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Abstract

By a theorem of Fell and Tomiyama-Takesaki, an TV-homogeneous C*-algebra with spectrum X has
the form F(£) for some bundle E over X with fibre MN(Q, and its isomorphism class is determined
by that of E and its pull-backs f*E along homeomorphisms / of X. We describe the homogeneous
C*-algebras with spectrum T2 or T3 by classifying the Mjv-bundles over T* using elementary
homotopy theory. We then use our results to determine the isomorphism classes of a variety of
transformation group C-algebras, twisted group C*-algebras and more general crossed products.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 46 L 05,46 L 40; secondary 55 R
15.

Let A be an iV-homogeneous C*-algebra with spectrum X. A well-known theorem
of Fell [6] and Tomiyama-Takesaki [18] asserts that there is a locally trivial
bundle E over X with fibre MN{C) and structure group PUN(C) — Aut MN(C)
such that A is isomorphic to the algebra T0(E) of sections of E which vanish at
infinity. Further, they prove that two such algebras At = T^Ej) with spectra Xt

are isomorphic if and only if there is a homeomorphism/of Xx onto X2 such that
£, =f*E2 as bundles over Xx. Our goal here is to use elementary homotopy
theory to describe the MN-bundles over tori and hence classify the homogeneous
C*-algebras whose spectra are homeomorphic to tori.

A similar analysis for homogeneous algebras over spheres has been made by
Krauss and Lawson [9], and was successful in low dimensions. However, their
examples of non-trivial homogeneous C*-algebras, and others in the literature
(see, for example, [12, Section 3]), are constructed only in a homotopy-theoretic
fashion. We were attracted to the analogous problem over tori by the abundance
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10 Shaun Disney and Iain Raeburn [2 ]

of naturally occurring examples: homogeneous C*-algebras with spectra homeo-
morphic to T* can arise as twisted group algebras of abelian groups, as transfor-
mation group C*-algebras and as more general crossed products or twisted
crossed products. Well-known examples are the twisted group algebras of Z* by a
type I multiplier and the rational rotation algebras, which are the transformation
group C*-algebras of the actions of Z on T by rotation through (2TT times) a
rational angle. It will follow from our results that many of these constructions
give non-trivial homogeneous C*-algebras—that is, not isomorphic to C(Tk, MN)
—and we shall often be able to determine their isomorphism class explicitly.
Since algebras constructed like these carry natural group actions, we shall exhibit
concretely a wide variety of C*-dynamical systems involving non-trivial homoge-
neous C*-algebras. We hope these examples may prove useful in that our results
facilitate detailed calculations with them.

Our main results concern homogeneous C*-algebras over T2 and T3. Bundles
with fibre MN = MN(C) over T2 are described by a residue class [p] in Z/NZ —
TT\(PUN), and two such bundles with classes [/?,-] give isomorphic C*-algebras if
and only if [/>,]= ±[p2]- An M^-bundle over T3 is determined by three residue
classes in Z/NZ, but many bundles can give rise to isomorphic C*-algebras. It
turns out that every homogeneous C*-algebra with spectrum T3 is isomorphic to
one of the form B ® C(T), where B is homogeneous with spectrum T2, and that it
is possible to have Bx <8> C(T) s f i 2

8 C(T) without having Bl = B2. We have
been able to realise all these homogeneous C*-algebras over T2 and T3 in various
different ways as transformation group C*-algebras and twisted group C*-alge-
bras, at least up to tensoring on a matrix algebra Mm(C) (see Propositions 2.8, 2.9
and 3.10). The situation over T4 is not so clear: we can show that there are
infinitely many isomorphism classes of iV-homogeneous C*-algebras over T4 (for
each N), but we do not know if these can be constructed in some natural
C*-algebraic fashion.

Although we were not aware of this when we worked out our classification over
T2, there have been two other determinations of the isomorphism classes of the
rational rotation algebras, by Heegh-Krohn and Skjelbred [7] and by Rieffel [16].
The calculations of [7] are in the same spirit as ours; however we feel that, as we
have started from the problem of classifying all algebras over T2, and only
specialised to the rotation algebras later, our approach seems more rational.
(Sorry.) As a bonus, it follows from our work that the rational rotation algebras
are esssentially the only homogeneous C*-algebras with spectrum T2 (see Prop-
osition 2.8). We thank Dana Williams for drawing our attention to [7] and [16].

We have been particularly interested in describing the A/^-bundles which arise
when calculating specific C*-algebras using an appropriate version of the Mackey
machine, and our classification is geared to this purpose. Another, more sophisti-
cated classification of M^bundles up to bundle isomorphism, which works over
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an arbitrary 4-complex, has been made by Woodward [19]. When the underlying
space is T2 or T3, however, this part of our problem is quite easy and we have
used elementary homotopy-theoretic arguments in preference to calculating
Woodward's cohomological invariants for our concretely constructed bundles. On
the other hand, his results do give useful information on T4, where the effect of
homeomorphisms on the 7/4(T4, Z) = Z part of his invariant is clear.

Our work is arranged as follows. We begin with an introductory section in
which we set up notation and state convenient versions of the results of [5], [17]
and [3] describing the representation theory of crossed products and twisted
group algebras. Section 2 contains our results on homogeneous C*-algebras with
spectrum T2. We classify principal Pf/^bundles over T2, investigate the effect of
homeomorphisms and then show how to determine the isomorphism class of
algebras constructed in different ways (Proposition 2.7). These enable us to
describe a wide variety of transformation group C*-algebras, twisted group
C*-algebras, crossed products, and so on. In Section 3 we follow a similar
programme over T3. Since the main result here (Theorem 3.9) indicates—rather
surprisingly, we feel—that these algebras are likely to be less interesting than
those over T2, we consider only two of the more obvious constructions. We finish
with a short section of concluding remarks, including a discussion of our
inconclusive results on bundles over T4.

1. Preliminaries

Let A be a C*-algebra, G a locally compact group and a: G -» Aut A a strongly
continuous automorphism group. In later sections we shall want to calculate the
spectrum of the crossed product C*(A, G) and represent C*(A, G) concretely on
it: to do this, we use Takesaki's version of Mackey's method for covariant
representations. As the groups we consider are all abelian, some simplification of
his results is possible, and we state two convenient versions here.

We first set up some notation and conventions. Our C*-algebras and locally
compact groups are all separable. If (w,U) is a covariant representation of
(A, G), we denote the corresponding representation of C*(A, G) by rr X U. The
action of G on A induces an action of G on the spectrum A defined by
t • IT — ir o a,"1 (we shall frequently confuse an irreducible representation of A
with its class in A), and we denote the stabiliser of w in this action by Gv. We say
that a is smooth if the action of G on A is smooth—that is, if the orbit space A/G
is countably separated. All the actions we consider here are smooth, and in fact
the orbit space A/G is always Hausdorff, which is a much stronger condition (see
[17, Theorem 2.5]). If a is a multiplier on G as in [10] we denote the set of
(equivalence classes of) irreducible a-representations of G by (G, a) .
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All except the last statement in the next result is contained in Theorem 7.2 of
[17]—the simplifications are possible because Gt.w is Gn rather than a conjugate
of it—and the rest is a matter of direct calculation. The corollary is the special
case where A — Co(£2) and the crossed product is the transformation group
C*-algebra C*(G, Q).

PROPOSITION 1.1. Let G be a separable locally compact abelian group and let
a: G -> Aut A be a smooth action of G on a separable type I C*-algebra A. For each
•n G A there is a multiplier ow on Gm and a ^-representation Lv on Hn such that

7r(ar(fl)) = Lv(t)w(a)Ln(t)* for a G A, t G Gv;

aw and Ln are unique up to equivalence. Then every irreducible representation of
C*(A, G) is equivalent to one of the form

for some m G A and M G (Gv, an). Two such representations

Ind[(w, <8> 1) X ( L , <8> A/,)]

are equivalent if and only if TT2 G G • w,, so we can take L2 = Lu and M2 is
equivalent to Mx. In fact if we realise Ind(7r ® l ) X ( L ® M ) / «

if Borelmeasurable, £(st) = (L{t)* ® M(t)*)Z(sY

00

according to

[Ind(» ® 0 X (K fc

(zEL\G,A)),

and define a unitary Wu on H by (Wu£)(t) = £(tu), then

Wu[lnd(ir ® 1) X (Lw ® M)]W* = Ind(« • v ® 1) X (Ln ® M).

COROLLARY 1 [5]. Le/ (G, fl) 6e a separable smooth locally compact transforma-
tion group with G abelian, and let ex G C0(fl) be evaluation at x G S2. 77ie«

C*(G, Q)"= {indg/e, X y)\x efl

Ind £j X y u equivalent to Ind eyX x if and only ifyEG-x and y = X! a n

intertwining operator is as described in the proposition with L = y and M, HM

omitted.
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Let a be a multiplier on a locally compact group, and let L\G, a) be the
Banach ""-algebra consisting of L\G) with multiplication and involution given by

f * g(t) = f f{s)g(s-it)a(s, s'lt) dt,

As usual, integrating gives a one-to-one correspondence between a-representa-
tions of G and non-degenerate ""-representations of L\G, a). The C*-enveloping
algebra C*(G, a) of L\G, a) is called the twisted group C*-algebra of G by a; by
construction C*(G, a) = (G, a), and this gives a topology on the latter set. To
calculate twisted group C*-algebras we need the following basic results on
multiplier representations of abelian groups due to Baggett and Kleppner [3]. We
observe that although our multipliers are not usually normalised in the sense of
[3], each is equivalent to a normalised one, so their results apply. A non-degener-
ate multiplier a is one whose normalised version is totally skew—in other words,
Sa = {e} (see below).

PROPOSITION 1.3. Let G be a locally compact abelian group with multiplier o, and
let Sa be the closed subgroup of those s E G such that

d(s,t) = o(s,t)o(t,s) = \ for all t EG.

Then a is equivalent to a multiplier lifted from a non-degenerate multiplier a, on
G/Sa, and a is type I if and only ifol is type I. If a is a type I multiplier, then up to
equivalence G/Sa has a unique irreducible ax-representation A/,, and if M is the
corresponding a-representation of G, then every irreducible a-representation of G is
equivalent to one of the form y • M for some y 6 G. Two such representations
yM, xM are equivalent if and only if y(s) = x(s) for all s £ Sa, and the map
y -» yM induces a homeomorphism of Sa = G/S^ onto (G, a). If\ G: So |< oo, then
every T G S , 1 has the form a(s, •) for some s G G, and then M(s) intertwines yM
and jyM.

PROOF. All except the last sentence is contained in [3] (see Theorem 3.1,
Theorem 3.3 and its corollary). By definition the homomorphism s -» d(s, •) has
kernel Sa, and if \G: Sa\< oo then it must be an isomorphism of G/Sa onto
Sj- = (G/Sa) since they have the same size. It is easy to check that if g, h G G/Sa

then

= 5x{g, h)Mx{h)*Mx{g),
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and it follows that

M(s)y(t)M(t)M(s)* = 6(s, t)y{t)M(t),

as required.

We shall also need some well-known facts about the topology of the complex
unitary group UN and protective unitary group PUN for N > 2. Both are path-
connected compact topological groups. The fundamental group TT\(UN) is isomor-
phic to Z under the map which sends a loop <#> to the winding number deg(det </>)
of the determinant of <J>, and n2(UN) = 0; both these can be deduced inductively
from the corresponding facts about Ux = T using the long exact sequence of
homotopy groups for the bundle UN -» S2N~* with fibre UN-X. The same exact
sequence for the bundle Ad: UN -> PUN shows that TTX{PUN) = Z//VZ and that
TT2(PUN) = 0. The simply connected covering of PUN is given by Ad: SUN -> PUN.

Because of the theorem of Fell and Tomiyama-Takesaki discussed in the
introduction, we are interested in locally trivial bundles with fibre MN and
structure group PUN. We shall frequently refer to these merely as M^r-bundles,
and we shall move frequently between Af^bundles and the corresponding (locally
trivial) principal P {/^-bundles.

Finally, if L, M are integers we shall write (L, M) for their highest common
factor and [L, M] for their lowest common multiple.

2. Homogeneous C*-algebras with spectrum T2

To describe the TV-homogeneous C*-algebras with spectrum T2 we have to
classify the locally trivial A/jy-bundles over T2, or, equivalently, the principal
T'l/jv-bundles. We first do this up to the usual notion of bundle isomorphism and
then investigate the effect of homeomorphisms of T2. The following lemma will
form the basis for our work on every T* = T*"1 X T: we shall frequently work
with a general group G to help isolate the crucial properties of PUN.

LEMMA 2.1. Let G be a topological group and X a paracompact space. For each
principal G-bundle E over X and automorphism r of E, we denote by E XTT the
bundle over XXT obtained from E X I by pasting the subsets E X {1} and
E X {0} using T. Then every principal G-bundle over X XT is isomorphic to some
E XTT, and two such bundles £, XT T are isomorphic if and only if there is an
isomorphism a: £ , -» E2 such that a r2a is homotopic to T,.

PROOF. Suppose first of all that F is a principal G-bundle over XXT, and let
p: X X / -> X X T be the identification map. If E = F\xx{0), then there is an
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isomorphism </>: E X / -»p*F [8, page 50]. We denote the restriction of <J> to
E = E X {t} by <j>,, and define T £ Aut(£) by T = ^"['^o- Then 4> provides an
isomorphism of E XTT onto F, which proves our first assertion. If £,, T,, a are as
above and </>,: / -» Aut(£) is a homotopy joining T, and a"V2a, then

defines an isomorphism of Ex X T T onto E2 XTT. Conversely, such an isomor-
phism is given by a path of isomorphisms $,: Ex -» £ 2

 s u c n that if, » T, = T2 ° i^0;
then 4>, = T,^O'^r is a homotopy joining T, to ^ j " ' ^ ^ / , . This proves the lemma.

COROLLARY 2.2. Lef G be a path-connected topological group. Every principal
G-bundle over T2 is isomorphic to the bundle ET obtained from T X / X G by
pasting T X {1} X G and T X {0} X G via a continuous map T: T -» G satisfying
T(1) = e. 77ie isomorphism class of the bundle depends only on the class of r in

PROOF. An application of Lemma 2.1 to the one point space X shows that when
G is path-connected all principal G-bundles over T are trivial. Hence it also
follows from Lemma 2.1 that every principal G-bundle over T 2 is isomorphic to
one of the form (T X G) XTT for some T: T -» G. Since G is path-connected each
such T is homotopic to one with T(1) = e, and two such maps are homotopic iff
they define the same class in 7r,(G). The group w,(G) is abelian, so the final
assertion also follows from Lemma 2.1.

To describe the effect to the homeomorphisms of T2, we need to know what
they look like, at least up to homotopy. The first lemma will also be useful later.

LEMMA 2.3. Let G be a topological group with w2(G) = 0, and let v.I -* G be a
continuous map satisfying T(0) = T(1) = e. Let *& denote the family of continuous
maps <j>: I2 -* G which map the corners of I2 to e and satisfy

4>(s,Q)=<l>(s,\) for alls El, and

<t>(\,t) = T ( 0 ~ V ( 0 , 0 T ( 0 for all t E / .

Then <J>, ^ £ 5 are homotopic in % if and only if

PROOF. The necessity of these conditions is obvious. Suppose that hu, ku\
I -» G are homotopies relative to (0,1} which join <j> [^Q and \p L=o, ^ | r = 0 and
ip | / = 0 respectively. Define L: 9 / 3 -» G by

L(s, t,0) = <t>(s, t), L(s, t, 1) = 4>(s, t),

https://doi.org/10.1017/S1446788700022576 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022576


16 Shaun Disney and Iain Raeburn (8]

L(s,O,u) = L(s,\,u) = hu(s),

L(0, t, u) = ka(t), L(\, t, u) = r(tylku(t)r(t).

Since TT2(G) is trivial, there is no obstruction to extending L to all of I3, and such
an extension is a homotopy joining <j> to \j/ in I3r.

LEMMA 2.4. Define </>: Z2 -»7r,(T2) by sending the generators (1,0), (0,1) to the
loops T - » T X {l},T-» {1} X T respectively. Then <j> is an isomorphism, and we
can define a map \p: [T2,T2] -» M2(Z) by ${f) = </>"' ° /* ° <t>- Iff, g ore homeo-
morphisms o/T2 such that >K/) = iMg), then f is homotopic to g.

PROOF. The identity map on T generates 7r,(T) = Z, and tr^X X Y) is always
isomorphic to n^X) X TT^Y), SO <fr is an isomorphism. The map ^ converts
composition into matrix multiplication, so it is enough to show that if <K/) = 12,
then/is homotopic to the identity. Without loss of generality, suppose/(1,1) =
(1,1). Then the statements

say that the loops z -+f(z, 1) and w -»/(l, w) are homotopic to z -»(z, 1) and
w -»(1, w) respectively. Since 7r2(T

2) = (7r2(T))2 = 0, the result follows by taking
T = (1,1) in the lemma.

COROLLARY 2.5. Every homeomorphism of T2 = R2/Z2 is homotopic to one of
the form

fA(x + Z2) = Ax + Z2 (x6R 2 ) ,

for some matrix A £ M2(Z) of determinant ± 1.

PROOF. If / is a homeomorphism then/*: w,(T2) -»7r,(T2) is an isomorphism,
and ^ ( / ) must have determinant ± 1. However, it is straightforward to check that
4i(fA) = A, so it follows from the lemma that/is homotopic

The next lemma shows that, if we realise bundles over T2 appropriately, then it
is easy to describe their pull-backs along maps of the iormfA. Notice we do not
need to assume det A = ± 1; this will be convenient later.

LEMMA 2.6. Let V,W E UN satisfy Ad VW = Ad WV, and let E(V, W) be the
MN-bundle over T2 obtained from I2 X MN by pasting via Ad V along {0,1} X /
and via Ad W along IX {0,1}. Let A E. GL2(R) have integral entries, and let fA be
the induced map on T2 = R2/Z2. Then

, W) =

https://doi.org/10.1017/S1446788700022576 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022576


[9 ] Homogeneous C*-algebras whose spectra are tori 17

PROOF. E(V, W) can be regarded as the quotient of R2 X MN by the equiva-
lence

(*) (s,t,U)=(s + m,t + n,(AdVmW")U)

for j , / e R , m , « £ Z a n d ( / e MN. Let q: R2 -> T2 be the quotient map. Then a
bundle F on T2 is isomorphic to E(V, W) if there is an isomorphism </>:
R2 X MN -* q*F compatible with the quotient maps from R2 X MN to E(V, W)
and q*F to F. This condition is

Let pst be the restriction to {(s, /)} X MN — MN of the quotient map from
R2 X MN to E(V, W). As fA ° q = q ° A we can define an isomorphism <t> from
R2 X Mn to q*fiE(V, W) by <*>(*, t, U) = (s, t, pA(s t)U). Now (*) implies that
Pt+mJ+n o Ad V"W=pSJ. Hence

therefore

Qs + m t + n °4>st = AdVa"m+ai2nW2im + a22n,

which proves that/f£(F, ff) s E(Va"W", VW*).

PROPOSITION 2.7. (1) Ler U: T -» C/N fee a continuous map, and let

A{U) - [a G C ( / X T , MN)\a{\,z) = AdU{z)(a{0, z)) forz GTJ .

T7jen every N-homogeneous C*-algebra with spectrum T2 is isomorphic to some
A(U), and two such algebras A(Uj) are isomorphic if and only if deg(dett/,) =
± deg(det U2) mod Â , where deg stands for the winding number about 0.

(2) Let U: I -» SUN be a continuous map such that Ad U(0) = Ad (/(I), and
define A(U) as in (1). Every N-homogeneous C*-algebra with spectrum T2 has this
form, and two such algebras A(Uj) are isomorphic if and only if the multiples of the
identity {4(O)*(4(l) are equal or adjoint.

(3) Let V, WE UN satisfy Ad VW = Ad WV, and let

B(V, W) = (b G C(/ 2 , Mn)\b(l, t) = AdV(b(0, 0 ) ,

b{s, 1) = AdW{b(s,0)) fors, t G / } .

£uery N-homogeneous C*-algebra with spectrum T2 « isomorphic to one of this
form, and two such algebras B(Vif Wt) are isomorphic if and only if the commutators
{̂ •. wi) = VfWfViWiare ecSml or adjoint.

(4) Let U: T -» I/w fee continuous, and let V,W E MN satisfy Ad VW = Ad
A(U) a 5(F, W) if and only if

V*W*VW = exp{27r/(±deg(det t / ) ) / iV} V
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P R O O F . W e begin by showing that (1) and (2) are equivalent statements.
Let U: T -> UN, and define £/,: / -> SUN by

£/,(*) = [det f / (exp(2w/7))]" l / A r f / (exp(2ir / / ) ) ,

where z l / ; v is the principal branch of the Nth root function: note that Ad f/,(l) =
Ad £/,(0) since i / i s a loop. Conversely, if £/, is as in (2), and J7,(l) = e2nik/NU{(0),
we define a loop U in [/# by

U(t) = &ep(-2irikt/N)Ux(t) for / E [0,1].

Since we have only changed our maps by scalars, we have Ad U = Ad Uu and
A(U) = A(U}). The invariant deg(dett/) is the integer k such that C/,(l) =
e2"'k/NUl(0), so the conditions in (1) and (2) agree under this correspondence.

We now show that (2) and (3) are equivalent. Let V,WG UN satisfy Ad VW =
Ad WV: note that without changing B(V,W) we may suppose V, W £ SUN. We
choose paths F5, W, in SUN joining K= K,, W=WX to V and let {/(?) =
V*W*VWt. Then a calculation shows that

<P(a)(s, t) = Ad V*W*{a{s, t))

is an isomorphism of A(U) onto 5(F, W). Conversely, given U: I -» Sf/̂  with
[/(I) = e

2"ik/NU(0), we let w = e2"'/^ and

/ 1 0 ••• 0
l» ,_ t

0 0

0 w ••• 0

We picked these so that V*W*VW= elnik/N\N, and hence if W, joins 1 to W
then V*W*VWtU(0) has the same endpoints as U. Since 51/^ is the simply
connected covering space of PUN, it follows that the two loops Ad U and
Ad V*W*VWtU{0) in PUN are homotopic. Hence patching with them gives
isomorphic M^bundles over T X T , and their section algebras are isomorphic
y4's. Thus we have a 1-1 correspondence between the (spectrum-fixing) isomor-
phism classes of the algebras in (2) and (3): it should be clear that the condition
on U(0)*U(l) is carried into a similar condition on V*W*VW.

Corollary 2.2 shows that every principal PU^buadle E over T2 is isomorphic
to one of the form (T X PUN) XTT for some loop r. T -» PUN. Lifting this to a
path in the simply-connected cover SUN gives a path [/:/-» SUN with T = Ad U,
and the section algebra of the M^bundle corresponding to E is isomorphic to
A(U) as in (2). It follows from the theorem of Fell and Tomiyama-Takesaki that
every iV-homogeneous C*-algebra is isomorphic to one of the form (2), hence also
to ones of the form (1) and (3) by the previous two paragraphs.

To prove that the isomorphism classes are as claimed we use the realisation (3).
So let E{V, W) be as in Lemma 2.6; note that our proof of the equivalence of (2)
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and (3) shows also that the isomorphism class of E(V,W) is determined by the
commutator {V, W). The homeomorphism (s, t) -> (s,1 — t) converts E(V, W)
into E(V, W*), and a simple calculation using the condition AdVW= AdWV
shows that {V, W*} = {W, V), so the alternative in (3) is necessary. Now the
isomorphism class of f*(E( V, W)) depends only on the homotopy class of/, so by
Corollary 2.5 it will be enough to prove that if det A = ± 1 and ftE(V, W) =
E(VX, Wx) then {Vx, Wx) is {V, W}-1. However, Lemma 2.6 shows that

and simple calculations show that if VW — zWVthen
(yau]ya2\\(ya\2iya22\ = 2,'a^a^ya^WanW2^Wa22

— zdetA/yal2yfra22\tyauyya2\\

Since the isomorphism class of E(VX, Wx) is determined by the commutator, it
follows that

{VX,WX} = {VanW"2\Va"Wa22} =z
detA =z±l = {V, W}~\

as required. The completes the proof of Proposition 2.7.

REMARK. In Corollary 2.2 the principal Pt/ybundles E XTT are classified by
the class of T in wx(PUN); the invariants appearing in (1) and (2) merely describe
the class of T = Ad U in two different realisations of wx(PUN). In (1), we regard
irx(PUN) = Z/NZ as the quotient of irx(UN) - Z by the kernel of Ad*: TTX(UN) ->
•nx(PUN). In (2), we view wx(PUN) as the fibre over the identity in the simply
connected cover Ad: SUN -» PUN, and then the class of T is determined by the
difference between the endpoints of a lift of r to SUN.

We now use Proposition 2.7 to study various crossed product C*-algebras.

Rational rotation algebras.
Let 6 G [ 0,1) and define an action of Z on T = //{0,1} by n • t + nO (mod 1).

According as 0 is rational or not, the transformation group C*-algebra Ae =
C*(Z, T) is called a rational or irrational rotation C*-algebra. If 0 is rational, the
action is smooth and we can compute Ae using Corollary 1.2.

Let 6 = p/N with N G N, p G {0,1,... ,N - 1} and {p, N) = 1. Then the
stabilizer of each z G T is NZ, a complete set of representatives for the orbits is
[0, l/N), and so the spectrum of Ae consists of

(1) (Ind£z(e, X Y S ) : ? G [ 0 , \/N),S E[O,l/iV)},

where for s G [0, \/N), ys G (NZ) is given by ys(Nn) = exp(27risNn). Note in
particular that yx/N = y0. Let Hs denote the Hilbert space

H, = {{: Z - C: l(m + Nn) = ys(Nn)^(m)}

https://doi.org/10.1017/S1446788700022576 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022576


2 0 Shaun Disney and Iain Raeburn [12]

as in Proposition 1.1, let H be the space of functions from {0 ,1 , . . . ,N — 1} to C,
define unitaries Vs: Hs -» H by (Vs£Xm) = £(w)> and write

p(t,S)=Vs{lndz
NZ(e[Xys))V?.

If we choose q such that 0 < q< N and qp = 1 (mod N), then

(2) p(\/N, s) = p(q • 0, s) = V,WjV?p(0, s)VsWqV?

where (Wq£)(m) = £(m + q) as in Proposition 1.1. Direct calculations show that

= exp{-2iris(m — q — Res(w — #,mod Ar))}rj(Res(w

so that if we identify H and C* in the obvious way, VSW*V* has matrix

We define a homomorphism <j> of Ae into /l(t/,) by

*(*) ( / ,* ) = p(/ /», * /#) (*) , t/,(s) = £/(*/#) forz G CC(Z,C(T));

that $(z) patches correctly on the edges of I2 follows from (2) and the fact that
p(t, \/N) — p(t,O), and the continuity of $(z), from a simple direct calculation.
Composing the irreducible representations of A(U{) with $ gives the representa-
tions (1) of Ae, so $ is injective and its range is a rich subalgebra of A{UX). Thus
$ is an isomorphism onto A{UX) by [4, 11.1.4].

By Proposition 2.7(1) the isomorphism class of Ae is therefore determined by
deg(det £/,). Now det U(s) = ±(exp(2wwiV))'? = ±exp(2irisNq), which is a map
from T = [0, l/N]/{0, \/N) has winding number q about 0. However, since
(p, N) — 1 its inverse qmod N is determined uniquely, and since (-p) has inverse
{-q), the isomorphism class of Ae depends only on ±p (mod N).

This argument also shows that every iV-homogeneous algebra A(U) with
(deg(det U), N) = 1 is isomorphic to some Ae. If m = (deg(det U), N) is not 1,
let 6 — deg(det U)/N. According to the theory above, Ae is iV/m-homogeneous,
and is isomorphic to A{UX) where deg(det (/,) is deg(det U)/m. The ^-homoge-
neous C*-algebraj4({/,) ® Mm is isomorphic ioA(Ux ® lm), and because

deg(det(f/, ® lm)) = mdeg(det Ux) = deg(det(/)

we have

We have therefore proved:

PROPOSITION 2.8. Two rational rotation algebras Ae, A^ are isomorphic if and
only if 0 = ±<f> (mod 1). Every N-homogeneous C*-algebra with spectrum T 2 is
isomorphic to one of the form A9® Mm(C).
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The first part of this result has also been proved by Heegh-Krohn and
Skjelbred [7] and by Rieffel [16, Section 3].

Twisted group algebras.
Let 0 G R and define a multiplier ue on Z2 by

ue({™uni),(m2,n2)) = exp2iri(-mln20).

According to [1, Theorem 3.2], every multiplier on Z2 is equivalent to one of this
form. It is well-known that the twisted group C*-algebra C*(Z2, u>9) is isomor-
phic to the rotation algebra Ae. To see this, let <3r: C*(Z) -» C(T) be the Fourier
transform given by

(9a)(e2w") = f a(/i)e-2"'"' fo raG/ ' (Z) .
n — - a a

Then ^converts the action of rotation through Imd on C(T) into the action /?:
Z -> Aut C*(Z) given by

Pm(a)(n) - exp(-2irimnd)a(n) for a G /'(Z), m, n G Z,

and T49 is isomorphic to C*(C*(Z),Z). Straightforward calculations show that the
multiplications and involutions on CC(Z X Z) regarded as subalgebras of
C*(C*(Z), Z) and C*(Z2, <o9) coincide, so the two enveloping algebras are isomor-
phic. We could therefore deduce at once from Proposition 2.8 how the isomor-
phism class of C*(Z2, «e) depends on $ G Q. However, it is easy enough to do
this directly using Proposition 1.3, and the method we use will work in other
situations.

Let 0 = p/N with (p, N) = I, and write w = we. Then Se = NZ X iVZ; thus
if M is a fixed irreducible w-representation of Z X Z and

y, ,(m, n) = exp2iri(ms + nt)

then the spectrum (G,u) can be identified with

Note that if qp = 1 (mod N), then

w((0, q), (m, «)) = exp2iriqme = yl/Nfl(m, n),

"((-<7>0)>("i,«)) = exp2iriqn6 = yol/N(m, n).

If follows from Proposition 1.3 that the map $ of CC(Z2) into C(/2 , MN) defined
by
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extends to an isomorphism of C*(Z2, cofl) onto B(M(0, q\ M(-q,0)). A simple
calculation shows that

M(0,q)*M(-q,0)*M(0,q)M(-q,0) = <b{(O,q),(-q,O))M(-q,q)*M(-q,q)

= exp(2wiq2d)lN

= exp(27r iq/N)\N,

and we can apply Proposition 2.7(3) to determine the isomorphism class of
C*(Z2, o>e).

PROPOSITION 2.9. Let 0, <j> be two rational numbers. Then
(1) C*(Z2, ioe) = C*(Z2, w ,̂) if and only if0 = ±<j> (mod 1).
(2) there is an isomorphism of C*(Z2, co9) onto C*(Z2, u^) which preserves the

dual action of T 2 if and only ifO = <j> (mod 1).

PROOF. Part (1) follows from the preceding discussion. Suppose that 0 is an
isomorphism as in (2); note that by part (1) we can write 6 = px/N, <f> = p2/N
with 0 < pt < N and (/?,-, N) = 1 (and in fact we also know px = p2 or N — p2).
Let qt be the inverses modulo ./V of/?,-, and let M be any irreducible w9-representa-
tion of Z2. Then according to the construction above

define isomorphisms ¥, 0 of C*(Z2, a^), C*(Z2, uj onto B{VX, V2), B(WX, W2)
respectively, where the Vt, Wt satisfy

{F,, V2) = exp(2mq]/N)lN, {WX,W2} = exp(2viq2N)\N.

Since $ preserves the dual action, we have

[y(M o $-')](a) = Af ° $-'(7-' • a) = M(y-l(9-1(a))) =

for any y e (Z2)", a G C*(Z2, w^). It follows that the isomorphism 6 ° 0 ° *" '
of B(F,,F2) onto 5(^,,W^2) induces the identity map on spectra, so that the
underlying bundles E{VX, V2) and E(WX, W2) are isomorphic. But this implies that
ivu vi) ~ iw\> wi) (see t h e P r o o f o f Proposition 2.7), so that qx - q2 (mod N)
and /?, = /?2. Thus 0 = <£ and the proposition is proved.

There are other multipliers on abelian groups whose twisted group
algebras are homogeneous with spectrum T2. For example, let L e N, 6 G Q,
G = Z/LZ X Z2 and define

<o(([&], m, n), ([kx], mx, nx)) = exp27rz(-/wi,0 + kmx/L).

A little work shows that if 6 = p/M and (p, M) = 1, then

Su = {([-jp], k[L, M], jM/(L, M)): k, j G Z},
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which has index [L, M]2, so that C*(G, co) is [JL, M]-homogeneous by Proposi-
tion 1.3 and [3, Lemma 3.1]. For s, t G / we set

Y,.,([-Jp]. k[L, M], jM/ (L, M)) = exp2tri(sk[L, M] + tjM/{L, M)),

and we identify Su with [0,l/[L, M]) X [0,(L, M)/M). If we pick /, m, n so
that

l/L + m8 = 0, -mO = {L,M)/M, -m/L = 0 (modi),

then

« ( ( / , 0 , « ) , ') =yVlLM]fl a n d "((0, W,0), •) = Y0,(L,A/)/W

An argument just like the one we used for Z2 shows that C*(G, w) is isomorphic
to B(V, W) where

V*W*VW= u>((/,0, «), (0, m,0)) = exp27r/(-n(L, M)/M).

It is interesting to note that the invariant {V, W), when put in the form
exp2iriq/[L, M], does not satisfy {q,[L, M]) = 1, as is always the case for the
algebras C*(Z2, u9) considered above. In particular, if M — (L, M) we have
C*(G, to) s C(T2, ML). It would be interesting to know if every root of unity was
attained by some twisted group algebra (although we can do this other ways, as
we show later).

NOTE ADDED IN PROOF. Alex Kumjian has pointed out to us that this is a
consequence of Proposition 2.8. For Mm(C) is a twisted group algebra of Zm X Zm,
and the tensor product of two twisted group algebras is another twisted group
algebra.

Transformation group C* -algebras of covering spaces.
In general, if p: E -> X is a finite covering, then the group G of deck

transformations acts freely on E, and in fact £ is a principal (/-bundle. The
transformation group C*-algebra C*(G, E) will then be a | G\ -homogeneous
C*-algebra with spectrum X. (This follows easily from the version of Corollary
1.2 for non-abelian groups [5], [17].) In particular, iV-sheeted coverings of T2 will
give JV-homogeneous C*-algebras over T2.

The covering spaces of T2 are in one-to-one correspondence with the subgroups
of w,(T2) s Z2, and the appropriate quotient of w,(T2) acts as deck transforma-
tions. In particular, every finitely sheeted covering of T2 carries an action of a
finite quotient of Z2. Now it is standard group theory that every subgroup H of
Z2 of finite index has the form Z(w,, «,) 4- Z(w2, n2) for some pair (w(, n(.) e Z2

with mln2 — «,m2 =^0, and that the index \Z2/H\ is precisely A =\mxn2 —
n tm21. It is routine to check that the corresponding covering of T2 is given by p:
T2 -> T2 where

p{z,w) = (zmiwm2, z"'w"2),
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and the action of irx(J
2)/H = Z2/H on T 2 is given by

{(m,n) + H)-(z,w)

= (zexp{27T/(w«2 ~ nm2)/A], wcxp{2iri(mln — «,m)/A}.

The corresponding transformation group C*-algebra is A-homogeneous. We
analyse it using Corollary 1.2.

We can always find m, n such that mn2 — nm2 = (m2, n2), and this is obvi-
ously the smallest positive integer we can get this way, so a complete set of orbit
representatives is

exp27r/[0, (m2, n2)/A) X exp2w/[0, (w,, «,)/A).

The action of G = Z2/H is free, and hence Corollary 1.2 implies that a complete
set of irreducible representations of C*(G, T2) is

{ lndG { e ) € J / : i e [0 , (m 2 ,« 2 ) /A) , / e [0 , (w 1 ,« 1 ) /A)} ,

where csl is evaluation at (explir is, exp2n it) e T2. Note that these representa-
tions all act in the same space L2(G). If we fix (m, n), (mr, ri) satisfying

mn2 — nm2 = (m2, n2), m'nl — n'mx = (mx, «,),

then Wx = W(mn)+H, W2 = W(mW)+H respectively intertwine

Ind£ 0 , and Ind e(m2tB2)/A>,, lndts0 and Ind£,(mi?n i ) /A.

Thus the map ¥ : C*(G, T2) -» C(I2, AfA) defined on CC(G, C(T2)) by

*(*)(*. 0 = Indfe}^(m2

gives an isomorphism of C*(G, T2) onto B{WX, W2). However, it is easy to see
that the W's commute, so C*(G,T2)is isomorphic to C(T2, MA) by Proposition
2.7(3).

We observe that this last result does not appear to be predictable on general
grounds—there are finite covering spacesp: E -> A1 whose associated transforma-
tion group C*-algebra C*(G, E) is not trivial. For example, if p: S2 -» RP2 is the
canonical 2-sheeted covering of real projective space, then C*(Z2, S

2) is not
isomorphic to C(RP2, M2), as is pointed out in [15, page 301]. In fact, another
application of Corollary 1.2 shows that

C*(Z2, S2) a j / £ C ( S 2 , M2)\f{x) = Wf(-x)W* for* £ S 2 } ,

0 1
where W= u Q

An isomorphism of the corresponding A/2-bundle with RP2 X M2 would give a
continuous map ¥ : S2 -» PU2 satisfying \p(x) = AdW° 4>(-x) for all x. The
restriction of $ to the equator is a loop which is homotopically trivial and hence
has the form Ad V(x) for some loop V: S1 -> SU2. The condition on 9 implies
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V(x) = X(x)WV(-x) for some map X: Sl -» S\ and taking determinants shows X
is constant with A2 = - 1 . But this is impossible, since then

V{\) = \WV{-\) = XW{XWV{\)) - X2V{\).

Thus no such isomorphism can exist and C*(Z2, S
2) is not trivial as claimed. The

same argument works for the canonical coverings of the other projective spaces
RP" (n > 2).

It is possible to build non-trivial algebras from coverings of T2 by adding a
multiplier a of the group G of deck transformations, and forming the twisted
crossed product C*(G, T2, a) as in [20, Section 2.4]. We could calculate this
C*-algebra using [20], but we can also reduce to the ordinary theory of crossed
products. In fact, if V: G -» MN is a a-representation and a: G -> Aut A, then the
map

$: C{G, A)®Mn^ C(G, A ® MN)

defined by

<&{z ® T){s) = z{s) ® TV(s)*

extends to an isomorphism of C*(A, G,a)® MN onto the crossed product
C*(A ® MN, G) for the action a ® Ad V. If (m,, «,), H, p, A are as before, then
Proposition 1.1 shows that a complete set of irreducible representations for
C*(C(T2, MN), G) is

We still have Wu intertwining Ind tx and lnd(u • tx), but now u • tx is
Ad V(u)* • tu.x, so we have

(I ® V(u))Wu[lnd€x]fV:(l » V(u))* = IndfH;c.

Thus if (m, n),(m', n') are as before and w, = (m, n) + H, uz = (m\ ri) + H
then C*(G, II2, a) ® MN is isomorphic to B(YX, Y2), where Yt• = (1 ® K(«,.))W .̂.
However, since F is a a-representation we have

( r , , 72} = a((m, n) + //, (m', «') + / / ) " 1|C)A,,

and it is easy to construct examples where this is not 1.

Pull-backs.
Another way to construct homogeneous C*-algebras with spectrum T 2 is to

pull back a given algebra along a covering p: T 2 -* T2. In general, if F: X -> Y is
a continuous map and A = T(E) is a homogeneous C*-algebra with spectrum Y,
then the pull-back f*A is by definition the C*-algebra T(f*E) with spectrum X.
Equivalently, f*A is the C*-algebraic tensor product C(X) ®C(Y)A, where C(Y)
acts naturally on A and on C( A') via the map/(see [14, Proposition 1.3]).
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Let A = B(V, W) have spectrum T2, and let/>: T2 -> T2 be the finite covering
given by p(z, w) = (zm'wm\ z"'w"2). Then according to Lemma 2.6

p*A = p*B(V, W) s B(VmW\ VmW>).

As in the proof of Proposition 2.7, if {V, W) = z\N, then

Recall that A=|m|W2~'>iw'2|is the number of sheets in the covering, so that if
z = exp(2iriq/N) with (q, N) = 1, then we can obtain all the ^-homogeneous
C*-algebras with spectrum T2 by pulling back A along different coverings. In
particular, any iV-homogeneous C*-algebra with spectrum T2 has the form p*Ae,
or p*C*(Z2, ue), for some 6 G Q and some covering map p: T2 -» T2.

Crossed products of homogeneous C*-algebras.
The various homogeneous C*-algebras we have constructed often carry natural

group actions, and taking crossed products by these actions can give more
homogeneous C*-algebras. For example, the dual group G always acts on the
twisted group algebra C*(G, w) of an abelian group according to the formula

(ya)(s) = y(s)a(s) (a G CC(G), yEG,sEG).

A simple computation shows that if w is type I and we realise (G, w) as in
Proposition 1.3, then the corresponding action of 6 on ((?,«) is given by
y • (x^O = y x ^ , so that characters in Sj- act trivially and others act freely. In
particular, let (G, to) = (Z2, ue) for some j £ Q , and write 6 = p/N with {p, N)
= 1, so that Su = NZ X NZ. If H is a finite subgroup of T2 such that H n 5j- =
<j>, then H acts freely on (G, a) = T2, and the orbit space (G,«) /H is another
torus. By Proposition 1.1 the irreducible representations of C*(C*(Z2, <oe), H)
are all induced from irreducible representations of C*(Z2, u>$), and
C*(C*(Z2, we), H) can be identified with the orbit space (G, u)/H. (Actually,
Proposition 1.1 just gives us a setwise identification, but it is not hard to see it
must be a homeomorphism.) Thus, C*(C*(Z2, ue), H) is an JV| H\ -homogeneous
C*-algebra with spectrum T2.

There are also natural actions on the pull-backs along covering maps/?: E -* X.
For the group G of deck transformations acts freely on E, and dualising gives an
automorphism group 6: G -» Aut C(£). If A is iV-homogeneous with spectrum X,
tensoring with the identity gives an automorphism group 5 ® id of C(E) ® A,
and this in turns defines an automorphism group p*id acting on the quotient
p*A = C(E) ®C(X)A. Since this action is free on the spectrum (p*A) = E,
Takesaki's results (and a little bit of work) show that C*(p*A,G, p*id) is
N | G | -homogeneous with spectrum A". More generally, if /?: G -* Aut A is any
group of automorphisms which preserve the C(Ar)-action on A, then 8 ® /?
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defines a group p*fi: G -»Aut p*A, and C*(p*A, (?) has similar properties:
crossed products like these are studied in [14]. Specializing to a covering p:
T2 -» T2 will give more homogeneous algebras with spectrum T2, and it should be
possible to calculate the isomorphism class in any given situation using Proposi-
tions 1.1 and 2.7. In fact, we have done this above in the case of p*(Ad V), where
p: T 2 -»T2 is a finite cover, A =p*A = C(T2, MN) and V: G -> C/̂  is a
a-representation of the group G of deck transformations.

Of course, all the constructions in the preceding paragraphs give algebras which
carry natural group actions, and we could continue this process indefinitely.

3. Homogeneous C*-algebras with spectrum T3

We tackle the classification of P(/^bundles over T3 much as we did over T2.
We first describe them up the usual notion of bundle isomorphism, by applying
Lemma 2.1 to T3 = T2 x T; this is harder now because we need to know about
automorphisms of non-trivial Pf/^bundles over T2. The second part—namely,
the effect of homeomorphisms of T3—proceeds in exactly the same way. As
before, we begin with some results on more general principal G-bundles, and
specialise to PUN later. For the next three lemmas, G is a path-connected
topological group such that ir2(G) — 0.

LEMMA 3.1. Let F be a principal G-bundle over T2, and suppose that p, 0 are two
automorphisms of F. Then p ° a is homotopic to a ° p.

PROOF. By Corollary 2.2 we can assume that F = ET for some T: T -» G, and,
since G is path-connected, that T(1) = e. Then the automorphisms p, a are
defined by continuous maps 4>, ip: I2 -* G such that

(1)
<t>(s,O) =<j>(s, 1) for all s e / ,

, 0 = T(0"'*(0, t)r(t) for all t e /,

and similarly for 4>. The assumption T(0) = T(1) = e implies that <£ maps all the
corners of I2 to the same element g, of G: we first show we may take g, = e. Fix
a path g(u) joining g, to e, and define a function/: / 3 -» G as follows:

/ ( 0 , 1 , u) = / ( l , 1, u) = / ( l , 0 , U) = / ( 0 , 0 , U) = g(«);
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define/on the faces t = 0, s = 0 to be arbitrary continuous extensions of/from
the 3 edges of those faces, and finally let

(2) f(s,l,u)=f(s,0,u),

f(l,t,u) = r(tyif(O,t,u)T(t).

Now extend / arbitrarily to all of P: it gives a homotopy joining <f> to an
automorphism f\u=, which maps the corners of I2 to e. We may therefore suppose
<$>, \p map the corners of I2 to e.

We now define another function/: dP -» G by

/ ( j , / , 0 ) = * ( M ) * ( * , 0 . f(s,t,l) = 4>(s,t)*(s,t) fors,t(El,
f(s,t,u) = e (OTS, t 6 {0,1} andw £ / ;

the loops s -* <j>(s, 0)^(5,0) and s -»V($,0)$($,0) are homotopic since w,(G) is
abelian, so we can extend / to the face t = 0, and by a similar argument to the
face t = 1; finally, we extend/to the remaining faces using (2). Since 7r2(G) = 0,
we can extend / to all of P, and this gives us a homotopy from ^>ip to <̂/> through
maps of I2 into G satisfying (1). It follows that the automorphisms p ° a and a ° p
are homotopic.

COROLLARY 3.2. Every principal G-bundle over T3 is isomorphic to one of the
form ET XOT (see Corollary 2.2) for some r. T -+ G and sowe automorphism a of
ET. Such an automorphism is homotopic to one given by a continuous map <j>: I2 -> G
which maps the corners of I2 to e and satisfies (1). The isomorphism class ofET X0T
is then determined by the classes of the three loops T, <j> L=o, <j> |(=0 in ̂ \

PROOF. Lemma 2.1 shows that each principal G-bundle over T3 is isomorphic
to F XOT for some G-bundle F over T2 and automorphism a of F, and Corollary
2.2 shows that F has the form ET - (T X G) XTT for some T: T -» G. Every
automorphism of £T comes from a map <t>: I2 -* G satisfying (1), and the first
paragraph of the proof of Lemma 3.1 shows that we may suppose $ maps the
corners to e. Lemma 2.1 and Lemma 3.1 together show that the isomorphism
class of F X a T depends only on the isomorphism class of F and on the homotopy
class of a. However, Corollary 2.2 also shows that ET is determined up to
isomorphism by [T] G TT,(G), and according to Lemma 2.3 the class of a is
determined by [</> l=0] and [</> |,=0] E i7,(G).

LEMMA 3.3. Let p: G -* G be the simply-connected covering of G. For each
commuting triple {g,: / = 1,2,3} in G let E{gi) be the G-bundle over T3 obtained
from P X G by identifying (1, t, u, g) with (0, /, u, g,g), (s, 1, u, g) with
(5,0, M, g2g) and(s, t, 1, g) with (s, t,0, g3g).
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(1) Let {I,}, {/i,} be two commuting triples in G, let {g,}, {/J~ } be liftings of these
triples in G, and let ctJ = {£,, g,}, dtj = {A,-, hj). Then E{gi) = £{/i,} if and only
ifcu = dijforalli,j.

(2) / / every triple in the kernel of p can be realised as the commutators of a triple
{g,} in G, then every principal G-bundle over T3 is isomorphic to some E{gt}.

PROOF. Let {g,} be as given, and let a, /}, y be paths in G joining e to g,, g2, g3

respectively. Let T: / -» G be the loop defined by

If0(.s, 0 = «(*)j8(O then

0(0, r)g, = T ( / ) # ( 1 , f), 0(5,O)g2 = 6{s, 1)

and it follows that 8 defines an isomorphism from E{gx, g2) to ET. We define a
function^: / 3 -» Gby

</>(j, ?, u) = y(u)a(s)P(t) ifs = 0,t = 0oiu = 0,

(3) *( j , l ,« ) = *(*,0,ii)g2,

(4) <!>(l,t,u) = T(tyi<t>(O,t,u)g],

and extending arbitrarily to the rest of P. Then simple calculations show that

(5) * (* ,0 = * ( * . ' . 0 ) f t * ( M , l ) - '
defines an automorphism a of ET, and then (3-5) show that <j> is an isomorphism
of E{gi} onto Er XaT. Corollary 3.2 therefore implies that the isomorphism class
of 2s{g,} depends on the classes of T, i//( •, 0), »//(0, •) in w,(G). Note that

*(j,o) = ^ j j g j a t j r ' g j 1 , v(o, 0 = P(t)g3P(tyl
g;

1.

Thus if a and ^ are the based lifts of a and 0 to G, g, = d(l), g2 = /3(1) and
Pigj) = S^ then (i§(r), g,}, {o(s), g3}, {AO, g3} are the based Ufts of
T, ^(-,0), ^(0, •). The class of a loop in w,(G) is determined by the end-point of
its based lift to G, so the isomorphism class of E{gj) depends only on the
commutators {g,, gj) as claimed. (Observe that, since p~l(e) is a discrete normal
subgroup of G and hence contained in the centre of G, the commutators are
independent of the choice of liftings for g,, and of the paths a, /}.) This proves (1).

By Corollary 3.2 every G-bundle is isomorphic to one of the form ET X 0T. Let
(f>: I2 -» G define a as in 3.2, and let cuc2, c3 be the endpoints of the based
liftings of T, <(> |,=0, </> l^o to G. According to our hypothesis on G, we can pick g,
such that their lifts to G satisfy

*i = {&.£i}. c 2 = { g , , g 3 } , c3 = {g2,g3}.

The construction of the previous paragraph and the realisation of 7r,(G) as the
end-points of hftings shows that E{gj) is isomorphic to ET X0T. This completes
the proof of Lemma 3.3.
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In order to apply Lemma 3.3 to the group G = PUN and its simply-connected
cover SUN, we need to check that PUN satisfies the hypothesis in (2).

LEMMA 3.4. Let to be a primitive Nth root of unity. Then for any p , q, r G Z there
are U,V,WE SUN such that

{U,V} =<*'!„, {U,W)=anNt {V,W} = ar\N.

PROOF. We first handle the special case where N is a power of a prime. If
d = (N, p, q, r) and Ux, Vu Wx G SUN/d have commutators uplN/d, etc., then
tensoring with \d gives a solution to our problem. So we may assume one of the
p, q, r—say;?—is coprime to N. Let {/be the unitary diagonal matrix with entries
1, co, w2,.. .,aN~\ Then for any matrix T = (tu), UTU* = (w'~y/,7), so

{U, T} = uslN <=> ttj = 0 fori-j¥=s (modN).

We define V to be the matrix with entries

10 otherwise.
Then V is unitary and {U, V) = uplN. As (p, N) = 1 the map « -» -/m is an
automorphism of Z/NZ: let a denote its inverse, and let W be the matrix with
entries

Wj = f > < ' > ili-j = q(mo&N),
lJ [ 0 otherwise.

Then {V, W) = uq\N, and {V, W) is the diagonal matrix with »th entry
u(a(i-p)-a(i))r _ ^r

so t/, F, W are unitary matrices with the right commutators. Dividing by scalars
allows us to replace them with unitaries of determinant 1.

The general case can now be proved by induction on the number of distinct
prime factors of N. For UN = NXN2 with (Nx, N2) = I, then there are/>,, qit ri e Z
such that

Nxpx + N2p2 = p , Nxqx + N2q2 = q, Nxrx + N2r2 = r.

By the inductive hypothesis we can find U^V^Wj such that

{UltVt} = aP<N'\Ni, {UttW,} = U*N'lNi, {VitWt} = «""<1W/;

then [ /=( / , ® U2, V=VX®V2, W = Wx ® W2 are solutions to our problem.
This proves the lemma.

We can now describe the principal .P{/^bundles over T3, and have to consider
the effect of homeomorphisms on them. As in the T2 case, these are effectively all
induced from integer matrices acting on R3, and as the proof is similar we just
give the main steps. This part of our argument will work for any torus T*.
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LEMMA 3.5. Let G be any topological group such that n2(G) = TT3(G) = 0, and let
<f>, t:T3->G satisfy <j>(\, 1,1) = ^(1,1,1) = e. Then <f>, \p are homotopic relative to
the base point (1,1,1) if and only if the restrictions of$, 4> to the circles T X {(1,1)},
{1} X T X {1}, {(1,1)} X T arepairwise homotopic relative to (1,1,1).

PROOF. Suppose the restrictions of <#>, if are homotopic as claimed. Three
applications of Lemma 2.3 (with T = e) show that there are homotopies gn h,, k,:
T2 -> G such that

#0 = ^ I T 2 X { 1 } > £ I = W T 2 X { 1 } > ^ O = <H TX{1}XT>

We can regard <j>, \p as functions on I3, gt, ht, kt as functions on / X I1 and use
g, h, k to define a continuous function / on 3/4 such that /1{0} x / 3 = <f>, / |{I} x / 3 = \p.
Then the vanishing of TT3(G) allows us to extend / to all of I*, and this gives a
homotopy joining <£> to ^. The converse is clear, so this establishes the lemma.

LEMMA 3.6. Every homeomorphism of T3 = R3/Z3 is homotopic to one of the
form

for some matrix T G M3(Z) of determinant ± 1.

PROOF. AS in Lemma 2.4, regarding the loops T X {(1,1)} etc. as generators
gives an isomorphism <J>: Z3 -> 7r,(T3), and it follows from Lemma 3.5 that two
homeomorphisms / of T3 are homotopic if and only if the automorphisms
Hft) = *"' ° (/•)• ° </» of Z3 are equal. It is easy to check that ^ ( / r ) = T, and
every automorphism of Z3 is given by a matrix T E M3(Z) of determinant ± 1, so
the result follows.

PROPOSITION 3.7. Let {V,: i= 1,2,3} C UN(C) be such that {AdJ^} is a
commuting triple in PUN, and let B^} =

\,t,u) = AdVlb(0,t,u),b(s,l,u) = AdV2b(s,0,u)\I ( 3 M (
{ [ ' N{ )ndb(s,t,l) = AdV3b(s,t,0)foralls,t,uEl

Every N-homogeneous C*-algebra with spectrum T3 is isomorphic to one of this
form. Let {W,) be another triple, and set

Cx = {V2,V3}, c 2 = { F 3 ) F , } , c3={VuV2),
di = {W2,W3), d2={W3,Wl}, d3={WltW2}.

Then B{V,} = B{Wt} if and only if there is a matrix T=(tjj) E M3(Z) with
det T = ± 1 and ck = II3

=1<".
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PROOF. Let F{Vt} be the Af^bundle over T3 obtained from I3 X MN by pasting
along the edges I3 using the Ad Vi9 so that B{Vt) = T(F{F;}); part (2) of Lemma
3.3 and Lemma 3.4 imply that every TV-homogeneous C*-algebra with spectrum
T3 is isomorphic to some B{Vj). The isomorphism class of f*F depends only on
the homotopy class off, and hence Lemma 3.6 shows that B{Vj} = B'{WJ if and
only there is an invertible matrix S e M3(Z) with det 5 = ±1 and fsF{Vt) =
F{Wt}. The obvious extension of Lemma 2.6 says that

fgF{V,) = F{VJ«, V{», Vp>) = F{W{), say.

Then some messy but straightforward calculations show that if Vy^ —
we have

( 3

11 ''kl

A , / = l

If we set T = S'\ so that ttj is ( ± ) the cofactor of sji9 then this implies that

This proves the necessity of the condition. On the other hand, we can reverse this
argument to deduce that if the commutators are related like this, then there is a
homeomorphism/s carrying B^} into B{Wi), and the proposition is proved.

REMARK. The invariants {Vt, Vj} represent three elements of TTX{PUN), realised
as the fibre over the identity in the simply-connected covering Ad: SUN^> PUN.
One copy of w, describes the class of a bundle E over T2, and the other two
determine the class of an automorphism a of £ which is used to construct a
bundle E XOT over T 2 (see Corollary 3.2). As in Proposition 2.7, we could have
described the algebras over T3 in different ways using different realisations of
•nx(PUN), but this is not necessary for our present applications, so we have
refrained.

LEMMA 3.8. Let {kt: i = 1,2,3} C Z satisfy (kx, k2, fc3) = 1. Then there is a
matrix T = (ttJ) e 5L3(Z) such that ti3 = ki for all i.

PROOF. Since the kt are coprime there are integers Kt such that

kxKx +k2K2 + k3Ki= 1;

then it is enough to choose ttJ (j = 1,2) satisfying

'21*32 ~~
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ri2 = 0, txx — (K2,K3), t32 = -K2/tn, t2l — K3/tu.

Then (t32, t22) = 1 and it possible to find t2x, t3X as required.

THEOREM 3.9. Every ^-homogeneous C*-algebra A with spectrum T3 is isomor-
phic to one to the form B ® C(T), where B is A'-homogeneous with spectrum T2. In
particular, by Proposition 2.7(3) we can suppose B = B(V, W) for some pair
V,WE SUN(C) satisfying

VW= exp(2mk/N)lVV;

then the isomorphism class of A is determined by the integer (k, N).

PROOF. By Proposition 3.7 we may suppose A = 5{^}; then A will have the
form B ® C(T) if V3 = 1^. Let c, be the commutators of the ^ as in Proposition
3.7, so that c, = exp(2wilt/N) for some /, E Z. Let kt — lj/(lx, l2, /3), and choose
T as in Lemma 3.8. Then

0
0 = h

so that, if d3 = exp(27r/'(/,, l2,13)/N)1N and dx = d2= lN, then

It follows from Proposition 3.7 that if W3 = 1^ and [Wx, W2) = d3 then B{Vt} s
B{Wi) s B(WX, W2) ® C(T). Proposition 3.7 also shows that algebras B{Vt}
corresponding to the commutators (d, 1,1) and (c, 1,1) are isomorphic exactly
when there is an integer matrix T = (ttj) of determinant 1 such that

Let c = exp(27r/A:/iV)lAr and d = exp(2iril/N)lN. Then the algebras are isomor-
phic iff there is an integer a = txl with k= a I (mod N) and which can appear as
the top left-hand entry in a matrix {ttj) £ SL3(Z) where t2X, t3x are multiples of
N/(l, N). It follows from Lemma 3.8 (applied to the first column rather than the
third) that a can appear in such a column if (a, N/(l, N)) = 1 and the converse
is easy to prove. If (a, N/(l, N)) = 1 then (al, N) = (/, iV) and it follows easily
that the A;'s which can arise this way from a fixed / are precisely those with
(*, N) = (/, N).
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Rational rotation algebras.
There are two obvious generalisations of the rational rotation algebras Ae

which have spectrum T3. Given 6, <j> E. Z, we define actions of Z on T2 and
Z X Z on T by

n- {z,w) = (e2"in"z,e2ni"'t'w),

We could calculate the corresponding transformation group C*-algebras
C*(Z,T2,(0,</>)) and C*(Z2,T,(0,<#>)) using Corollary 1.2, as we did for Ae.
However, Theorem 3.9 shows that they must have the form B ® C(T), and it is
easier to exhibit this decomposition directly.

For 6 = p/M, <J> = q/N let

. . - ( rnQ Np \ Np Mq
\(MN)' (MN))' (MN)' (MN\(M,N)' (M,N))' (M,N)r' (M,N)r' Y [M,N] '

and choose b, d E. Z such that ad — be = 1. Routine calculations show that the
map $ of CC(Z X T 2 ) into itself defined by

( $ / ) ( m , e2mis, e2"") =f(m, e
2 '"<aj+*r)) e2m(cs+d,)^

extends to an isomorphism of C*(Z,T2,(0, #)) onto C*(Z,T2,(^,0)). Similarly,
the map * on CC(Z2 X T) defined by

(tyf)(m, n, z) = f(am + en, bm + dn, z),

gives an isomorphism of C*(Z2,T,(0, <?>)) onto C*(Z2,T,(^,0)). Now we define
f: CC(Z2 X T) ̂  CC(Z X T 2 ) by

C5f)(m, z,w) — 2 f{m,n, z)w~";
n=-oo

this induces an isomorphism of C*(Z2, T, (^, 0)) onto C*(Z, T2, (if, 0)). Since this
latter algebra is isomorphic to A^, ® C(T) in an obvious way, we can describe its
isomorphism class as follows.

PROPOSITION 3.10. (1) Let 9, <j> e Q, suppose that 6 — p/M, <j> = q/N with
(p, M) = (q, N) = 1, and let r = (Mq/(M, N), Np/(M, N)). Then
C*(Z2,T,(0,<f>)) is an [M, N]-homogeneous C*-algebra, and two such algebras
C*(Z2,T,(0,, 4>t)) are isomorphic if and only if[Mx, NX] = [M2, N2]. Every homo-
geneous C*-algebra with spectrum T3 is isomorphic to one of the form C*(Z2, T) ®
MJC).

(2) A similar statement holds for C*(Z, T2, (6, «*>)).

PROOF. The conditions (p, M) = (q, N)= 1 imply that r and [M, N] are
coprime, so Ar/,[M NX is [M, 7V]-homogeneous as shown in the proof of Proposi-
tion 2.8. By Theorem 3.9 the isomorphism class of Ar/lMN] ® C(T) is uniquely
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determined by the condition (r, [M, N]) = 1, and the result follows from the
preceding paragraph.

Twisted group algebras.
Let 0, <j>, \p G R, and define a multiplier w on Z3 by

m2, m3),(nx, n2, n3)) = $xp2iri\(mlm2m3)
0
0
0

0
0

0

0

" l

" 2

" 3 ,

{\l/mln2 + 8mxn3 + <j>m2n3}.

According to [1, Theorem 3.2], every multiplier on Z3 is equivalent to one of this
form. By [2, Lemma 3.1] and Proposition 1.3 the multiplier u is type I if and only
if the group

Sa= {m£ Z3|w(/M,/j) = «(«, w) for all« G Z3}

has finite index in Z3, and then C*(Z3, w) is ]/\G: Sa\-homogeneous. It is not
hard to see that this happens exactly when 8, <p, ^ are rational.

Therefore when 6, <f>, \p e Q, C*(Z3, w) is a homogeneous C*-algebra, and by
Proposition 1.3 its spectrum is (Z3)/S£ = T3 /5j - . The subgroup Su is the lattice
in Z3 generated by a parallelepiped of finite volume =|Z3: 5M| so Sj" is also a
lattice in T3, and T 3 /S^ is homeomorphic to T3. It is tempting to try to calculate
the isomorphism class of C*(Z3, w) by Fourier transforming it into a rational
rotation algebra, as worked in the T2-case. However, if we define <5: CC(Z3) -»
CC(Z2 X T) by

00

C$a)(m, n, z) — 2 a{m,n,k)z ~k

and a multiplier a on Z2 by

then the usual lengthy calculations show that 'S extends to an isomorphism of
C*(Z3, w) onto the twisted crossed product C*(Z2,T,(0, <f»), a). So to make this
approach work we would need to calculate the twisted crossed product using [20];
we think it is probably easier to use Proposition 1.3 and Proposition 3.7. We
illustrate by considering the case where <J> = rr/N, 0 = r2/N, \p = r3/N and one
of the r—say r,—is coprime to N.

The subgroup Su is given by

Su = {m: u(m, n) = u(n, m) for all n)

= {(mi> ™2, m3): -r3m2 - r2m3 = 0,

r3ml — rxm3 = 0, r2mx + rxm2 = 0 (mod N)}.
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Since (r,, N) = 1, we have

-r3m2 — r2m3 G NZ «* rx[-r3m2 — r2m3] E NZ

<=> -r3[rxm2 + r2mx] + r2[r3mx — rxm3] G NZ,

so

Su = {(mx, m2, m3): rxm2 + r2mx G NZ, r3mx — r,m3 e iVZ}.

Let q satisfy tfr, = 1 (mod N) and 0 *£ q < iV - 1. Then

5U = { ( m , , - ^ ^ , + Nm2, qr3ml + Nm3): mx, m2, m3 E.Z):

note that | Z3: Su\- N2. For s E / 3 w e write

Ys(«i, «2 , n3) = exp27ri(5,«, + *2n2 + s3n3).

Then 5j^ can be realised as

{ys: e\p2iri[slml — s2qr2mi + s2Nm2 + s3qr3mx + s3Nm3] — 1

for all m G Z3}

= {ys: s2N = 0, 53A^ = 0 andj, = qr2s2 — qr3s3 (mod 1)}.

A basis for the lattice Sj- is given by

Y, = Y, lors = {qr2/N,\/N,Qi), y2 = ys for s = (-qr3/N,0, l/N)

and

Yj^y , for* = (1,0,0).

(To see that this is a basis, one only has to verify that the volume of the
parallelepiped they generate is \/N2, equal to 1/|Z3: Sa\.) According to Prop-
osition 1.3, (Z3, a) is obtained from T3 by pasting along opposite faces of the
basic parallelepiped of S^. If M is an irreducible u-representation of Z3, then
every such representation of Z3 has the form yM, and

M(m)y(n)M(n)M(m) = w(m, n)y(n)M(n) form, n E Z3.

Thus if m' = (iw'J, m2, m'3) G Z3 satisfy w(m', •) = Y,, then M(m') will interwine
ysM and ytysM for all s G / 3 . In particular, flattening out S£ shows that

C*(Z\u)=B{M(mi)}.

Since Y3 = 1, we can take w3 = 0, so M(w3) = 1 and we have

C*(Z3, « ) a B(M(ml), M(m2)) ® C(T).

A simple calculation shows that
l), M(m2)} = « ( « ' , m 2 ) l^ = Yi(m2)l^

= exp[2iri(qr2m
2 + m2

2)/N]\N

w2 + rxm\)/N\\N.

https://doi.org/10.1017/S1446788700022576 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022576


[291 Homogeneous C*-algebras whose spectra are tori 37

However, since u(mz, •) = y2, it follows that r2m\ + rxm\ — 1 (mod N), so we
have

{Jlf(m'), M(m2)} = exp(2iriq/N)lN.

By definition q is the inverse of r, mod N, so (q, N) — 1 and by Theorem 3.9 this
determines the class C*(Z3, w) uniquely.

In general, if u is given by three rational numbers rJN^ where (ri,Ni)= 1,
then C*(Z3, w) is [iV,, N2, A^-homogeneous (see [2, page 220]). The argument
above shows that if [Nv N2, N3] = Nt for some i, then the isomorphism class of
C*(Z3, w) is that of Al/N_ ® C(T). It would be interesting to carry through a
similar analysis for the general case, but the calculations do get much more
complicated—it is not so easy to write down Su, for example. However, we
imagine that it should be possible to do the necessary computations, at least for a
specific multiplier w.

4. Concluding remarks.

4.1. As we mentioned in the introduction, the classification of M^-bundles over
T4 differs substantially from that over T2 or T3. In particular, for each N there
are infinitely many non-isomorphic iV-homogeneous C*-algebras whose spectra
are homeomorphic to T4; as we shall see, this is a direct consequence of
Woodward's analysis [19] of principal i>fArbundles.

The main result of {19] identifies naturally the set of isomorphism classes of
PfVbundles over a 4-complex with a subgroup H of H2(X, ZN) © H\X, Z). We
have i/2(T4, ZN) s Z% and #4(T4, Z) SB Z, and it follows from part (i) of the
classification theorem in [19] that the subgroup H contains {0} @ 2NZ, thus
giving us an infinite class of Pl/^bundles over T4. The group Z = 2NZ has only
two automorphisms, so after allowing for the effect of homeomorphisms we still
have infinitely many bundles, and hence infinitely many mutually non-isomorphic
iV-homogeneous C*-algebras.

We have not worked out a detailed description of the Af^bundles over T4, or
even written down representatives of an infinite class of examples, although in
principle it appears to be possible. However, it seems likely that the crossed
product constructions we have used earlier can only give finitely many distinct
iV-homogeneous algebras for each N, and it could be very interesting to find a
natural C*-algebraic construction of an infinite family of such algebras.

4.2. We have shown that non-trivial homogeneous C*-algebras can arise in
surprisingly many different ways. There are at least two more, however, which we
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have not investigated. In operator theory C*-algebras generated by n-normal
operators, or those generated by essentially n-normal operators modulo the
compacts, have all their irreducible representations of dimension «S « and they
can be homogeneous (see, for example, [11, Section 3, particularly Remark
3.10(b)]). Secondly, although group C*-algebras cannot be homogeneous without
being abelian—there is always the trivial one-dimensional representation—they
can be direct sums of homogeneous algebras. (See, for example, [13, Proposition
4], which is probably true in more generality.) In fact, it was an example which
arose in this context [13, Proposition 7] which first stimulated our interest in
algebras with spectrum T2. It is not hard to see that the 2-homogeneous algebra B
in [13, Proposition 7] is the twisted group algebra C*(Z2, <o1/2).
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