(i)

$$
\begin{aligned}
& \left.\begin{array}{l}
x=e^{-y \pi / 2} \cos (x \pi / 2) \\
y=e^{-y \pi / 2} \sin (x \pi / 2)
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
x^{2}+y^{2}=e^{-y \pi} \\
x=y \cot (x \pi / 2)
\end{array}\right\} \\
& \Rightarrow x=\cos \left(\frac{x \pi}{2}\right) \exp \left(-\frac{\pi x \tan (x \pi / 2)}{2}\right)
\end{aligned}
$$

so x can be found by fixed-point iteration or Newton-Raphson.
(ii) A couple of interesting articles on similar themes occurred in the Gazette in 1983 [2, 3]. Both of these cite Macintyre [4] for a proof that $\left(i^{i}\right)$ converges.

References

1. Greg Parker and Steve Abbott, Complex power iterations, Math. Gaz. 81 (November 1997) pp. 431-434.
2. P. J. Rippon, Infinite exponentials, Math. Gaz. 67 (October 1983) pp. 189-196.
3. Peter L. Walker, Iterated complex radicals, Math. Gaz. 67 (December 1983) pp. 269-273.
4. A. J. Macintyre. Convergence of i^{i}, Proc. Amer. Math. Soc. 17, (1966) p. 67.

Yours sincerely,
NICK LORD
Tonbridge School, Tonbridge TN9 1JP

DEAR EDITOR,

Since Bill Richardson showed kind concern for the state of my health in his Presidential Address (reprinted in the Gazette of November 1997), I should like to say that I feel fitter now than I did when I wrote to him at the end of 1996. Although I have Parkinson's disease, I continue to enjoy the normal activities of life such as hill-walking and Scottish dancing. More importantly, I am still lecturing part-time and doing as much geometry as ever. If I fail yet again to appear at the 1998 Conference it will be because I am planning a trip to New Zealand!

Yours sincerely,
JOHN RIGBY
Mathematics Institute, University of Wales, Cardiff CF2 4YH

