑥)) if 𝑝𝜎
𝑘 (𝑥) = 𝐽𝜎

𝑘,𝑚𝜎
𝑘
(𝑥)

(𝑥), where
𝑘 = 𝜇𝜎

𝑖 (𝑥).

Proposition 4.3. Assume the convention that max ∅ = 0. Then,

𝑘↑(𝑥) = max
𝑖

{𝜇↑
𝑖 (𝑥); 𝜇↑

𝑖 (𝑥) is singular}.

Also, if 𝜇↑(𝑥) ≠ 𝜇↓(𝑥), then

𝑘↓(𝑥) = max
𝑖

{𝜇↓
𝑖 (𝑥); 𝜇↓

𝑖 (𝑥) is singular}.

Proof. If 𝜇𝜎
𝑖 (𝑥) is singular, then for 𝑘 = 𝜇𝜎

𝑖 (𝑥), we have

𝑝𝜎
𝑘 (𝑥) = 𝐽𝜎𝑘,𝑚𝜎

𝑘
(𝑥) (𝑥) = 𝑝𝜎

𝑘

(
𝑡𝜎𝑘

(
𝑥, 𝑚𝜎

𝑘 (𝑥)
) )
,

where we apply Proposition 4.2 for the second equality. Then, since 𝑥 ≥ 𝑡𝜎𝑘
(
𝑥, 𝑚𝜎

𝑘 (𝑥)
)

and
𝜂𝜎
𝑘

(
𝑡𝜎𝑘 (𝑥, 𝑚𝜎

𝑘 (𝑥))
)
= 1, by Lemma 4.2, we have

∑𝑘
ℓ=1 Wℓ (𝑥) = 𝑘 if 𝜎 =↑ and

∑𝑘
ℓ=1 Wℓ (𝑥) = 0 if
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𝜎 =↓. Thus, from Equation (4.3), we obtain

𝑘𝜎 (𝑥) ≥ max
𝑖

{𝜇𝜎
𝑖 (𝑥); 𝜇𝜎

𝑖 (𝑥) is singular}.

Hence, it is sufficient to prove that if 1 ≤ 𝑘𝜎 (𝑥) < ∞, then the row satisfying 𝜇𝜎
𝑖 (𝑥) = 𝑘𝜎 (𝑥) exists in

𝜇𝜎 (𝑥) and it is singular. In the rest of the proof, we prove this assertion.
Suppose 1 ≤ 𝑘𝜎 (𝑥) < ∞. Observe that at least one row with length 𝑘𝜎 exists in 𝜇𝜎 (𝑥). To simplify

the notation, denote 𝑘𝜎 (𝑥) by 𝑘∗. Since 𝜆𝜎
𝑘∗ (𝑥) ≥ 1 and 𝜆𝜎

𝑘∗ (𝑥) =
∑𝑥

𝑦=1 𝜂
𝜎
𝑘∗ (𝑦), we define 𝑥∗ as the

maximal y satisfying 𝑦 ≤ 𝑥 and 𝜂𝜎
𝑘∗ (𝑦) = 1, or in formula

𝑥∗ := max{𝑦; 𝑦 ≤ 𝑥 , 𝜂𝜎
𝑘∗ (𝑦) = 1}.

From now on, we consider the case 𝜎 =↑. Then, from Lemma 3.1 (i), for any 1 ≤ ℓ ≤ 𝑘∗, we have
Wℓ (𝑥

∗) = 1. Also, from Equation (4.3), for any 1 ≤ ℓ ≤ 𝑘∗, Wℓ (𝑥) = 1 and W𝑘∗+1(𝑥) = 0. Hence, we
have

W𝑘∗ (𝑥) −W𝑘∗ (𝑥
∗) =

𝑥∑
𝑦=𝑥∗+1

(𝜂↑𝑘∗ (𝑦) − 𝜂↓𝑘∗ (𝑦)) = 0.

On the other hand, by the construction of 𝑥∗,

𝑥∑
𝑦=𝑥∗+1

𝜂↑𝑘∗ (𝑦) = 0. (4.7)

Hence,
∑𝑥

𝑦=𝑥∗+1 𝜂
↑

𝑘∗ (𝑦) =
∑𝑥

𝑦=𝑥∗+1 𝜂
↓

𝑘∗ (𝑦) = 0. This implies that the seat 𝑘∗ is occupied for any 𝑦 ∈ [𝑥∗, 𝑥]
and therefore ∑

ℓ≥𝑘∗+1

𝑥∑
𝑦=𝑥∗+1

𝜂↓ℓ (𝑦) = 0, (4.8)

since if a ball leaves a seat ℓ ≥ 𝑘∗ +1, then the ball at seat 𝑘∗ must have already left. Then, from Equation
(2.5), Equation (4.8) and W𝑘∗+1(𝑥) = 0, we also have

∑𝑥
𝑦=𝑥∗+1 𝜂

↑

𝑘∗+1 (𝑦) = 0. Namely, the seat 𝑘∗ + 1 is
empty for any 𝑦 ∈ [𝑥∗, 𝑥]. This also implies that

∑
ℓ≥𝑘∗+1

𝑥∑
𝑦=𝑥∗+1

𝜂↑ℓ (𝑦) = 0. (4.9)

Finally, since the seat 𝑘∗ is occupied for any 𝑦 ∈ [𝑥∗, 𝑥], it is obvious that

𝑥∑
𝑦=𝑥∗+1

𝑟 (𝑦) = 0. (4.10)

Combining Equations (4.8),(4.9) and (4.10), we have

∑
ℓ≥𝑘∗+1

𝑥∑
𝑦=𝑥∗+1

(𝜂↑ℓ (𝑦) + 𝜂↓ℓ (𝑦)) +
𝑥∑

𝑦=𝑥∗+1
𝑟 (𝑦) = 0.

Then, from Equation (4.3) and Lemma 4.2, we have

𝑝↑𝑘∗ (𝑥
∗) = 𝑝↑𝑘∗ (𝑥).
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Finally, we check that 𝑥∗ = 𝑡↑𝑘∗ (𝑥, 𝑚
↑

𝑘∗ (𝑥)). For this, we only need to prove that 𝑚↑

𝑘∗ (𝑥
∗) = 𝑚↑

𝑘∗ (𝑥) and
this is equivalent to

∑𝑥
𝑦=𝑥∗+1 𝜂

↑

𝑘∗ (𝑦) =
∑𝑥

𝑦=𝑥∗+1 𝜂
↑

𝑘∗+1(𝑦), which is true as this is 0 as shown in Equations
(4.7) and (4.9). Consequently, we have 𝐽↑

𝑘∗ ,𝑚
↑

𝑘∗
(𝑥)

(𝑥) = 𝑝↑𝑘∗ (𝑡
↑

𝑘∗ (𝑥, 𝑚
↑

𝑘∗ (𝑥))) = 𝑝↑𝑘∗ (𝑥), and so there

exists at least one singular row with length 𝑘∗.
For the case 𝜎 =↓, by using 𝜇↑(𝑥) ≠ 𝜇↓(𝑥), the exactly same argument works. �

Remark 4.3. Proposition 4.3 allows us to give an intuitive meaning to the term of ‘singular’ for rigged
configurations by means of the seat number configuration. Combining the above with Remark 4.2 and
Proposition 2.2, we obtain an interpretation of the KKR bijection, which was a purely combinatorial
object, in terms of the seat number configuration.

4.3. Proof of Proposition 2.2

In the last subsection, we have constructed the sequence of rigged Young diagrams (𝜇↑(𝑥), J↑(𝑥))
satisfying all the properties claimed in Proposition 2.2 if we replace (𝜇(𝑥), J(𝑥)) by (𝜇↑(𝑥), J↑(𝑥)).
Hence, we only need to prove that (𝜇(𝑥), J(𝑥)) = (𝜇↑(𝑥), J↑(𝑥)). By Proposition 4.3, we can construct
(𝜇↑(𝑥), J↑(𝑥)) by the algorithm without using information from (𝜇↓(𝑥))𝑥 to update as follows: Let
𝜇↑(0) = ∅ and J↑(0) = ∅. Once (𝜇↑(𝑥), J↑(𝑥)) is given, we construct (𝜇↑(𝑥 + 1), J↑(𝑥 + 1)) as
follows. If 𝜂(𝑥 + 1) = 0, we set (𝜇↑(𝑥 + 1), J↑(𝑥 + 1)) = (𝜇↑(𝑥), J↑(𝑥)). If 𝜂(𝑥 + 1) = 1, then let
𝑘 := max{𝜇↑

𝑖 (𝑥) : 𝜇↑
𝑖 (𝑥) is singular } with convention max ∅ = 0. If 𝑘 = 0, then add a row of length 1

to 𝜇↑(𝑥) and also add 𝑝↑1 (𝑥+1) to 𝐽↑1 (𝑥). If 𝑘 ≥ 1, then replace a row of length k by that of 𝑘+1 and remove
𝐽↑
𝑘,𝑚↑

𝑘
(𝑥)

(𝑥) = 𝑝↑𝑘 (𝑥) from 𝐽𝑘 (𝑥) and add 𝑝↑𝑘+1(𝑥 + 1) to 𝐽↑𝑘+1(𝑥). Note that in the original algorithm for

the construction of (𝜇↑(𝑥 + 1), 𝜇↓(𝑥 + 1)) from 𝜂(𝑥 + 1) and (𝜇↑(𝑥), 𝜇↓(𝑥)), we used information from
both Young diagrams, but instead we did not use the rigging. Here, we emphasize that the functions
𝑚↑

𝑘 (𝑥) and 𝑝↑𝑘 (𝑥) = 𝑥 − 2𝐸 ↑

𝑘 (𝑥) can be obtained from 𝜇↑(𝑥) alone without information from 𝜇↓(𝑥), and
this is also the case for the rigging J↑(𝑥). Moreover, the last algorithm is exactly same as the one to
construct (𝜇(𝑥), J(𝑥)) from 𝜂 by KKR bijection, which confirms that (𝜇(𝑥), J(𝑥)) = (𝜇↑(𝑥), J↑(𝑥)) as
desired.
Remark 4.4. Interestingly, the update algorithm is closed for 𝜎 =↑, namely we can obtain (𝜇↑(𝑥 + 1),
J↑(𝑥 + 1)) from the data 𝜂(𝑥 + 1) and (𝜇↑(𝑥), J↑(𝑥)), but it is not the case for 𝜎 =↓. This is because,
when 𝜂(𝑥 + 1) = 0, we should distinguish whether 𝜇↑(𝑥) = 𝜇↓(𝑥) or not, or in other words if 𝑟 (𝑥) = 1
or not, and this information cannot be derived from the data (𝜇↓(𝑥), J↓(𝑥)) only. If we also include an
additional information, such as the total number of balls up to site x, that is 𝑁 (𝑥) :=

∑𝑥
𝑦=1 𝜂(𝑦), namely

we consider the sequence (𝜇↓(𝑥), J↓(𝑥), 𝑁 (𝑥)), then we can construct a local update algorithm which
is closed. We may be able to show that J↓ = lim𝑥→∞ J↓(𝑥) is also linearized under the BBS dynamics
without using any relation to other linearizations.

5. Relation to the slot decomposition

In this section, we first briefly recall the definition of the slot configuration and the corresponding
slot decomposition introduced in [FNRW]. Then, we give proofs of Proposition 2.3 and Theorem 2.2.
Note that for simplicity we will only consider finite ball configurations, but one can easily extend the
definitions and results presented in this section to the configurations with an infinite number of records,
see, for example, [S] for such an extension.

5.1. Definition of the slot decomposition

The notion of slots was originally introduced in [FNRW]. Before defining the slots, we recall the fact
that, by the Takahashi–Satsuma algorithm (TS algorithm, see [TS] or Appendix of this article), any site
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Figure 13. Slot configuration of 𝜂 = 1100111011000110000 . . ..

of a given ball configuration 𝜂 ∈ Ω<∞ is either a record or a component of a soliton. Any k-soliton
𝛾 ⊂ N has the form 𝛾 = {𝑧(𝛾)1 < . . . < 𝑧(𝛾)2𝑘 }, where the coordinates are again identified by the TS
algorithm. Then, the slot configuration 𝜈 : N→ Z≥0 ∪ {∞} is defined as

𝜈(𝑥) :=

{
𝑙 − 1 𝑥 = 𝑧(𝛾)𝑙 , 𝑧(𝛾)𝑙+𝑘 for some 𝑘 − soliton 𝛾 in 𝜂 with 𝑘 > ℓ,

∞ 𝑥 is a record,

for any 𝑥 ∈ N. For 𝑘 ∈ N, a site x is called a k-slot if 𝜈(𝑥) ≥ 𝑘 . Observe that a k-slot is also a j-slot for
any 1 ≤ 𝑗 ≤ 𝑘 , and a record is a k-slot for any 𝑘 ∈ N. Intuitively, a k-slot is a place where another soliton
can be added without modifying the structure of existing solitons in the configuration. To explain this
better we define a way to ‘append a soliton to a k-slot’.

First, we define the function 𝜉𝑘 : Z≥0 → Z≥0 as

𝜉𝑘 (𝑥) :=
𝑥∑

𝑦=1
1{𝜈 (𝑦) ≥𝑘 }, (5.1)

𝜉𝑘 (0) := 0

for any 𝑘 ∈ N and 𝑥 ∈ Z≥0, which counts the number of k-slots in [1, 𝑥]. We number k-slots from left
to right with the origin 𝑥 = 0 as the 0-th k-slot and call 𝑠𝑘 (𝑖) := min

{
𝑥 ∈ Z≥0; 𝜉𝑘 (𝑥) = 𝑖

}
the position

of i-th k-slot. We say that a k-soliton 𝛾 is appended to 𝑠𝑘 (𝑖) if 𝛾 ⊂ [𝑠𝑘 (𝑖), 𝑠𝑘 (𝑖 + 1) − 1]. Note that
several solitons can be appended to the same slot. By using this notion, for any 𝑘 ∈ N, we define the
slot decomposition 𝜁𝑘 : Z≥0 → Z≥0 as

𝜁𝑘 (𝑖) := |{𝛾 : 𝑘-soliton in 𝜂; 𝛾 is appended to the 𝑖 − th 𝑘 − slot}|. (5.2)

In Figure 13, we see an example of a slot configuration. For that particular ball configuration 𝜂, we
have that 𝑥 = 0 is a record, 𝑥 = 2 is a 1-slot, 𝑥 = 7 is a 2-slot, etc. In the same example, solitons are
added to slots as follows.

◦ A 4-soliton is added to the 0-th 4-slot.
◦ Two 2-solitons are included. One is added to the 0-th 2-slot, and the other is added to the 3-rd 2-slot.
◦ A 1-soliton is added to the 4-th 1-slot.

Hence, the slot decomposition of 𝜂 is given by

𝜁 (𝜂)𝑘 (𝑖) =

{
1 (𝑘, 𝑖) = (1, 4), (2, 0), (2, 3), (4, 0)
0 otherwise.

Remark 5.1. Consider the following configuration spaces

Ω𝑟 :=

{
𝜂 ∈ Ω;

∑
𝑥∈N

𝑟 (𝑥) = ∞

}
,

Ω̃𝑟 :=
{
𝜁 =

(
𝜁𝑘 (𝑖)

)
𝑘∈N,𝑖∈Z≥0

∈ Z
N×Z≥0
≥0 ; max

{
𝑘 ∈ N : 𝜁𝑘 (𝑖) > 0

}
< ∞ for any 𝑖

}
.
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It is known that the map 𝜂 ↦→ 𝜁 (𝜂) is a bijection between Ω𝑟 and Ω̃𝑟 via the explicit reconstruction
algorithm from 𝜁 (𝜂) to 𝜂 [CS, FNRW]. By combining this fact with Proposition 2.3, one can also
reconstruct 𝜂 from (𝜁𝑘 (𝑖))𝑘,𝑖 by using the same algorithm.

The dynamics of the BBS is linearized by the slot decomposition [FNRW]. Actually, the slot
decomposition makes the dynamics a mere spatial shift as described by the following theorem.

Theorem 5.1 Theorem 1.4 in [FNRW]. Suppose that 𝜂 ∈ Ω<∞. Then we have

𝑇𝜁𝑘 (𝑖) = 𝜁𝑘 (𝑖 − 𝑘)

for any 𝑘 ∈ N and 𝑖 ∈ Z≥0 where 𝜁𝑘 (𝑖) = 0 if 𝑖 < 0 by convention.

5.2. Proof of Proposition 2.3

In this subsection, we prove Proposition 2.3, which establishes the equivalence between the seat number
configuration and the slot configuration. First, we introduce an alternative formula for the slot decom-
position:

Lemma 5.1. Suppose that 𝜂 ∈ Ω<∞. Then for any 𝑘 ∈ N and 𝑖 ∈ Z≥0, we have

𝜁𝑘 (𝑖) =
1
2

𝑠𝑘 (𝑖+1)−1∑
𝑦=𝑠𝑘 (𝑖)+1

1{𝜈 (𝑦)=𝑘−1} − 1{𝜈 (𝑠𝑘 (𝑖+1))=𝑘 }

=
1
2

𝑠𝑘 (𝑖+1)∑
𝑦=𝑠𝑘 (𝑖)+1

(
1{𝜈 (𝑦)=𝑘−1} − 1{𝜈 (𝑦)=𝑘 }

)
.

Proof of Lemma 5.1. First, we consider the case 𝜈(𝑠𝑘 (𝑖 + 1)) > 𝑘 . In this case, each (𝑘 − 1)-slot in
(𝑠𝑘 (𝑖), 𝑠𝑘 (𝑖 + 1)) is a component of a k-soliton in (𝑠𝑘 (𝑖), 𝑠𝑘 (𝑖 + 1)), because if a (𝑘 − 1)-slot was a
component of some ℓ-soliton for ℓ > 𝑘 , then from the definition of 𝜈 and the TS algorithm, we should
find a k-slot 𝑥𝑘 ∈ (𝑠𝑘 (𝑖), 𝑠𝑘 (𝑖 + 1)) and thus we would have 𝜉𝑘 (𝑥𝑘 ) = 𝑖 + 1, which contradicts the
definition of 𝑠𝑘 (𝑖 + 1). Hence, the number of k-solitons appended to the i-th k-slot is half the number of
(𝑘 − 1)-slots in (𝑠𝑘 (𝑖), 𝑠𝑘 (𝑖 + 1)).

Next, we consider the case 𝜈(𝑠𝑘 (𝑖 + 1)) = 𝑘 . In this case, we will show that the rightmost
𝑘 − 1-slot in (𝑠𝑘 (𝑖), 𝑠𝑘 (𝑖 + 1)), denoted by 𝑥𝑘−1, and 𝑠𝑘 (𝑖 + 1) are components of some ℓ-soliton
for ℓ > 𝑘 , denoted by 𝛾ℓ . From the TS algorithm, there exists 𝑦𝑘−1 ∈ (𝑠𝑘 (𝑖), 𝑠𝑘 (𝑖 + 1)) such that
𝜈(𝑦𝑘−1) = 𝑘 − 1, 𝜂(𝑦𝑘−1) = 𝜂(𝑠𝑘 (𝑖 + 1)), and 𝑦𝑘−1 is a component of 𝛾ℓ . Then, again by the TS algo-
rithm, we see that 𝑥𝑘−1 = 𝑦𝑘−1, because if 𝑦𝑘−1 < 𝑥𝑘−1, then 𝑦𝑘−1 is not a component of 𝛾ℓ but a
component of k-soliton in (𝑠𝑘 (𝑖), 𝑠𝑘 (𝑖 + 1)), and this contradicts the definition of 𝑦𝑘−1. Therefore, the
number of k-solitons appended to i-th k-slots is the same as the half of the number of 𝑘 − 1-slots in
(𝑠𝑘 (𝑖), 𝑠𝑘 (𝑖 + 1)) minus one. �

Proof of Proposition 2.3. We will represent ball configurations 𝜂 ∈ Ω<∞ using the notation

𝜂 = 0⊗m0 1⊗n1 . . . 0m𝐿1⊗n𝐿+1 0⊗m𝐿+1 ,

by which we mean that the first m0 entries of 𝜂 are 0’s, the following n1 entries are 1’s and so on. Notice
that since the configuration has finitely many balls we have m𝐿+1 = ∞ and moreover

𝐿+1∑
𝑖=1

n𝑖 =
∑
𝑥∈N

𝜂(𝑥).
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From the TS algorithm, the first solitons that are identified by the algorithm are of the form

0⊗m𝑖1⊗m𝑖 or 1⊗n𝑖0⊗n𝑖 ,

for some m𝑖 , n𝑖 such that m𝑖 ≤ n𝑖+1, 𝑖 ≠ 0 or n𝑖 ≤ m𝑖 , respectively. In the rest of this subsection, we call
such solitons connected solitons.

Now, we claim that

Claim(A) it is sufficient to show Equation (2.15) for sites that consist of connected solitons.

To verify Claim(A), we will show that after removing a connected soliton, the seat number configuration
for the remaining sites is ‘invariant’ in the following sense. Observe that after the removal of a connected
soliton of the form 0⊗m𝑖1⊗m𝑖 or 1⊗n𝑖0⊗n𝑖 , following the TS algorithm, we obtain the configuration

𝜂′ = 0⊗m0 1⊗n1 . . . 0⊗m𝑖−1 1⊗(n𝑖+n𝑖+1−m𝑖)0⊗m𝑖+1 . . . 0⊗m𝐿1⊗n𝐿+1 0⊗m𝐿+1 ,

or

𝜂′′ = 0⊗m0 1⊗n1 . . . 1⊗n𝑖−1 0⊗(m𝑖−1+m𝑖−n𝑖 )1⊗n𝑖+1 0⊗m𝑖+1 . . . 0⊗m𝐿1⊗n𝐿+1 0⊗m𝐿+1 ,

respectively. In addition, after the removal of a soliton, the seat numbers given to other sites do not
change, that is, {

W𝑘 (𝑥
′) = W𝑘 (𝑥

′ + 2m𝑖) if 0⊗m𝑖1⊗m𝑖 is removed,
W𝑘 (𝑥

′′) = W𝑘 (𝑥
′′ + 2n𝑖) if 1⊗n𝑖0⊗n𝑖 is removed,

for any 𝑘 ∈ N, where 𝑥 ′, 𝑥 ′′ are defined as

𝑥 ′ :=
𝑖∑
𝑗=1

(
m 𝑗−1 + n 𝑗

)
− 1,

𝑥 ′′ :=
𝑖∑
𝑗=1

(
m 𝑗−1 + n 𝑗−1

)
− 1

with convention that n0 = 0, because from the rule of the TS algorithm,{
𝑊m𝑖 (𝑥

′) = m𝑖 if 0⊗m𝑖1⊗m𝑖 is removed,
𝑊𝑛𝑖 (𝑥

′′) = 0 if 1⊗n𝑖0⊗n𝑖 is removed.

Thus, we see that if a soliton 0⊗m𝑖1⊗m𝑖 is removed, then for any 𝑥 ∈ [1, 𝑥 ′] ∩ N,

𝑥 ∈ [1, 𝑥 ′] ∩ N is a (𝑘, 𝜎) seat in 𝜂 if and only if 𝑥 ∈ [1, 𝑥 ′] ∩ N is a (𝑘, 𝜎) seat in 𝜂′,

while for any 𝑦 ∈ [𝑥 ′ + 2m𝑖 + 1,∞) ∩ N,

𝑦 is a (𝑘, 𝜎) seat in 𝜂 if and only if (𝑦 − 2m𝑖) is a (𝑘, 𝜎) seat in 𝜂′,

for any 𝑘 ∈ N and 𝜎 ∈ {↑, ↓}. Similarly, if a soliton 1⊗n𝑖0⊗n𝑖 is removed, then for any 𝑥 ∈ [1, 𝑥 ′′] ∩ N,

𝑥 ∈ [1, 𝑥 ′′] ∩ N is a (𝑘, 𝜎) seat in 𝜂 if and only if 𝑥 ∈ [1, 𝑥 ′′] ∩ N is a (𝑘, 𝜎) seat in 𝜂′′,

while for any 𝑦 ∈ [𝑥 ′′ + 2n𝑖 + 1,∞) ∩ N,

𝑦 is a (𝑘, 𝜎) seat in 𝜂 if and only if (𝑦 − 2n𝑖) is a (𝑘, 𝜎) seat in 𝜂′′,
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for any 𝑘 ∈ N and 𝜎 ∈ {↑, ↓}. Hence, by considering multiple iterations of the TS algorithm and
its inverse, we see that if the seat number configuration is determined for each connected soliton,
the seat number configuration of the original ball configuration is completely determined. Also, by
considering multiple iterations of the TS algorithm and its inverse, the slot configuration of the original
ball configuration is also determined. Therefore, Claim(A) is proved.

Now, we show Equation (2.15) for the case when x belongs to a connected soliton. For this purpose,
we divide the cases as follows.

◦ If a soliton 0⊗m𝑖1⊗m𝑖 is detected by the TS algorithm, then we have n 𝑗 > m𝑖 for 𝑗 = 𝑖, 𝑖+1. Observing
that

Wℓ (𝑥
′) = 1,

for any 𝑙 ≤ n𝑖 , we obtain {
𝜂↓ℓ (𝑥

′ + 𝑙) = 1
𝜂↑ℓ (𝑥

′ + m𝑖 + 𝑙) = 1

for any 1 ≤ 𝑙 ≤ m𝑖 . On the other hand, from the definition of the slot configuration, we get{
𝜈(𝑥 ′ + 𝑙) = 𝑙 − 1
𝜈(𝑥 ′ + m𝑖 + 𝑙) = 𝑙 − 1

for any 1 ≤ 𝑙 ≤ m𝑖 . Therefore, in this case Equation (2.15) holds.
◦ If a soliton 1⊗n𝑖0⊗n𝑖 is detected by the TS algorithm, then we have m 𝑗 > n𝑖 for 𝑗 = 𝑖 − 1, 𝑖. Observing

that

Wℓ (𝑥
′′) = 0,

for any 𝑙 ≤ m𝑖−1, we obtain {
𝜂↑ℓ (𝑥

′′ + 𝑙) = 1
𝜂↓ℓ (𝑥

′′ + n𝑖 + 𝑙) = 1

for any 1 ≤ 𝑙 ≤ n𝑖 . On the other hand, from the definition of the slot configuration, we get{
𝜈(𝑥 ′′ + 𝑙) = 𝑙 − 1
𝜈(𝑥 ′′ + n𝑖 + 𝑙) = 𝑙 − 1

for any 1 ≤ 𝑙 ≤ n𝑖 . Therefore, in this case Equation (2.15) holds.

Hence, by combining the above with Claim(A), Equation (2.15) is shown for any 𝑘 ∈ N and 𝑥 ∈ Z≥0.
We now compute formulas for 𝜉 (·) and 𝜁 (·), which were defined in Equations (5.1) and (5.2), in

terms of the seat number configuration. By using Equation (2.15), we have

𝜉𝑘 (𝑥) = 𝑥 −
𝑥∑

𝑦=1
1{𝜈 (𝑦) ≤𝑘 }

= 𝑥 −
𝑘∑

ℓ=1

𝑥∑
𝑦=1

(
𝜂↑ℓ (𝑦) + 𝜂↓ℓ (𝑦)

)
(5.3)

= 𝜉𝑘 (𝑥).

https://doi.org/10.1017/fms.2024.39 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.39


Forum of Mathematics, Sigma 37

A direct consequence of Equation (5.3) is 𝑠𝑘 (·) = 𝑠𝑘 (·). In addition, by using 𝑠𝑘 (·) = 𝑠𝑘 (·), Lemmas 3.4
and 5.1, 𝜁𝑘 (·) can be represented as

𝜁𝑘 (𝑖) =
1
2

∑
𝜎∈{↑,↓}

𝑠𝑘 (𝑖+1)∑
𝑦=𝑠𝑘 (𝑖)+1

(
𝜂𝜎
𝑘 (𝑦) − 𝜂𝜎

𝑘+1(𝑦)
)

=
1
2

∑
𝜎∈{↑,↓}

𝑠𝑘 (𝑖+1)∑
𝑦=𝑠𝑘 (𝑖)+1

(
𝜂𝜎
𝑘 (𝑦) − 𝜂𝜎

𝑘+1(𝑦)
)

= 𝜁𝑘 (𝑖).

This concludes the proof. �

We conclude this subsection by describing the relationship between solitons and 𝜏𝑘 (·) and the
characterization of the slots via the carrier processes.

Proposition 5.1. Let 𝜂 ∈ Ω<∞ and 𝑘 ∈ N. Then, 𝑥 ∈ N is a rightmost component of a k-soliton if and
only if 𝑥 = 𝜏𝑘 ( 𝑗) for some 𝑗 ∈ N.

Proposition 5.2. Let 𝜂 ∈ Ω<∞. A site 𝑥 ∈ N is k-slot if and only if one of the following statements hold:

◦ 𝜂(𝑥) = 1 and min{ℓ ∈ N; ℓ −𝑊ℓ (𝑥 − 1) ≥ 1} ≥ 𝑘 + 1.
◦ 𝜂(𝑥) = 0 and min{ℓ ∈ N; 𝑊ℓ (𝑥 − 1) ≥ 1} ≥ 𝑘 + 1.

Proof of Proposition 5.1. From Proposition 2.3, we see that x is a rightmost component of a k-soliton
if and only if 𝜂↑𝑘 (𝑥) + 𝜂↓𝑘 (𝑥) = 1, 𝑥 ∈ (𝑠𝑘 (𝑖), 𝑠𝑘 (𝑖 + 1)) for some 𝑖 ∈ Z≥0 and

𝑥∑
𝑦=𝑠𝑘 (𝑖)+1

1{𝜈 (𝑦)=𝑘−1} =
∑

𝜎∈{↑,↓}

𝑥∑
𝑦=𝑠𝑘 (𝑖)+1

𝜂𝜎
𝑘 (𝑦) = 2𝑛

for some 𝑛 ∈ N. On the other hand, from Lemmas 3.1 and 3.4, we also see that 𝑥 = 𝜏𝑘 ( 𝑗) for some
𝑗 ∈ Z≥0 if and only if 𝜂↑𝑘 (𝑥) + 𝜂↓𝑘 (𝑥) = 1, 𝑥 ∈ (𝑠𝑘 (𝑖), 𝑠𝑘 (𝑖 + 1)) for some 𝑖 ∈ Z≥0 and

∑
𝜎∈{↑,↓}

𝑥∑
𝑦=𝑠𝑘 (𝑖)+1

𝜂𝜎
𝑘 (𝑦) = 2𝑛

for some 𝑛 ∈ N. By comparing the above two equivalences, this proposition is proved. �

Proof of Proposition 5.2. From Equation (2.2), we have

𝜂(𝑥) = 1 and min{ℓ ∈ N; ℓ −𝑊ℓ (𝑥 − 1) ≥ 1} = 𝑘 if and only if W𝑘 (𝑥 − 1) = 0, W𝑘 (𝑥) = 1,

and

𝜂(𝑥) = 0 and min{ℓ ∈ N; 𝑊ℓ (𝑥 − 1) ≥ 1} = 𝑘 if and only if W𝑘 (𝑥 − 1) = 1, W𝑘 (𝑥) = 0,

for any 𝑥 ∈ N. Therefore, from Proposition 2.3, the assertion of this proposition holds. �

5.3. Proofs of Theorem 2.2 and Theorem 2.3

We finally come to the proof of Theorem 2.2, providing an explicit relation between the KKR bijection
and the slot configuration. Then, by using Theorem 2.2, we show Theorem 2.3.
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Proof of Theorem 2.2. First, we note that since 𝜂 ∈ Ω∞, from Proposition 2.2 the rigging J = (𝐽𝑘 )
associated with 𝜂 is given by

𝐽𝑘 = (𝑝𝑘 (𝑡𝑘 ( 𝑗)); 𝑗 = 1, . . . , 𝑚𝑘 ),

where

𝑚𝑘 := lim
𝑥→∞

𝑚𝑘 (𝑥),

𝑡𝑘 ( 𝑗) := lim
𝑥→∞

𝑡𝑘 (𝑥, 𝑗) = max
{
𝑦 ∈ N; 𝑚𝑘 (𝑦) = 𝑗 , 𝜂↑𝑘 (𝑦) = 1

}
.

In addition, since 𝑡𝑘 ( 𝑗) is a (𝑘, ↑)-seat, from Lemma 3.1 we obtain

𝜉𝑘 (𝑡𝑘 ( 𝑗)) − 𝑝𝑘 (𝑡𝑘 ( 𝑗)) =
𝑡𝑘 ( 𝑗)∑
𝑦=1

𝑘∑
ℓ=1

(
𝜂↑ℓ (𝑦) − 𝜂↓ℓ (𝑦)

)
= 𝑘.

Thus, we have ��{ 𝑗 ∈ N; 𝐽𝑘, 𝑗 = 𝑖 − 𝑘
}�� = |{ 𝑗 ∈ N ; 𝑠𝑘 (𝑖) ≤ 𝑡𝑘 ( 𝑗) < 𝑠𝑘 (𝑖 + 1)}|.

On the other hand, from Proposition 2.1 and the definitions of 𝑡𝑘 (·) and 𝜏𝑘 (·), for any 𝑗 ∈ Z≥0 we have

𝜏𝑘 ( 𝑗) < 𝑡𝑘 ( 𝑗 + 1) ≤ 𝜏𝑘 ( 𝑗 + 1).

In addition, if 𝜏𝑘 ( 𝑗), 𝜏𝑘 ( 𝑗 + 1) satisfies

𝜏𝑘 ( 𝑗) < 𝑠𝑘 (𝑖 + 1) < 𝜏𝑘 ( 𝑗 + 1),

for some i, then from Proposition 2.2 and Lemma 3.4 we obtain 𝑚(𝑠𝑘 (𝑖 + 1)) = 𝑚↑(𝑠𝑘 (𝑖 + 1)) = 𝑗 , and
thus we have

𝑠𝑘 (𝑖 + 1) < 𝑡𝑘 ( 𝑗 + 1).

From the above, we have

𝜏𝑘 ( 𝑗) < 𝑠𝑘 (𝑖 + 1) < 𝜏𝑘 ( 𝑗 + 1) if and only if 𝑡𝑘 ( 𝑗) < 𝑠𝑘 (𝑖 + 1) < 𝑡𝑘 ( 𝑗 + 1).

Since 𝑠𝑘 (𝑖) ≠ 𝑡𝑘 ( 𝑗) and 𝑠𝑘 (𝑖) ≠ 𝜏𝑘 ( 𝑗) for any 𝑖, 𝑗 , combining with Proposition 2.3, we have��{ 𝑗 ∈ N; 𝐽𝑘, 𝑗 = 𝑖 − 𝑘
}�� = |{ 𝑗 ∈ N; 𝑠𝑘 (𝑖) ≤ 𝑡𝑘 ( 𝑗) < 𝑠𝑘 (𝑖 + 1)}|
= |{ 𝑗 ∈ N; 𝑠𝑘 (𝑖) ≤ 𝜏𝑘 ( 𝑗) < 𝑠𝑘 (𝑖 + 1)}|
= 𝜁𝑘 (𝑖)

= 𝜁𝑘 (𝑖). �

Proof of Theorem 2.3. From Theorem 2.2 and Theorem 4.1, we have

𝑇ℓ 𝜁𝑘 (𝑖) =
��{ 𝑗 ∈ N; 𝑇ℓ𝐽𝑘, 𝑗 = 𝑖 − 𝑘

}��
=
��{ 𝑗 ∈ N; 𝐽𝑘, 𝑗 + (𝑘 ∧ ℓ) = 𝑖 − 𝑘

}��
= 𝜁𝑘 (𝑖 − (𝑘 ∧ ℓ)). �

https://doi.org/10.1017/fms.2024.39 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.39


Forum of Mathematics, Sigma 39

Figure 14. Identifying solitons in 𝜂 by the TS Algorithm.

A. Takahashi–Satsuma algorithm

Given a configuration 𝜂, we can decompose it into k-solitons, for 𝑘 ≥ 1, which are certain substrings of
𝜂 consisting of k ‘1’s and k ‘0’s. Such a decomposition is produced by the Takahashi–Satsuma algorithm
[TS] described below. The procedure consists in iteratively scanning 𝜂, identifying and crossing out
k-solitons at each iteration. We call a run of 𝜂 a maximal substring of consecutive equal letters.

Start with a configuration 𝜂
while there are still uncrossed 1’s in 𝜂 do

Considering only uncrossed elements of 𝜂, select the leftmost run whose length is at least
as long as the length (denote it by 𝑘) of the run preceding it

Identify a soliton of size 𝑘 , or simply 𝑘-soliton, consisting of the first 𝑘 letters of this run
and the last 𝑘 letters of the run preceding it

Cross out these 2𝑘 letters from 𝜂
end

An example of applying the above algorithm to 𝜂 = 11001110110001100000 . . . is shown in
Figure 14. Then we see that in 𝜂, there are one 4-soliton, two 2-solitons and one 1-soliton.
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