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1. Introduction

A normal matrix A — (ay) with complex elements is a matrix such that
AACT = ACTA where ACT denotes the (complex) conjugate transpose of A. In an
article by K. Morita [2] a quasi-normal matrix is denned to be a complex matrix
A which is such that AACT = ATAC, where T denotes the transpose of A and Ac

the matrix in which each element is replaced by its conjugate, and certain basic
properties of such a matrix are developed there. (Some doubt might exist concern-
ing the use of 'quasi' since this class of matrices does not contain normal matrices
as a sub-class; however, in deference to the original paper and the normal canoni-
cal form of Theorem 1 below, the terminology in [2] is used.)

Here further properties of quasi-normal matrices are developed, their relation,
in a sense, to normal matrices is considered, and further results concerning normal
products are obtained including an analog (Theorem 4) for quasi-normal matrices.

2. Properties of quasi-normal matrices

The basic theorem developed in [2] is the following, for which an alternate
proof is supplied here for brevity and easy reference.

THEOREM 1. A matrix A is quasi-normal if and only if there exists a unitary
matrix U such that UAUT is a direct sum of non-negative real numbers and of 2x2
matrices of the form:

l-b a

where a and b are non-negative real numbers.

Let A be quasi-normal where A - S+T where S = ST and T= -TT. Then
AACT = ATAC gives ( S + r ) ( S C T + r c r ) = (ST + TT)(SC+TC) or (S+T)(SC-TC)
= (S-T)(SC + TC) and so: SSC + TSC-STC- TTC = SSC-TSC + STC~TTC or
TSC = STC. There exists a unitary matrix U (see [3] or [5]) such that USUT = D
is a diagonal matrix with real, non-negative elements. Therefore UTUTUCSCUCT =
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330 N. A. Wiegmann [2]

USUTUcTcUcr or WD = DWC where W= -WT. Let U be chosen so that D is
such that d( g ^ O for / < / where dt is the j t h diagonal element of D. If W = (ttJ),
where t}i = —ty, then ttJdj = dt1tj, fo r / > i, and 3 possibilities may occur: if
dj = di i= 0, then ttj is real; if </, = d( = 0, fy is arbitrary (though PF = - Wr

still holds); and if dj ^ fi?f, then fy = 0 for if ttJ = a + ib, then (a + ib)dj =
dt(a — ib) and a(dj-di) = 0 implies a = 0 and b{di + dJ) = 0 implies rf,- = -</,•
(which is not possible since the dt are real and non-negative and d} j= dt) or b = 0
so ry = 0. So if USUT = d1l1 + d2l2+ • • • + dklk where + denotes direct sum, then
UTUT = Tl + T2+ • • • +Tk where Tt = - r f

r is real and Tk = -Tk is complex
if and only if dk = 0. For each real Tt there exists a real orthogonal matrix Vt so
that V\ Tt V? is a direct sum of zero matrices and matrices of the form

r o in
l-b Oj

where b is real (see [1] page 65 for example). If Tk = —Tk
T is complex, there

exists a complex unitary matrix Vk such that VkTk VkT is a direct sum of matrices
of the same form (see [4]), so that if V= Vt+ V2+ • • • + Vk, then VUSUTVT = D
and VUTUTVT = F = the direct sum described. Therefore KC/^ t / r F r = D + f
which is the desired form.

Among properties of quasi-normal matrices obtained in [2] are the following:
If A and B are two quasi-normal matrices such that ABC = BAC, then A and B
can be simultaneously brought into the above normal form under the same U
(with a generalization to a finite number) but not conversely; if A is quasi-nor-
mal, AAC is normal in the usual sense, but not conversely; and if A is quasi-nor-
mal and AAC is real, there is a real orthogonal matrix which gives the above form.

Among properties of quasi-normal matrices not obtained in [2] but of sub-
sequent use are the following:

(a) A is quasi-normal if and only if A = HU = UHT where H is hermitian
and U is unitary.

For if A = HU is a polar form of A, then UCTHU = K is such that ^ =
i/E/ = UK and if,AACT = ^ r ^ c , then i72 = ( £ r ) 2 and since this is a hermitian
matrix with non-negative roots, H = KT and ^ = HU = UHT. The converse is
immediate. This same result may be seen as follows. If UA UT = F is the normal
form in Theorem 1, F = Dr V = VDr where Dr is real diagonal and V is a direct
sum of l's or blocks of the form

; b]
-b a A

which are unitary. Therefore A = UCTDrUUCTVUc = UCTVUcUTDrU
c which

exhibits the polar form in another guise.
(b) A is both normal and quasi-normal if and only if A = HU = UH = UH

so H = HT = HCT so that H is real.

https://doi.org/10.1017/S1446788700006716 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700006716


[3] Quasi-normai matrices 331

(c) If A = HU = UH1 is quasi-normal, then UHis quasi-normal if and only
if HU2 = U2H, i.e. if and only if HU2 is normal. For if UH is quasi-normal,
UH=HTU so that HU2 = UHTU = U2H; and if HU2 = U2H, then HUU =
UHTU = UUH or HTU = t//f.

(d) A matrix A is quasi-normal if and only if A can be written A = SPF =
Wc S where S = ST and fF is unitary. If A is quasi-normal, from the above
A = UCTFUC = UCTDrU

cUTVUc = SW = UCT VUUCTDrU
c = WcS where

5 = UCTDrlI
c is symmetric and PF = UTVUC is unitary. Conversely, if ,4 =

Note that if B is quasi-normal and if B = SU where S = ST and U is unitary,
it does not necessarily follow that B = UCS; but it is possible to find an Sl and
Ui such that B = Sx t/t = UfSt holds. This may be seen as follows. If B = SU
is quasi-normal, let V be unitary such that VSVT = D is diagonal, real, and non-
negative, so that VBVT = VSVTVCUVT = DW is quasi-normal from which
DWWCTDC = JFrZ)TZ)tH''c or, since D is real, WD2 = D2W and WD = DW
since I> is non-negative. Then 5 = ( F c r D F c ) ( F r J F F c ) = SU = {VCTWV)
(VCTDVC) which is not necessarily = to UCS = ( F ^ ^ F X ^ 7 ^ 0 ) . However,
if D = r1ll + r2l2 + " " ' 4 -^4 ' r > > ^for i >,/, then W = W^-l- W2+ • • • -i- fFk.
Since each W, is unitary, it is quasi-normal and there exist unitary Xt so that
X, Wt X? = Fj is in the real normal form of Theorem 1. If Z = Zx + Z 2 + • • • + Zk,
then XVBVTXT = ZZ)tFZT = DXWXT = £»F = FZ» where F = F! + F 2 + •• •
+F4. So

5 = (VCTXCTDXCVC){VTXTFXCVC)

C/1 = F T Z r F Z c F c ^ VTWVC = U.

3. Normal products of matrices

It was shown in [6] that the following are true: if A, B, and AB are normal
matrices, the BA is normal; a necessary and sufficient condition that the product,
AB, of two normal matrices A and B be normal is that each commute with the
hermitian polar matrix of the other. First a generalization of this theorem is obtain-
ed here and then an analog for the quasi-normal case is developed.

THEOREM 2. Let Abe a normal matrix. Then AB and BA are normal if and only
if{ACTA)B = B{AACT) and {BCTB) = A(BBCT).

(In a sense, the latter conditions might be described as stating that each matrix
is 'normal relative to the other'.)

If AB and BA are normal, let U be a unitary matrix such that UA UCT — D
is diagonal, dtdi 2: didi ^ 0 for j < j , and let UBUCT = B± = {btj). From
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ABBCTACT = BCTACTAB it follows that DB^B^D0 = BfTDcDBl; by equating
diagonal elements it follows that £ " = 1 rf,3,6y5y = YJ=I

 dj^jbji^ji f° r

i = 1, 2, • • • ,« . Similarly from BAACTBCT = ACTBCTBA follows BlDDcBfT =
D^B^BiD and Yj=vdjdjbifiij = Z"=i didthtbjf L e t ' = 1 in each of these
equations so that X5=i^i<Ji*ij2>ij = £"=i djdjbnhn and £"=x djdjbljb~lj =
Yj^id^bj! from which follows Yj-iid^-d^y,^ = Yj^ii^Sj-
d^^}J>ji so that Yj=i(di*i-dJ*j)Q>ijtiij+bjlb'n) = 0. Let rf^ = J232 =
• • • = </,d, > rfj+ifi/i+i; then b^jd^ + bj^Bj^ = 0 for j = / + 1 , /+2 , • • •, n since
d1a

t
l — dJa'j is zero or positive and is the latter for j > I. So bi} = Q and

i,-! = 0 for j = /+1,1+2, • • ; n. For i = 2, • • •, / in turn it follows that btj = 0
and bji = 0 for / = 1, 2, • • •, / and for ; = /+1 ,1+2, • • ; n. Let UAUCT = D
= r1Dl + r2D2+ • • • +r,Ds where the rt are real, r; > r̂  for j < j and the i)j
are unitary. Then by repeating the above process it follows that UBUCT = Bt =
C1 + C2+ • • • 4-Cs is conformable to D.

It follows from the given conditions that r,Z>i Ct CfTD^rt = CfT(rtDf)(Dtrt)Ct

and CiriDiDfriCf:T = riD
<rCfTCiDiri or that D^iCf7 = C^Cj-D, and D.CiC"

= CfTCiDi if r( > 0. If rs = 0, Z)s is arbitrary insofar as Z) is concerned and so
may be chosen so that Z>s Cs Cs

cr = CfTCsDs in which case Z)s may not be diagonal.
But whether or not this is done, it follows that DB^B" = B^B^D and that
BtDDCT = DCTDBX sc that A(BBCT) = (BCTB)A and B(AACT) = (ACTA)B.

The converse is immediate. It may be noted that if the roots of A are all dis-
tinct in absolute value, B must be normal. The following further clarifies the situa-
tion.

THEOREM 3. Let A = LW = WL be the polar form of the normal matrix A.
Then AB and BA are normal if and only if B = NWCT where N is normal and
LN = NL.

In the above proof let C; = HiUi= U^i be polar forms of the Cf. Then
U^HiUt = Kt so that t/fTCjCfTt/j = C^Ci or UfTCiCfT = CfTClUfT. Also,
from the above Z>1CiCi

c:r = C,CTC,-Z)i. Let Rt = DfUfT; then

RiCiC?7 = D<rU?TClC?T = DfC^CiUf7 = CiCfTD'rU" = C^Ri

where Rt is unitary. (If rs = 0, Ds may be chosen = UfT as described above).
So RtHf = H?Rt and since Hi has positive or zero roots, RiHj = HtRi and
so HtRfT = RfTHt. Then A = UCTDU = UCTDrUUCTDuU = LW = WL and

B = UCTB1 U = C/cr(C1 + C2+ ... + CS)U

= UCT(H1U1 + H2U2+ • • • +HSUS)U

= UCT(H1R
c
l
TDc

1+H2R
c
2
TDc

2+ • • • +HsR
c
s
TDCs)U=NWCT

where N = UCT(HiR
c
1
T + H2R2

:T+ • • • +HSR
C

S
T)U (which is normal since the

hermitian i/f and unitary RfT commute) and WCT = UCT{DC
1+DC

2+ • • • +Df)U.
It is evident that LN = NL.
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Conversely, if A = LW = WL and B = NWCT as described, then AB =
WLNWCT which is obviously normal as is BA = NWCTWL = NL.

It is easily seen that B = NW07 is normal if and only if NWCT = WCTN.
If £ = NWCT = (HR)^7 is quasi-normal, then B = H{RWCT) = (RWCT)HT =
RHWCT (from property a), section 2) so WCTHT = HWCT or WH = HTW
and W(BBCT) = (BCTB)W.

If A is normal, if B is quasi-normal, and if AB is normal, it does not necessarily
follow that BA is normal though it can occur. For example, if B = HU = UHT

is quasi-normal and if A = UCT, then ^ 5 = UCTUHT = HT and 5 ^ = HUUCT

= i / are both normal. But the following is an example in which AB is normal but
not BA. Let B = HU = UHT be quasi-normal but not normal (i.e., H is not real
by property b) section 2) and let H be non-singular. Let A = H~l which is her-
mitian (so normal) and not quasi-normal (since H~l is not real). Then AB =
H~^HU = U is normal. If BA were also normal, then by the above theorem
{ACTA)B = B(AACT) and (BCTB)A = A(BBCT). But (BCTB)A = {H7)2^1 and
A(BBCT) = (H'^iH2) and if these were equal, (7fr)2 = i / 2 would follow which
means that H2 = (HT)2 = (HCT)2 so that H2 is real. But this is not possible for
if H = VD VCT where D is diagonal with positive real elements (since H is non-
singular), then H2 = VD2VCT = VCD2VT if H2 is real so that VTVD2 •=
D2VTVso VTVD = DVT V so VDVCT = VCDVT = H is real which contradicts
the above assumption.

But the following theorems result when A and B are both quasi-normal.

THEOREM 4. If A and B are quasi-normal and if AB is normal, then BA is normal.

Let U be a unitary matrix such that UA UT = F is the normal form described
in Theorem 1 and where FFCT = FFT'= r1

2/1 + rf / 24- / - | / 3+ • • • +r£lk which is
real diagonal with r\ > r\ > • • • > . rl |> 0. These r2 may be either the squares of
diagonal elements of F or they may arise when matrices of the form

r a in
l-b a]

are squared. Assume that any of the latter whose rf are equal are arranged first
in a given block followed by any diagonal elements whose square is the same rf.

Let UCBUCT = Bi which is quasi-normal and then UAUTUCBUCT = FB^ is
normal. Let V be the unitary matrix

^ c a
Then the following matrix relation holds, independent of a and b:

v\ a b]vCT = \a~bi ° 1
L-o a\ L 0 a + bi]
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Let F = Ft + F2 + • • • + Fk where the direct sum is conformable to that of FFCT

given above (i.e., FtFfT = r?It) and consider Ft = Gt + G2 + ••• +Gl + r1I
where each G; is 2 x 2 as described above and / i s an identity matrix of proper size.
Let W1 = V+ V+ • • • + V+Ibe conformable to Ft; define Wt for each Ft in like
manner and let W = Wt + W2 + • • • + Wk. lfrk = 0,Wk = I. Then WFWCT = D
is complex diagonal, where if di is the ith diagonal element d{3( ̂  di+13i+1. Then
W(UAUT)WCTW{UCBUCT)WCT = (WFWCT){WBlW

CT) = DB2 is normal for
B2 = WB± W

CT (or By = WCTB2W). Since Bt is quasi-normal,BtB
CJ = BjB^

so that WCTB2WWCTBc
2
TW=WTBlWcWrB\Wc or that B2B

C
2

TWWT =
WWTBlBc

2. NOW VVT is a matrix of the form

ro n
Li oJ

so that WWT is a direct sum of matrices of this form and 1 's.
Let B2 = (bu) and consider {WWT)CTB2B2

yr(WWT) = Br
2B

c
2. Let B2BfT =

(Cij), B\B% = (fa). ctj and/jj- are identifiable with the b{J, both matrices being her-
mitian. Consider two cases:

a) If dxdx = djclj for all j (where dj is the7th diagonal element of D), then
D = kDu where Du is unitary diagonal. Since WFBX W

CT = DB2 = kDuB2 =
Da(kB2) is normal, then Dc

u{DuB2k)Du = B2D = WBXFWCT is normal as is BrF
= UCBUCTUAUT so BA is normal.

b) If dyd, 7̂  dj3j for some j , let d^cly — d2d2 = • • • = dt3, for 1 ̂  / < n
(so that d,3, > dl+i3l+1).

Suppose Fy = G, +G2 + r1I1 where Ix is the 2 x 2 identity matrix. (The gene-
ral case will be seen to follow from this example.) From (WWT)CTB2B2

T(WWT) =
B^B2 and the fact that Wx = V+ V+I,_, it follows that c l t = / 2 2 , c22 = / u , c33

= / 4 4 , c44 = / 3 3 , c55 = / 5 5 , c66 = / 6 6 (and c12 = / 1 2 , c34 = / 3 4 , etc.). These
equalities supply the following relations (where the summations is over i = 1 to n):

c n = ^ i i 5 n = ZbiZb~i2 =f22", cZ2 •= Zb2i52i = T.bnb~n = / u

C33 = Zb3ib3i = Ib^Bi4 =fA4.; c44 = Ib4ih4i = Zbnb~i3 = / 3 3

C55 = Zb5iESi = Zbi5Ei5 =fss ; c66 = Ib6i56i = Ebi6Ei6 = / 6 6 .

Z)52 i
s normal so that the following relations also hold:

d1d1IbliEli = Idi3ibnEn ; d232Ib2iE2i = Edi3ibl2b~i2

d3d3Zb3iE3l = Zdi3ibl3Bi3; d^d^Ib^E^ = id^b^E^

ds d5 ZbSi E5i = Idi 3; bi5 Ei5; d6 36 Ib6i E6i = Idt dt bi6 Ei6.

Since dy3x = d232, on combining the first 2 relations in each of these sets,
dydyilbyfij.+ Ibjfi^) = dj,(IbnBa + Ib_aBu) = Id,3t(bnEn + bt2B2) so
that I(d1dl-didi)(bilEn+bi2bi2) = 0. d^dy=d}3} for j = 1, 2, • • •, 6 but
for7 beyond 6, dx3^— dj3j > QsoXhaXbnEn+bi2Ei2 = OorZ>a = 0and&,-2 = 0
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for i = 7, 8, • • • n. Similarly, b13 = 0 and bi4 = 0 for i > 6. The third relations
in each set give bi5 = 0 and bi6 = 0 for i > 6.

On adding all 6 relations in the first set,

6 6 n 6 n 6

t,j = 1 i=l j = 7 i,j = 1 i = 7 j = l

and on cancelling the first summations on each side,

i= l j = 7 i = 7j = l

But the right side is 0 from the above, so the left side is 0 and so btj = 0 for
i = 1, 2, • • •, 6 and7 > 6.

From this it is evident that this procedure may be repeated, and that if

D = r1Di + r2D2+ ••• +rkDk

where the Dt are unitary and the rt non-negative real, as above, then

B2 = Q + Q-i- ••• +Ck

conformable to D. Then r^^Ci is normal so D'{T(DiCiri)Di = CtrtDt is normal
so B2D is normal, so B^Fand so UCBUCTUAUT and BA.

THEOREM 5. If A and B are quasi-normal, then AB is normal if and only if
ACTAB = BAACT andABBCT = BCTBA (i.e., if and only if each is 'normal relative
to the other').

If AB is normal, from the above, DCTDB2 = B2DDCT so that F C T F5 1 =
B1FFCT or ACTAB = BAACT. Similarly, since DB2 is normal, DB2B2

TDC =
B2

ZTDCDB2 so DB2BlT = B?B2D or FBtB^T = B^B^For ABBCT = BCTBA.
The converse is directly verifiable.

THEOREM 6. Let A and B be quasi-normal. If AB is normal, then A = LW —
WLT (with L hermitian and W unitary) and B = NWCT where N is normal and

LTN = NLT; and conversely.

As above, let UAUT = F = WCTDW = WCTDr WWCTDU W (where Dr and
Du are the hermitian and unitary polar matrices of D) and UCBUCT = Bt =
WCTB2 W = WCT(Cl + C2+ • • • + Ck)W. As in the proof of Theorem 3 it follows
that for all /, D^Cf1 = C^C%D% and UfrCiCfT = C^C.Uf1, with U, as de-
fined there, so that when Rt = DfUfT (where D, here, = rlD1 + r2D2+ • • • 4-
rkDk, as earlier), then Ct = HiUi = H^Df with HsRi = RtHi. Then, since

WDr = Dr W, UAUT = WCTDrWWCTDu W = Dr(W
CTDUW) and

A = (UCTDF U)(UCT WCTDU WUC) = LX

= (UCTWCTDU WUC)(UTDMC) = AXT
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withL = UCTDr U hermitian and X = UCT WCTDU WUC unitary. Also,

UCBUCT = WCJ(H1RiTD<i + H2R
c
2
TDc

2+ • • • + HkR
c
k
TDc

k)W = N^Y

where
A\ = JVCT(H1R

C
1
T + H2R

C
2
T+ • • • + HkR

c
k
T)W

is normal and
Y = WCT(DC

1 + DC
2 + ••• + D c

k ) W

is unitary; then
B = UTNt YU = (UTNy C/c)(t/rrC/) = NXCT

where AT = UTNtU
c is normal and JSrCT = UTYU = UTWCTDC

UWU. Also
LTA^ = NLT since A-A^ = NtDr, Dc

rNx = N^? so

(UCLCUT)(UCNUT) = (UCNUT)(UCLCUT)

so Lr7V = M / . The converse is immediate. -

4. Quasi-normal products of matrices

It is possible if A is normal and B quasi-normal that AB is quasi-normal. For
example, any quasi-normal matrix C = HU = UHT is such a product with A — H
and B = U. Or if C = #C/ = W^1" and ,4 = 77, then AC = H2U = HUHT =
U(HT)2 is quasi-normal. The following theorems clarify this matter.

THEOREM 1. If A is normal and B is quasi-normal, then AB is quasi-normal if
and only if ABBCT = BBCTA and BCAACT = ATACBC (or BACAT = ACTAB).

(If one were to define 'N is normal with respect to M" to mean NNCTM =
MNCTN and lQ is quasi-normal with respect to P ' to mean PQQCT = QTQCP, the
above theorem would say that if A is normal and B quasi-normal, then AB is
quasi-normal if and only if (quasi-normal) B is normal with respect to A and (nor-
mal) A is quasi-normal with respect to Bc.)

If the latter conditions hold, then: {AB)(AB)CT = ABBCTACT = BBCTAACT

and {ABf(ABf = BTATACBC = BTBCAACT which are equal.
Conversely, let AB be quasi-normal and let UAUCT = D = dlI+d2I2 + - • • +

djk where dt3t > djdj, i > j . Let UBTUT = Bl = (bu). If [AB)(AB)CT =
ABBCTACT = ABTBCACT = (AB)T{AB)C = BTATACBC = BTACATBC, then

(UAUCT)(UBTUTUCBCUCT)(UACTUCT)

= [UBTUT)(UCACUTUCATUT)(UCBCUCT)

so that DBi BfTDCT = By DCDB\ZT. Equating diagonal elements on each side of
this relation, £ " = 1 ^ 3 , 6 y 5 y = £"=i dj3jbtjB,j, i= 1, 2, • • •, n, or £ " = 1 (rfj3f-
djBjfajEtj = 0.

Let J ^ ! = d2d2 — • • • dl3l > dl+l3l + l.Thenbij = Oforz = 1, 2, • • •, /and
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j — / + 1 , 1+2, • • ,n. Since BY is quasi-normal, £ " = 1 ^u^u = Z;=i ^jfiji f° r

/ = 1, 2, • • •, n. On adding the first / of these equations and cancelling, b-^ = 0
for i = l+l, 1+2, • • •, n and 7 = 1,2, • • •, /. In this manner if D = r1D1 + r2D2 +
• • • +r,Dt with ri > ri+l and Dt unitary, then Bt = CY + C2+ • • • +Ct con-
formable to D. Since r ^ ^ r ^ = r]Cj = Cjr^ = CjriD^rh all i,
DDCTBl = 51

rD2)cr and so UCTDDCTUUCTBj Uc = UCTB\UCUTDDCTUC or
^ / l c r 5 = J B ^ 7 ^ 0 or ^ c r ^ ( 5 = BATAC or /i ry4cSc = BCAACT.

Also, DiB.B^D07)^ BlD
cDBc

l
T = DCDBCJ = D{DcB1B

c
l
T) so that

C; C f ^ D f ) = (r;Z)f)C;C;CT for / = 1, 2, • • •, f. (If r, = 0, this is still true and
Dt may be chosen to be the identity matrix.) Therefore Bt B^TDCT = DCTB± BCJ
and UBTUTUCBCUCTUACTUCT = UACTUCTUBTUTUCBC

1U
CT so BTBCACT =

^ c r 5 r i J c or X B V = BTBCA.

COROLLARY. Let A be normal, B quasi-normal; if AB is quasi-normal, then BAC

is quasi-normal, and conversely.

From the above, UAUCTUBUT = DBj is quasi-normal, and if D = DrDu,
Dr real and Du unitary, then since Dc

u = DCJ, DC
U(DB[)DC

U = DrB\Dc
u = B\DrD

c
u

= B\DC is quasi-normal as are UBUTUCACUT and BAC. Reversing the steps
proves the converse.

If A is normal and B is quasi-normal, BAC is quasi-normal if and only if AB
is quasi-normal if and only if (BTBC)A = A(BBCT) and (ATAC)BC = BC(AACT).
Therefore, if A is normal and B quasi-normal, BA is quasi-normal if and only if
(BTBC)AC = AC(BBCT) and (ACTA)BC =-- BC(ACAT), i.e., replace A by Ac in the
preceding, or (BCTB)A = A(BCBT) = A(BCTB) and (ACTA)BC = BC(ACAT), thus
exhibiting the fact that when AB is quasi-normal, BA is not necessarily so.

THEOREM 8. If A = LW — WL is normal and B = KV = VKT is quasi-nor-
mal (where L and Kare hermitian and Wand Vare unitary) then AB is quasi-normal
if and only if LK = KL, LV = VLT and WK = KW.

If the three relations hold, then AB = LWKV = LKWV on one hand, and
AB = WLKV = WKLV = WKVLT = WVKTLT = WV(LK)T is quasi-normal
since LK is hermitian and WV is unitary.

Conversely, let

A = UCTDU = (UCTDrU){UCTDUU) = LW and

B = UCTBjUc = (UCTK1 U)(UCTVY Uc) = KV = VKT

where Kt and V1 are hermitian and unitary and direct sums conformable to B\ and
D. A direct check shows that LK = KL and LV == VLT; also WK = UCTDUK! U
= UCTKXDUU = KW since DUBXBCJ = BXB^TDU implies DUKX = K^DU.

A sufficient condition for the simultaneous reduction of A and B is given by
the following:
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THEOREM 9. If A is normal, B quasi-normal, and AB = BAT, then WAWCT =
D and WBTW = F, the normal form of Theorem 1, where W is a unitary matrix;
also AB is quasi-normal.

Let UAUCT = D, diagonal, and UBUT = B2 which is quasi-normal. Then
AB = BAT implies DB2 = UAUCTUBUT = UBUTUCATUT = B2D

T = B2D. Let
D = c1/1 + c 2 / 2 + • • • +cklk, where the ct are complex and c; # c, for / #./, and
# 2 = d - j - C 2 + • • • + Q . Let K( be unitary such that V-.C^l = Ft = the real
normal form of Theorem 1, and let V = Vt + V2+ • • • 4- Vk. Then VUAUCTVCT

= Z), VUBUTVT = F = a direct sum of the Ff .
Also, AB = A 4 r implies BTAT = ^fi7" and so ABBCTACT = ABTBCACT =

5 r ^ r ^ c £ c = (AB)T(AB)C. (The fact that A is normal is not used in the latter.)
It is also possible for the product of two normal matrices A and B to be quasi-

normal. If Q = HU = UHT is quasi-normal and if A = U and B — H this is so
or if KV = VKT is quasi-normal and if A = UK = KU is normal with K hermitian
and V and U unitary, for B = V, AB = (UK)V = K{UV) = (t /K)#T is quasi-
normal. But if in the first example, U2H is not normal, then HU is not quasi-normal
(see section 2, c)) so that BA is not necessarily quasi-normal though AB is. When
A alone is normal an analog of Theorem 2 can be obtained which states the fol-
lowing: If A is normal, then AB and ABT are quasi-normal if and only ifABBCT =
BTBCA, BBCTA = ABTBC, and BCAACT = ATACBC. (The proof is not included
here because of its similarity to that above.) When B is quasi-normal, two of these
conditions merge into one in Theorem 7.

It is possible for the product of two quasi-normal matrices to be quasi-normal,
but no such simple analogous necessary and sufficient conditions as exhibited
above are available. This may be seen as follows. Two non-real complex com-
mutative matrices S = ST and T = TT can form a quasi-normal (and non-real
symmetric) matrix ST (such that TS is also quasi-normal) which need not be nor-
mal. Then two symmetric matrices:

L3-4i-l + i - iJ ' L3-4i-(l+2i)J

are such that XY = Z is real, normal and quasi-normal (and not symmetric).
Finally, if U and V are two complex unitary matrices of the same order, they can
be chosen so UVis non-real complex, normal and quasi-normal. If A = S-\-X+ U
and B = T+Y+ V, AB = ST+XY+ UV where A and B are quasi-normal as in
AB (but not symmetric). A simple inspection of these matrices shows that relations
on the order of (BTBC)A = A(BBCT) = (BBCT)A and (ATAC)BC = (AACT)BC =
BC(AACT) do not necessarily hold; these are sufficient, however, to guarantee that
AB is quasi-normal (as direct verification from the definition will show).
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