QUASI-NORMAL MATRICES AND PRODUCTS

N. A. WIEGMANN

(Received 17 March 1969) Communicated by G. B. Preston

1. Introduction

A normal matrix $A = (a_{ij})$ with complex elements is a matrix such that $AA^{CT} = A^{CT}A$ where A^{CT} denotes the (complex) conjugate transpose of A. In an article by K. Morita [2] a quasi-normal matrix is defined to be a complex matrix A which is such that $AA^{CT} = A^TA^C$, where T denotes the transpose of A and A^C the matrix in which each element is replaced by its conjugate, and certain basic properties of such a matrix are developed there. (Some doubt might exist concerning the use of 'quasi' since this class of matrices does not contain normal matrices as a sub-class; however, in deference to the original paper and the normal canonical form of Theorem 1 below, the terminology in [2] is used.)

Here further properties of quasi-normal matrices are developed, their relation, in a sense, to normal matrices is considered, and further results concerning normal products are obtained including an analog (Theorem 4) for quasi-normal matrices.

2. Properties of quasi-normal matrices

The basic theorem developed in [2] is the following, for which an alternate proof is supplied here for brevity and easy reference.

THEOREM 1. A matrix A is quasi-normal if and only if there exists a unitary matrix U such that UAU^T is a direct sum of non-negative real numbers and of 2×2 matrices of the form:

$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

where a and b are non-negative real numbers.

Let A be quasi-normal where A = S+T where $S = S^T$ and $T = -T^T$. Then $AA^{CT} = A^T A^C$ gives $(S+T)(S^{CT}+T^{CT}) = (S^T+T^T)(S^C+T^C)$ or $(S+T)(S^C-T^C) = (S-T)(S^C+T^C)$ and so: $SS^C+TS^C-ST^C-TT^C = SS^C-TS^C+ST^C-TT^C$ or $TS^C = ST^C$. There exists a unitary matrix U (see [3] or [5]) such that $USU^T = D$ is a diagonal matrix with real, non-negative elements. Therefore $UTU^T U^C S^C U^{CT} =$

329

 $USU^T U^C T^C U^{CT}$ or $WD = DW^C$ where $W = -W^T$. Let U be chosen so that D is such that $d_i \ge d_j \ge 0$ for i < j where d_i is the *i*th diagonal element of D. If $W = (t_{ij})$, where $t_{ji} = -t_{ij}$, then $t_{ij}d_j = d_i \overline{t}_{ij}$, for j > i, and 3 possibilities may occur: if $d_j = d_i \ne 0$, then t_{ij} is real; if $d_j = d_i = 0$, t_{ij} is arbitrary (though $W = -W^T$ still holds); and if $d_j \ne d_i$, then $t_{ij} = 0$ for if $t_{ij} = a+ib$, then $(a+ib)d_j = d_i(a-ib)$ and $a(d_j-d_i) = 0$ implies a = 0 and $b(d_i+d_j) = 0$ implies $d_i = -d_j$ (which is not possible since the d_i are real and non-negative and $d_j \ne d_i$) or b = 0so $t_{ij} = 0$. So if $USU^T = d_1I_1 + d_2I_2 + \cdots + d_kI_k$ where + denotes direct sum, then $UTU^T = T_1 + T_2 + \cdots + T_k$ where $T_i = -T_i^T$ is real and $T_k = -T_k^T$ is complex if and only if $d_k = 0$. For each real T_i there exists a real orthogonal matrix V_i so that $V_i T_i V_i^T$ is a direct sum of zero matrices and matrices of the form

$$\begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix}$$

where b is real (see [1] page 65 for example). If $T_k = -T_k^T$ is complex, there exists a complex unitary matrix V_k such that $V_k T_k V_k T$ is a direct sum of matrices of the same form (see [4]), so that if $V = V_1 + V_2 + \cdots + V_k$, then $VUSU^T V^T = D$ and $VUTU^T V^T = F$ = the direct sum described. Therefore $VUAU^T V^T = D + F$ which is the desired form.

Among properties of quasi-normal matrices obtained in [2] are the following: If A and B are two quasi-normal matrices such that $AB^{C} = BA^{C}$, then A and B can be simultaneously brought into the above normal form under the same U (with a generalization to a finite number) but not conversely; if A is quasi-normal, AA^{C} is normal in the usual sense, but not conversely; and if A is quasi-normal and AA^{C} is real, there is a real orthogonal matrix which gives the above form.

Among properties of quasi-normal matrices not obtained in [2] but of subsequent use are the following:

(a) A is quasi-normal if and only if $A = HU = UH^T$ where H is hermitian and U is unitary.

For if A = HU is a polar form of A, then $U^{CT}HU = K$ is such that A = HU = UK and if $AA^{CT} = A^TA^C$, then $H^2 = (K^T)^2$ and since this is a hermitian matrix with non-negative roots, $H = K^T$ and $A = HU = UH^T$. The converse is immediate. This same result may be seen as follows. If $UAU^T = F$ is the normal form in Theorem 1, $F = D_r V = VD_r$, where D_r is real diagonal and V is a direct sum of 1's or blocks of the form

$$(a^2+b^2)^{-\frac{1}{2}}\begin{bmatrix}a&b\\-b&a\end{bmatrix}$$

which are unitary. Therefore $A = U^{CT}D_r UU^{CT}VU^C = U^{CT}VU^C U^T D_r U^C$ which exhibits the polar form in another guise.

(b) A is both normal and quasi-normal if and only if $A = HU = UH = UH^T$ so $H = H^T = H^{CT}$ so that H is real.

(c) If $A = HU = UH^T$ is quasi-normal, then UH is quasi-normal if and only if $HU^2 = U^2H$, i.e. if and only if HU^2 is normal. For if UH is quasi-normal, $UH = H^TU$ so that $HU^2 = UH^TU = U^2H$; and if $HU^2 = U^2H$, then $HUU = UH^TU = UUH$ or $H^TU = UH$.

(d) A matrix A is quasi-normal if and only if A can be written $A = SW = W^{C}S$ where $S = S^{T}$ and W is unitary. If A is quasi-normal, from the above $A = U^{CT}FU^{C} = U^{CT}D_{r}U^{C}U^{T}VU^{C} = SW = U^{CT}VUU^{CT}D_{r}U^{C} = W^{C}S$ where $S = U^{CT}D_{r}U^{C}$ is symmetric and $W = U^{T}VU^{C}$ is unitary. Conversely, if $A = SW = W^{C}S$, $AA^{CT} = SWW^{CT}S^{CT} = A^{T}A^{C} = S^{T}W^{CT}WS^{C}$.

Note that if B is quasi-normal and if B = SU where $S = S^T$ and U is unitary, it does not necessarily follow that $B = U^C S$; but it is possible to find an S_1 and U_1 such that $B = S_1 U_1 = U_1^C S_1$ holds. This may be seen as follows. If B = SUis quasi-normal, let V be unitary such that $VSV^T = D$ is diagonal, real, and nonnegative, so that $VBV^T = VSV^TV^CUV^T = DW$ is quasi-normal from which $DWW^{CT}D^C = W^TD^TD^CW^C$ or, since D is real, $WD^2 = D^2W$ and WD = DWsince D is non-negative. Then $B = (V^{CT}DV^C)(V^TWV^C) = SU = (V^{CT}WV)$ $(V^{CT}DV^C)$ which is not necessarily = to $U^CS = (V^{CT}W^CV)(V^{CT}DV^C)$. However, if $D = r_1I_1 + r_2I_2 + \cdots + r_kI_k$, $r_i > r_j$ for i > j, then $W = W_1 + W_2 + \cdots + W_k$. Since each W_i is unitary, it is quasi-normal and there exist unitary X_i so that $X_iW_iX_i^T = F_i$ is in the real normal form of Theorem 1. If $X = X_1 + X_2 + \cdots + X_k$, then $XVBV^TX^T = XDWX^T = DXWX^T = DF = FD$ where $F = F_1 + F_2 + \cdots + F_k$.

$$B = (V^{CT}X^{CT}DX^{C}V^{C})(V^{T}X^{T}FX^{C}V^{C})$$

= $(V^{CT}X^{CT}FXV)(V^{CT}X^{CT}DX^{C}V^{C}) = S_{1}U_{1} = U_{1}^{C}S_{1}$ and
 $S_{1} = V^{CT}X^{CT}DX^{C}V^{C} \neq V^{CT}DV^{C} = S$ and
 $U_{1} = V^{T}X^{T}FX^{C}V^{C} \neq V^{T}WV^{C} = U.$

3. Normal products of matrices

It was shown in [6] that the following are true: if A, B, and AB are normal matrices, the BA is normal; a necessary and sufficient condition that the product, AB, of two normal matrices A and B be normal is that each commute with the hermitian polar matrix of the other. First a generalization of this theorem is obtained here and then an analog for the quasi-normal case is developed.

THEOREM 2. Let A be a normal matrix. Then AB and BA are normal if and only if $(A^{CT}A)B = B(AA^{CT})$ and $(B^{CT}B) = A(BB^{CT})$.

(In a sense, the latter conditions might be described as stating that each matrix is 'normal relative to the other'.)

If AB and BA are normal, let U be a unitary matrix such that $UAU^{CT} = D$ is diagonal, $d_i \overline{d}_i \ge d_j \overline{d}_j \ge 0$ for i < j, and let $UBU^{CT} = B_1 = (b_{ij})$. From $ABB^{CT}A^{CT} = B^{CT}A^{CT}AB \text{ it follows that } DB_1B_1^{CT}D^C = B_1^{CT}D^CDB_1; \text{ by equating} \\ \text{diagonal elements it follows that } \sum_{j=1}^n d_i d_j b_{ij} \overline{b}_{ij} = \sum_{j=1}^n d_j d_j b_{ji} \overline{b}_{ji} \text{ for} \\ i = 1, 2, \dots, n. \text{ Similarly from } BAA^{CT}B^{CT} = A^{CT}B^{CT}BA \text{ follows } B_1DD^CB_1^{CT} = D^CB_1^{TT}B_1D \text{ and } \sum_{j=1}^n d_j d_j b_{ij} \overline{b}_{ij} = \sum_{j=1}^n d_i d_i \overline{b}_{ji} b_{ji}. \text{ Let } i = 1 \text{ in each of these} \\ \text{equations so that } \sum_{j=1}^n d_1 d_1 b_{1j} \overline{b}_{1j} = \sum_{j=1}^n d_j d_j b_{j1} \overline{b}_{j1} \text{ and } \sum_{j=1}^n d_j d_j b_{1j} \overline{b}_{1j} = \\ \sum_{j=1}^n d_1 d_1 \overline{b}_{j1} b_{j1} \text{ from which follows } \sum_{j=1}^n (d_1 d_1 - d_j d_j) b_{1j} \overline{b}_{1j} = \sum_{j=1}^n (d_j d_j - d_1 d_1) b_{j1} \overline{b}_{j1} \text{ so that } \sum_{j=1}^n (d_1 d_1 - d_j d_j) (b_{1j} \overline{b}_{1j} + b_{j1} \overline{b}_{j1}) = 0. \text{ Let } d_1 d_1 = d_2 d_2 = \\ \dots = d_l d_l > d_{l+1} d_{l+1}; \text{ then } b_{1j} \overline{b}_{1j} + b_{j1} \overline{b}_{j1} = 0 \text{ for } j = l+1, l+2, \dots, n \text{ since } \\ d_1 d_1 - d_j d_j \text{ is zero or positive and is the latter for } j > l. \text{ So } b_{1j} = 0 \text{ and } \\ b_{j1} = 0 \text{ for } j = l+1, l+2, \dots, n. \text{ For } i = 2, \dots, l \text{ in turn it follows that } b_{ij} = 0 \\ \text{and } b_{ji} = 0 \text{ for } i = 1, 2, \dots, l \text{ and for } j = l+1, l+2, \dots, n. \text{ Let } UAU^{CT} = D \\ = r_1 D_1 + r_2 D_2 + \dots + r_s D_s \text{ where the } r_i \text{ are real}, r_i > r_j \text{ for } i < j \text{ and the } D_i \\ \text{are unitary. Then by repeating the above process it follows that } UBU^{CT} = B_1 = \\ C_1 + C_2 + \dots + C_s \text{ is conformable to } D. \end{cases}$

It follows from the given conditions that $r_i D_i C_i C_i^{CT} D_i^C r_i = C_i^{CT} (r_i D_i^C) (D_i r_i) C_i$ and $C_i r_i D_i D_i^C r_i C_i^{CT} = r_i D_i^C C_i^{CT} C_i D_i r_i$ or that $D_i C_i C_i^{CT} = C_i^{CT} C_i D_i$ and $D_i C_i C_i^{CT} = C_i^{CT} C_i D_i$ if $r_i > 0$. If $r_s = 0$, D_s is arbitrary insofar as D is concerned and so may be chosen so that $D_s C_s C_s^{CT} = C_s^{CT} C_s D_s$ in which case D_s may not be diagonal. But whether or not this is done, it follows that $DB_1 B_1^{CT} = B_1^{CT} B_1 D$ and that $B_1 D D^{CT} = D^{CT} D B_1$ so that $A(BB^{CT}) = (B^{CT} B)A$ and $B(AA^{CT}) = (A^{CT} A)B$.

The converse is immediate. It may be noted that if the roots of A are all distinct in absolute value, B must be normal. The following further clarifies the situation.

THEOREM 3. Let A = LW = WL be the polar form of the normal matrix A. Then AB and BA are normal if and only if $B = NW^{CT}$ where N is normal and LN = NL.

In the above proof let $C_i = H_i U_i = U_i K_i$ be polar forms of the C_i . Then $U_i^{CT} H_i U_i = K_i$ so that $U_i^{CT} C_i C_i^{CT} U_i = C_i^{CT} C_i$ or $U_i^{CT} C_i C_i^{CT} = C_i^{CT} C_i U_i^{CT}$. Also, from the above $D_i C_i C_i^{CT} = C_i^{CT} C_i D_i$. Let $R_i = D_i^C U_i^{CT}$; then

$$R_{i}C_{i}C_{i}^{CT} = D_{i}^{C}U_{i}^{CT}C_{i}C_{i}^{CT} = D_{i}^{C}C_{i}^{CT}C_{i}U_{i}^{CT} = C_{i}C_{i}^{CT}D_{i}^{C}U_{i}^{CT} = C_{i}C_{i}^{CT}R_{i}$$

where R_i is unitary. (If $r_s = 0$, D_s may be chosen $= U_s^{CT}$ as described above). So $R_i H_i^2 = H_i^2 R_i$ and since H_i has positive or zero roots, $R_i H_i = H_i R_i$ and so $H_i R_i^{CT} = R_i^{CT} H_i$. Then $A = U^{CT} D U = U^{CT} D_r U U^{CT} D_u U = L W = WL$ and

$$B = U^{CT}B_{1}U = U^{CT}(C_{1}+C_{2}+\ldots+C_{s})U$$

= $U^{CT}(H_{1}U_{1}+H_{2}U_{2}+\cdots+H_{s}U_{s})U$
= $U^{CT}(H_{1}R_{1}^{CT}D_{1}^{C}+H_{2}R_{2}^{CT}D_{2}^{C}+\cdots+H_{s}R_{s}^{CT}D_{s}^{C})U = NW^{CT}$

where $N = U^{CT}(H_1 R_1^{CT} + H_2 R_2^{CT} + \cdots + H_s R_s^{CT})U$ (which is normal since the hermitian H_i and unitary R_i^{CT} commute) and $W^{CT} = U^{CT}(D_1^C + D_2^C + \cdots + D_s^C)U$. It is evident that LN = NL.

Conversely, if A = LW = WL and $B = NW^{CT}$ as described, then $AB = WLNW^{CT}$ which is obviously normal as is $BA = NW^{CT}WL = NL$.

It is easily seen that $B = NW^{CT}$ is normal if and only if $NW^{CT} = W^{CT}N$. If $B = NW^{CT} = (HR)W^{CT}$ is quasi-normal, then $B = H(RW^{CT}) = (RW^{CT})H^{T} = RHW^{CT}$ (from property a), section 2) so $W^{CT}H^{T} = HW^{CT}$ or $WH = H^{T}W$ and $W(BB^{CT}) = (B^{CT}B)W$.

If A is normal, if B is quasi-normal, and if AB is normal, it does not necessarily follow that BA is normal though it can occur. For example, if $B = HU = UH^T$ is quasi-normal and if $A = U^{CT}$, then $AB = U^{CT}UH^T = H^T$ and $BA = HUU^{CT}$ = H are both normal. But the following is an example in which AB is normal but not BA. Let $B = HU = UH^T$ be quasi-normal but not normal (i.e., H is not real by property b) section 2) and let H be non-singular. Let $A = H^{-1}$ which is hermitian (so normal) and not quasi-normal (since H^{-1} is not real). Then AB = $H^{-1}HU = U$ is normal. If BA were also normal, then by the above theorem $(A^{CT}A)B = B(AA^{CT})$ and $(B^{CT}B)A = A(BB^{CT})$. But $(B^{CT}B)A = (H^T)^2H^{-1}$ and $A(BB^{CT}) = (H^{-1})(H^2)$ and if these were equal, $(H^T)^2 = H^2$ would follow which means that $H^2 = (H^T)^2 = (H^{CT})^2$ so that H^2 is real. But this is not possible for if $H = VDV^{CT}$ where D is diagonal with positive real elements (since H is nonsingular), then $H^2 = VD^2V^{CT} = V^CD^2V^T$ if H^2 is real so that $V^TVD^2 =$ D^2V^TV so $V^TVD = DV^TV$ so $VDV^{CT} = V^CDV^T = H$ is real which contradicts the above assumption.

But the following theorems result when A and B are both quasi-normal.

THEOREM 4. If A and B are quasi-normal and if AB is normal, then BA is normal.

Let U be a unitary matrix such that $UAU^T = F$ is the normal form described in Theorem 1 and where $FF^{CT} = FF^{T*} = r_1^2 I_1 + r_2^2 I_2 + r_3^2 I_3 + \cdots + r_k^2 I_k$ which is real diagonal with $r_1^2 > r_2^2 > \cdots > r_k^2 \ge 0$. These r_i^2 may be either the squares of diagonal elements of F or they may arise when matrices of the form

$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

are squared. Assume that any of the latter whose r_i^2 are equal are arranged first in a given block followed by any diagonal elements whose square is the same r_i^2 .

Let $U^{C}BU^{CT} = B_{1}$ which is quasi-normal and then $UAU^{T}U^{C}BU^{CT} = FB_{1}$ is normal. Let V be the unitary matrix

$$\sqrt{2}^{-1} \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix}$$

Then the following matrix relation holds, independent of a and b:

$$V\begin{bmatrix}a&b\\-b&a\end{bmatrix}V^{CT} = \begin{bmatrix}a-bi&0\\0&a+bi\end{bmatrix}$$

Let $F = F_1 + F_2 + \cdots + F_k$ where the direct sum is conformable to that of FF^{CT} given above (i.e., $F_iF_i^{CT} = r_i^2I_i$) and consider $F_1 = G_1 + G_2 + \cdots + G_l + r_1I$ where each G_i is 2×2 as described above and I is an identity matrix of proper size. Let $W_1 = V + V + \cdots + V + I$ be conformable to F_1 ; define W_i for each F_i in like manner and let $W = W_1 + W_2 + \cdots + W_k$. If $r_k = 0$, $W_k = I$. Then $WFW^{CT} = D$ is complex diagonal, where if d_i is the *i*th diagonal element $d_i d_i \ge d_{i+1} d_{i+1}$. Then

 $W(UAU^T)W^{CT}W(U^CBU^{CT})W^{CT} = (WFW^{CT})(WB_1W^{CT}) = DB_2$ is normal for $B_2 = WB_1W^{CT}$ (or $B_1 = W^{CT}B_2W$). Since B_1 is quasi-normal, $B_1B_1^{CT} = B_1^TB_1^C$ so that $W^{CT}B_2WW^{CT}B_2^{CT}W = W^TB_2^TW^CW^TB_2^CW^C$ or that $B_2B_2^{CT}WW^T = WW^TB_2^TB_2^C$. Now VV^T is a matrix of the form

$$\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$$

so that WW^T is a direct sum of matrices of this form and 1's.

Let $B_2 = (b_{ij})$ and consider $(WW^T)^{CT}B_2B_2^{CT}(WW^T) = B_2^TB_2^C$. Let $B_2B_2^{CT} = (c_{ij}), B_2^TB_2^C = (f_{ij}), c_{ij}$ and f_{ij} are identifiable with the b_{ij} , both matrices being hermitian. Consider two cases:

a) If $d_1 \bar{d}_1 = d_j \bar{d}_j$ for all *j* (where d_j is the *j*th diagonal element of *D*), then $D = kD_u$ where D_u is unitary diagonal. Since $WFB_1 W^{CT} = DB_2 = kD_uB_2 = D_u(kB_2)$ is normal, then $D_u^C(D_uB_2k)D_u = B_2D = WB_1FW^{CT}$ is normal as is $B_1F = U^CBU^{CT}UAU^T$ so BA is normal.

b) If $d_1 \overline{d}_1 \neq d_j \overline{d}_j$ for some *j*, let $d_1 \overline{d}_1 = d_2 \overline{d}_2 = \cdots = d_l \overline{d}_l$ for $1 \leq l < n$ (so that $d_l \overline{d}_l > d_{l+1} \overline{d}_{l+1}$).

Suppose $F_1 = G_1 + G_2 + r_1 I_1$ where I_1 is the 2 × 2 identity matrix. (The general case will be seen to follow from this example.) From $(WW^T)^{CT}B_2B_2^{CT}(WW^T) = B_2^TB_2^C$ and the fact that $W_1 = V + V + I_1$, it follows that $c_{11} = f_{22}, c_{22} = f_{11}, c_{33} = f_{44}, c_{44} = f_{33}, c_{55} = f_{55}, c_{66} = f_{66}$ (and $\bar{c}_{12} = f_{12}, \bar{c}_{34} = f_{34}$, etc.). These equalities supply the following relations (where the summations is over i = 1 to n):

$$\begin{aligned} c_{11} &= \Sigma b_{1i} \bar{b}_{1i} = \Sigma b_{i2} b_{i2} = f_{22}; \\ c_{33} &= \Sigma b_{3i} \bar{b}_{3i} = \Sigma b_{i4} \bar{b}_{i4} = f_{44}; \\ c_{55} &= \Sigma b_{5i} \bar{b}_{5i} = \Sigma b_{i5} \bar{b}_{i5} = f_{55}; \end{aligned} \qquad \begin{aligned} c_{22} &= \Sigma b_{2i} \bar{b}_{2i} = \Sigma b_{i1} \bar{b}_{i1} = f_{11} \\ c_{44} &= \Sigma b_{4i} \bar{b}_{4i} = \Sigma b_{i3} \bar{b}_{i3} = f_{33} \\ c_{55} &= \Sigma b_{5i} \bar{b}_{5i} = \Sigma b_{i5} \bar{b}_{i5} = f_{55}; \end{aligned}$$

 DB_2 is normal so that the following relations also hold:

$$d_{1} \overline{d}_{1} \Sigma b_{1i} \overline{b}_{1i} = \Sigma d_{i} \overline{d}_{i} b_{i1} \overline{b}_{i1}; \qquad d_{2} \overline{d}_{2} \Sigma b_{2i} \overline{b}_{2i} = \Sigma d_{i} \overline{d}_{i} b_{i2} \overline{b}_{i2}$$

$$d_{3} \overline{d}_{3} \Sigma b_{3i} \overline{b}_{3i} = \Sigma d_{i} \overline{d}_{i} b_{i3} \overline{b}_{i3}; \qquad d_{4} \overline{d}_{4} \Sigma b_{4i} \overline{b}_{4i} = \Sigma d_{i} \overline{d}_{i} b_{i4} \overline{b}_{i4}$$

$$d_{5} \overline{d}_{5} \Sigma b_{5i} \overline{b}_{5i} = \Sigma d_{i} \overline{d}_{i} b_{i5} \overline{b}_{i5}; \qquad d_{6} \overline{d}_{6} \Sigma b_{6i} \overline{b}_{6i} = \Sigma d_{i} \overline{d}_{i} b_{i6} \overline{b}_{6i}$$

Since $d_1 \overline{d}_1 = d_2 \overline{d}_2$, on combining the first 2 relations in each of these sets, $d_1 \overline{d}_1 (\Sigma b_{1i} \overline{b}_{1i} + \Sigma b_{2i} \overline{b}_{2i}) = d_1 \overline{d}_1 (\Sigma b_{i1} \overline{b}_{i1} + \Sigma b_{i2} \overline{b}_{i2}) = \Sigma d_i \overline{d}_i (b_{i1} \overline{b}_{i1} + b_{i2} \overline{b}_2)$ so that $\Sigma (d_1 \overline{d}_1 - d_i \overline{d}_i) (b_{i1} \overline{b}_{i1} + b_{i2} \overline{b}_{i2}) = 0$. $d_1 \overline{d}_1 = d_j \overline{d}_j$ for $j = 1, 2, \dots, 6$ but for j beyond 6, $d_1 \overline{d}_1 - d_j \overline{d}_j > 0$ so that $b_{i1} \overline{b}_{i1} + b_{i2} \overline{b}_{i2} = 0$ or $b_{i1} = 0$ and $b_{i2} = 0$ Quasi-normal matrices

for $i = 7, 8, \dots n$. Similarly, $b_{13} = 0$ and $b_{i4} = 0$ for i > 6. The third relations in each set give $b_{i5} = 0$ and $b_{i6} = 0$ for i > 6.

On adding all 6 relations in the first set,

$$\sum_{i, j=1}^{6} b_{ij} \bar{b}_{ij} + \sum_{i=1}^{6} \sum_{j=7}^{n} b_{ij} \bar{b}_{ij} = \sum_{i, j=1}^{6} b_{ij} \bar{b}_{ij} + \sum_{i=7}^{n} \sum_{j=1}^{6} b_{ij} \bar{b}_{ij}$$

and on cancelling the first summations on each side,

$$\sum_{i=1}^{6} \sum_{j=7}^{n} b_{ij} \bar{b}_{ij} = \sum_{i=7}^{n} \sum_{j=1}^{6} b_{ij} \bar{b}_{ij}.$$

But the right side is 0 from the above, so the left side is 0 and so $b_{ij} = 0$ for $i = 1, 2, \dots, 6$ and j > 6.

From this it is evident that this procedure may be repeated, and that if

$$D = r_1 D_1 + r_2 D_2 + \cdots + r_k D_k$$

where the D_i are unitary and the r_i non-negative real, as above, then

$$B_2 = C_1 \dotplus C_2 \dotplus \cdots \dotplus C_k$$

conformable to D. Then $r_i D_i C_i$ is normal so $D_i^{CT} (D_i C_i r_i) D_i = C_i r_i D_i$ is normal so $B_2 D$ is normal, so $B_1 F$ and so $U^C B U^{CT} U A U^T$ and B A.

THEOREM 5. If A and B are quasi-normal, then AB is normal if and only if $A^{CT}AB = BAA^{CT}$ and $ABB^{CT} = B^{CT}BA$ (i.e., if and only if each is 'normal relative to the other').

If AB is normal, from the above, $D^{CT}DB_2 = B_2DD^{CT}$ so that $F^{CT}FB_1 = B_1FF^{CT}$ or $A^{CT}AB = BAA^{CT}$. Similarly, since DB_2 is normal, $DB_2B_2^{CT}D^C = B_2^{CT}D^CDB_2$ so $DB_2B_2^{CT} = B_2^{CT}B_2D$ or $FB_1B_1^{CT} = B_1^{CT}B_1F$ or $ABB^{CT} = B^{CT}BA$. The converse is directly verifiable.

THEOREM 6. Let A and B be quasi-normal. If AB is normal, then $A = LW = WL^{T}$ (with L hermitian and W unitary) and $B = NW^{CT}$ where N is normal and $L^{T}N = NL^{T}$; and conversely.

As above, let $UAU^T = F = W^{CT}DW = W^{CT}D_rWW^{CT}D_uW$ (where D_r and D_u are the hermitian and unitary polar matrices of D) and $U^CBU^{CT} = B_1 = W^{CT}B_2W = W^{CT}(C_1 + C_2 + \cdots + C_k)W$. As in the proof of Theorem 3 it follows that for all i, $D_iC_iC_i^{CT} = C_i^{CT}C_iD_i$ and $U_i^{CT}C_iC_i^{CT} = C_i^{CT}C_iU_i^{CT}$, with U_i as defined there, so that when $R_i = D_i^CU_i^{CT}$ (where D, here, $= r_1D_1 + r_2D_2 + \cdots + r_kD_k$, as earlier), then $C_i = H_iU_i = H_iR_i^{CT}D_i^C$ with $H_iR_i = R_iH_i$. Then, since

$$WD_r = D_r W, UAU^T = W^{CT}D_r WW^{CT}D_u W = D_r(W^{CT}D_u W) \text{ and}$$
$$A = (U^{CT}D_r U)(U^{CT}W^{CT}D_u WU^C) = LX$$
$$= (U^{CT}W^{CT}D_u WU^C)(U^TD_r U^C) = XL^T$$

[7]

with $L = U^{CT}D_r U$ hermitian and $X = U^{CT}W^{CT}D_uWU^C$ unitary. Also,

$$U^{C}BU^{CT} = W^{CT}(H_{1}R_{1}^{CT}D_{1}^{C} + H_{2}R_{2}^{CT}D_{2}^{C} + \cdots + H_{k}R_{k}^{CT}D_{k}^{C})W = N_{1}Y$$

where

$$N_1 = W^{CT} (H_1 R_1^{CT} \dotplus H_2 R_2^{CT} \dotplus \cdots \dotplus H_k R_k^{CT}) W$$

is normal and

$$Y = W^{CT} (D_1^C \dotplus D_2^C \dotplus \cdots \dotplus D_k^C) W$$

is unitary; then

$$B = U^T N_1 Y U = (U^T N_1 U^C)(U^T Y U) = N X^{CT}$$

where $N = U^T N_1 U^C$ is normal and $X^{CT} = U^T Y U = U^T W^{CT} D_u^C W U$. Also $L^T N = N L^T$ since $D_r N_1 = N_1 D_r$, $D_r^C N_1 = N_1 D_r^C$ so

$$(U^{C}L^{C}U^{T})(U^{C}NU^{T}) = (U^{C}NU^{T})(U^{C}L^{C}U^{T})$$

so $L^T N = N L^T$. The converse is immediate.

4. Quasi-normal products of matrices

It is possible if A is normal and B quasi-normal that AB is quasi-normal. For example, any quasi-normal matrix $C = HU = UH^T$ is such a product with A = Hand B = U. Or if $C = HU = UH^T$ and A = H, then $AC = H^2U = HUH^T = U(H^T)^2$ is quasi-normal. The following theorems clarify this matter.

THEOREM 7. If A is normal and B is quasi-normal, then AB is quasi-normal if and only if $ABB^{CT} = BB^{CT}A$ and $B^{C}AA^{CT} = A^{T}A^{C}B^{C}$ (or $BA^{C}A^{T} = A^{CT}AB$).

(If one were to define 'N is normal with respect to M'' to mean $NN^{CT}M = MN^{CT}N$ and 'Q is quasi-normal with respect to P' to mean $PQQ^{CT} = Q^TQ^CP$, the above theorem would say that if A is normal and B quasi-normal, then AB is quasi-normal if and only if (quasi-normal) B is normal with respect to A and (normal) A is quasi-normal with respect to B^C .)

If the latter conditions hold, then: $(AB)(AB)^{CT} = ABB^{CT}A^{CT} = BB^{CT}AA^{CT}$ and $(AB)^{T}(AB)^{C} = B^{T}A^{T}A^{C}B^{C} = B^{T}B^{C}AA^{CT}$ which are equal.

Conversely, let AB be quasi-normal and let $UAU^{CT} = D = d_1I + d_2I_2 + \dots + d_kI_k$ where $d_i\overline{d}_i > d_j\overline{d}_j$, i > j. Let $UB^TU^T = B_1 = (b_{ij})$. If $(AB)(AB)^{CT} = ABB^{CT}A^{CT} = AB^TB^CA^{CT} = (AB)^T(AB)^C = B^TA^TA^CB^C = B^TA^CA^TB^C$, then

$$(UAU^{CT})(UB^{T}U^{T}U^{C}B^{C}U^{CT})(UA^{CT}U^{CT})$$

= $(UB^{T}U^{T})(U^{C}A^{C}U^{T}U^{C}A^{T}U^{T})(U^{C}B^{C}U^{CT})$

so that $DB_1 B_1^{CT} D^{CT} = B_1 D^C D B_1^{CT}$. Equating diagonal elements on each side of this relation, $\sum_{j=1}^{n} d_i \overline{d}_i b_{ij} \overline{b}_{ij} = \sum_{j=1}^{n} d_j \overline{d}_j b_{ij} \overline{b}_{ij}$, $i = 1, 2, \dots, n$, or $\sum_{j=1}^{n} (d_i \overline{d}_i - d_j \overline{d}_j) b_{ij} \overline{b}_{ij} = 0$. Let $d_1 \overline{d}_1 = d_2 \overline{d}_2 = \cdots d_l \overline{d}_l > d_{l+1} \overline{d}_{l+1}$. Then $b_{ij} = 0$ for $i = 1, 2, \dots, l$ and $j = l+1, l+2, \dots, n$. Since B_1 is quasi-normal, $\sum_{j=1}^n b_{ij} \overline{b}_{ij} = \sum_{j=1}^n b_{ji} \overline{b}_{ji}$ for $i = 1, 2, \dots, n$. On adding the first l of these equations and cancelling, $b_{ij} = 0$ for $i = l+1, l+2, \dots, n$ and $j = 1, 2, \dots, l$. In this manner if $D = r_1 D_1 + r_2 D_2 + \dots + r_t D_t$ with $r_i > r_{i+1}$ and D_i unitary, then $B_1 = C_1 + C_2 + \dots + C_t$ conformable to D. Since $r_i D_i D_i^{CT} r_i C_i^T = r_i^2 C_i^T = C_i^T r_i^2 = C_i^T r_i D_i D_i^{CT} r_i$, all i, $DD^{CT} B_1^T = B_1^T DD^{CT}$ and so $U^{CT} DD^{CT} UU^{CT} B_1^T U^C = U^{CT} B_1^T U^C U^T DD^{CT} U^C$ or $AA^{CT} B = BA^T A^C$ or $A^{CT} AB = BA^T A^C$ or $A^T A^C B^C = B^C AA^{CT}$.

Also, $D(B_1B_1^{CT}D^{CT}) = B_1D^CDB_1^{CT} = D^CDB_1^{CT} = D(D^CB_1B_1^{CT})$ so that $C_iC_i^{CT}(r_iD_i^C) = (r_iD_i^C)C_iC_i^{CT}$ for $i = 1, 2, \dots, t$. (If $r_t = 0$, this is still true and D_t may be chosen to be the identity matrix.) Therefore $B_1B_1^{CT}D^{CT} = D^{CT}B_1B_1^{CT}$ and $UB^TU^TU^CB^CU^{CT}UA^{CT}U^{CT} = UA^{CT}U^{CT}UB^TU^TU^CB_1^CU^{CT}$ so $B^TB^CA^{CT} = A^{CT}B^TB^C$ or $AB^TB^C = B^TB^CA$.

COROLLARY. Let A be normal, B quasi-normal; if AB is quasi-normal, then BA^{C} is quasi-normal, and conversely.

From the above, $UAU^{CT}UBU^{T} = DB_{1}^{T}$ is quasi-normal, and if $D = D_{r}D_{u}$, D_{r} real and D_{u} unitary, then since $D_{u}^{C} = D_{u}^{CT}$, $D_{u}^{C}(DB_{1}^{T})D_{u}^{C} = D_{r}B_{1}^{T}D_{u}^{C} = B_{1}^{T}D_{r}D_{u}^{C}$ $= B_{1}^{T}D^{C}$ is quasi-normal as are $UBU^{T}U^{C}A^{C}U^{T}$ and BA^{C} . Reversing the steps proves the converse.

If A is normal and B is quasi-normal, BA^{C} is quasi-normal if and only if AB is quasi-normal if and only if $(B^{T}B^{C})A = A(BB^{CT})$ and $(A^{T}A^{C})B^{C} = B^{C}(AA^{CT})$. Therefore, if A is normal and B quasi-normal, BA is quasi-normal if and only if $(B^{T}B^{C})A^{C} = A^{C}(BB^{CT})$ and $(A^{CT}A)B^{C} = B^{C}(A^{C}A^{T})$, i.e., replace A by A^{C} in the preceding, or $(B^{CT}B)A = A(B^{C}B^{T}) = A(B^{CT}B)$ and $(A^{CT}A)B^{C} = B^{C}(A^{C}A^{T})$, thus exhibiting the fact that when AB is quasi-normal, BA is not necessarily so.

THEOREM 8. If A = LW = WL is normal and $B = KV = VK^T$ is quasi-normal (where L and K are hermitian and W and V are unitary) then AB is quasi-normal if and only if LK = KL, $LV = VL^T$ and WK = KW.

If the three relations hold, then AB = LWKV = LKWV on one hand, and $AB \doteq WLKV = WKLV = WKVL^T = WVK^TL^T = WV(LK)^T$ is quasi-normal since *LK* is hermitian and *WV* is unitary.

Conversely, let

$$A = U^{CT}DU = (U^{CT}D_{r}U)(U^{CT}D_{u}U) = LW \text{ and} B = U^{CT}B_{1}^{T}U^{C} = (U^{CT}K_{1}U)(U^{CT}V_{1}U^{C}) = KV = VK^{T}$$

where K_1 and V_1 are hermitian and unitary and direct sums conformable to B_1^T and D. A direct check shows that LK = KL and $LV = VL^T$; also $WK = U^{CT}D_uK_1U$ = $U^{CT}K_1D_uU = KW$ since $D_uB_1B_1^{CT} = B_1B_1^{CT}D_u$ implies $D_uK_1 = K_1D_u$.

A sufficient condition for the simultaneous reduction of A and B is given by the following:

THEOREM 9. If A is normal, B quasi-normal, and $AB = BA^T$, then $WAW^{CT} = D$ and $WB^TW = F$, the normal form of Theorem 1, where W is a unitary matrix; also AB is quasi-normal.

Let $UAU^{CT} = D$, diagonal, and $UBU^T = B_2$ which is quasi-normal. Then $AB = BA^T$ implies $DB_2 = UAU^{CT}UBU^T = UBU^TU^CA^TU^T = B_2D^T = B_2D$. Let $D = c_1I_1 + c_2I_2 + \cdots + c_kI_k$, where the c_i are complex and $c_i \neq c_i$ for $i \neq j$, and $B_2 = C_1 + C_2 + \cdots + C_k$. Let V_i be unitary such that $V_iC_iV_{i,}^T = F_i$ = the real normal form of Theorem 1, and let $V = V_1 + V_2 + \cdots + V_k$. Then $VUAU^{CT}V^{CT}$ = D, $VUBU^TV^T = F$ = a direct sum of the F_i .

Also, $AB = BA^T$ implies $B^TA^T = AB^T$ and so $ABB^{CT}A^{CT} = AB^TB^CA^{CT} = B^TA^TA^CB^C = (AB)^T(AB)^C$. (The fact that A is normal is not used in the latter.)

It is also possible for the product of two normal matrices A and B to be quasinormal. If $Q = HU = UH^{T}$ is quasi-normal and if A = U and B = H this is so or if $KV = VK^{T}$ is quasi-normal and if A = UK = KU is normal with K hermitian and V and U unitary, for B = V, $AB = (UK)V = K(UV) = (UV)K^{T}$ is quasinormal. But if in the first example, $U^{2}H$ is not normal, then HU is not quasi-normal (see section 2, c)) so that BA is not necessarily quasi-normal though AB is. When A alone is normal an analog of Theorem 2 can be obtained which states the following: If A is normal, then AB and AB^{T} are quasi-normal if and only if $ABB^{CT} = B^{T}B^{C}A$, $BB^{CT}A = AB^{T}B^{C}$, and $B^{C}AA^{CT} = A^{T}A^{C}B^{C}$. (The proof is not included here because of its similarity to that above.) When B is quasi-normal, two of these conditions merge into one in Theorem 7.

It is possible for the product of two quasi-normal matrices to be quasi-normal, but no such simple analogous necessary and sufficient conditions as exhibited above are available. This may be seen as follows. Two non-real complex commutative matrices $S = S^T$ and $T = T^T$ can form a quasi-normal (and non-real symmetric) matrix ST (such that TS is also quasi-normal) which need not be normal. Then two symmetric matrices:

$$X = \begin{bmatrix} i & i+i \\ 1+i & -i \end{bmatrix}, \qquad Y = \begin{bmatrix} 1+2i & 3-4i \\ 3-4i-(1+2i) \end{bmatrix}$$

are such that XY = Z is real, normal and quasi-normal (and not symmetric). Finally, if U and V are two complex unitary matrices of the same order, they can be chosen so UV is non-real complex, normal and quasi-normal. If A = S + X + Uand B = T + Y + V, AB = ST + XY + UV where A and B are quasi-normal as in AB (but not symmetric). A simple inspection of these matrices shows that relations on the order of $(B^TB^C)A = A(BB^{CT}) = (BB^{CT})A$ and $(A^TA^C)B^C = (AA^{CT})B^C =$ $B^C(AA^{CT})$ do not necessarily hold; these are sufficient, however, to guarantee that AB is quasi-normal (as direct verification from the definition will show).

References

- [1] R. Bellman, Introduction to Matrix Analysis (McGraw-Hill, New York, 1960).
- [2] K. Morita, 'Über normale antilineare Transformationen', J. Acad. Proc. Tokyo, 20 (1944), 715-720.
- [3] I. Schur, 'Ein Satz über quadratische Formen mit komplexen Koeffizienten', Amer. J. Math.
 67 (1945), 472-480.
- [4] J. Stander and N. Wiegmann, 'Canonical Forms for Certain Matrices under Unitary Congruence', Can. J. Math. 12 (1960), 427-445.
- [5] U. Wegner and J. Wellstein, 'Bermerkung zur Transformationen von komplexen symmetrischen Matrizen', Monatshefte für Math. and Physik. 40 (1933), 319-332.
- [6] N. Wiegmann, 'Normal Products of Matrices', Duke Math. Journal 15 (1948), 633-638.

California State College Dominguez Hills

.