QUASI-NORMAL MATRICES AND PRODUCTS

N. A. WIEGMANN
(Received 17 March 1969)
Communicated by G. B. Preston

1. Introduction

A normal matrix $A=\left(a_{i j}\right)$ with complex elements is a matrix such that $A A^{C T}=A^{C T} A$ where $A^{C T}$ denotes the (complex) conjugate transpose of A. In an article by K . Morita [2] a quasi-normal matrix is defined to be a complex matrix A which is such that $A A^{C T}=A^{T} A^{C}$, where T denotes the transpose of A and A^{C} the matrix in which each element is replaced by its conjugate, and certain basic properties of such a matrix are developed there. (Some doubt might exist concerning the use of 'quasi' since this class of matrices does not contain normal matrices as a sub-class; however, in deference to the original paper and the normal canonical form of Theorem 1 below, the terminology in [2] is used.)

Here further properties of quasi-normal matrices are developed, their relation, in a sense, to normal matrices is considered, and further results concerning normal products are obtained including an analog (Theorem 4) for quasi-normal matrices.

2. Properties of quasi-normal matrices

The basic theorem developed in [2] is the following, for which an alternate proof is supplied here for brevity and easy reference.

Theorem 1. A matrix A is quasi-normal if and only if there exists a unitary matrix U such that $U A U^{T}$ is a direct sum of non-negative real numbers and of 2×2 matrices of the form:

$$
\left[\begin{array}{rr}
a & b \\
-b & a
\end{array}\right]
$$

where a and b are non-negative real numbers.
Let A be quasi-normal where $A=S+T$ where $S=S^{T}$ and $T=-T^{T}$. Then $A A^{c T}=A^{T} A^{C}$ gives $(S+T)\left(S^{C T}+T^{c T}\right)=\left(S^{T}+T^{T}\right)\left(S^{C}+T^{C}\right)$ or $(S+T)\left(S^{C}-T^{C}\right)$ $=(S-T)\left(S^{c}+T^{c}\right)$ and so: $S S^{c}+T S^{c}-S T^{c}-T T^{c}=S S^{c}-T S^{c}+S T^{c}-T T^{c}$ or $T S^{c}=S T^{c}$. There exists a unitary matrix U (see [3] or [5]) such that $U S U^{T}=D$ is a diagonal matrix with real, non-negative elements. Therefore $U T U^{T} U^{C} S^{C} U^{C T}=$
$U S U^{T} U^{C} T^{C} U^{C T}$ or $W D=D W^{C}$ where $W=-W^{T}$. Let U be chosen so that D is such that $d_{i} \geqq d_{j} \geqq 0$ for $i<j$ where d_{i} is the $i^{\text {th }}$ diagonal element of D. If $W=\left(t_{i j}\right)$, where $t_{j i}=-t_{i j}$, then $t_{i j} d_{j}=d_{i} t_{i j}$, for $j>i$, and 3 possibilities may occur: if $d_{j}=d_{i} \neq 0$, then $t_{i j}$ is real; if $d_{j}=d_{i}=0, t_{i j}$ is arbitrary (though $W=-W^{T}$ still holds); and if $d_{j} \neq d_{i}$, then $t_{i j}=0$ for if $t_{i j}=a+i b$, then $(a+i b) d_{j}=$ $d_{i}(a-i b)$ and $a\left(d_{j}-d_{i}\right)=0$ implies $a=0$ and $b\left(d_{i}+d_{j}\right)=0$ implies $d_{i}=-d_{j}$ (which is not possible since the d_{i} are real and non-negative and $d_{j} \neq d_{i}$) or $b=0$ so $t_{i j}=0$. So if $U S U^{T}=d_{1} I_{1}+d_{2} I_{2}+\cdots+d_{k} I_{k}$ where + denotes direct sum, then $U T U^{T}=T_{1}+T_{2}+\cdots+T_{k}$ where $T_{i}=-T_{i}^{T}$ is real and $T_{k}=-T_{k}^{T}$ is complex if and only if $d_{k}=0$. For each real T_{i} there exists a real orthogonal matrix V_{i} so that $V_{i} T_{i} V_{i}^{T}$ is a direct sum of zero matrices and matrices of the form

$$
\left[\begin{array}{rr}
0 & b \\
-b & 0
\end{array}\right]
$$

where b is real (see [1] page 65 for example). If $T_{k}=-T_{k}^{T}$ is complex, there exists a complex unitary matrix V_{k} such that $V_{k} T_{k} V_{k} T$ is a direct sum of matrices of the same form (see [4]), so that if $V=V_{1}+V_{2}+\cdots+V_{k}$, then $V U S U^{T} V^{T}=D$ and $V U U^{T} V^{T}=F=$ the direct sum described. Therefore $V U A U^{T} V^{T}=D+F$ which is the desired form.

Among properties of quasi-normal matrices obtained in [2] are the following: If A and B are two quasi-normal matrices such that $A B^{C}=B A^{C}$, then A and B can be simuitaneously brought into the above normal form under the same U (with a generalization to a finite number) but not conversely; if A is quasi-normal, $A A^{C}$ is normal in the usual sense, but not conversely; and if A is quasi-normal and $A A^{C}$ is real, there is a real orthogonal matrix which gives the above form.

Among properties of quasi-normal matrices not obtained in [2] but of subsequent use are the following:
(a) A is quasi-normal if and only if $A=H U=U H^{T}$ where H is hermitian and U is unitary.

For if $A=H U$ is a polar form of A, then $U^{C T} H U=K$ is such that $A=$ $H U=U K$ and if $A A^{C T}=A^{T} A^{C}$, then $H^{2}=\left(K^{T}\right)^{2}$ and since this is a hermitian matrix with non-negative roots, $H=K^{T}$ and $A=H U=U H^{T}$. The converse is immediate. This same result may be seen as follows. If $U A U^{T}=F$ is the normal form in Theorem $1, F=D_{r} V=V D_{r}$ where D_{r} is real diagonal and V is a direct sum of 1's or blocks of the form

$$
\left(a^{2}+b^{2}\right)^{-\frac{1}{2}}\left[\begin{array}{rr}
a & b \\
-b & a
\end{array}\right]
$$

which are unitary. Therefore $A=U^{C T} D_{r} U U^{C T} V U^{C}=U^{C T} V U^{C} U^{T} D_{r} U^{C}$ which exhibits the polar form in another guise.
(b) A is both normal and quasi-normal if and only if $A=H U=U H=U H^{T}$ so $H=H^{T}=H^{C T}$ so that H is real.
(c) If $A=H U=U H^{T}$ is quasi-normal, then $U H$ is quasi-normal if and only if $H U^{2}=U^{2} H$, i.e. if and only if $H U^{2}$ is normal. For if $U H$ is quasi-normal, $U H=H^{T} U$ so that $H U^{2}=U H^{T} U=U^{2} H$; and if $H U^{2}=U^{2} H$, then $H U U=$ $U H^{T} U=U U H$ or $H^{T} U=U H$.
(d) A matrix A is quasi-normal if and only if A can be written $A=S W=$ $W^{C} S$ where $S=S^{T}$ and W is unitary. If A is quasi-normal, from the above $A=U^{C T} F U^{C}=U^{C T} D_{r} U^{C} U^{T} V U^{C}=S W=U^{C T} V U U^{C T} D_{r} U^{C}=W^{C} S$ where $S=U^{C T} D_{r} U^{c}$ is symmetric and $W=U^{T} V U^{C}$ is unitary. Conversely, if $A=S W$ $=W^{C} S, A A^{C T}=S W W^{C T} S^{C T}=A^{T} A^{C}=S^{T} W^{C T} W S^{C}$.

Note that if B is quasi-normal and if $B=S U$ where $S=S^{T}$ and U is unitary, it does not necessarily follow that $B=U^{C} S$; but it is possible to find an S_{1} and U_{1} such that $B=S_{1} U_{1}=U_{1}^{C} S_{1}$ holds. This may be seen as follows. If $B=S U$ is quasi-normal, let V be unitary such that $V S V^{T}=D$ is diagonal, real, and nonnegative, so that $V B V^{T}=V S V^{T} V^{C} U V^{T}=D W$ is quasi-normal from which $D W W^{C T} D^{C}=W^{T} D^{T} D^{c} W^{c}$ or, since D is real, $W D^{2}=D^{2} W$ and $W D=D W$ since D is non-negative. Then $B=\left(V^{C T} D V^{C}\right)\left(V^{T} W V^{C}\right)=S U=\left(V^{C T} W V\right)$ $\left(V^{C T} D V^{C}\right)$ which is not necessarily $=$ to $U^{C} S=\left(V^{C T} W^{C} V\right)\left(V^{C T} D V^{C}\right)$. However, if $D=r_{1} I_{1}+r_{2} I_{2}+\cdots+r_{k} I_{k}, r_{i}>r_{j}$ for $i>j$, then $W=W_{1}+W_{2}+\cdots+W_{k}$. Since each W_{i} is unitary, it is quasi-normal and there exist unitary X_{i} so that $X_{i} W_{i} X_{i}^{T}=F_{i}$ is in the real normal form of Theorem 1. If $X=X_{1}+X_{2} \dot{+} \cdots+X_{k}$, then $X V B V^{T} X^{T}=X D W X^{T}=D X W X^{T}=D F=F D$ where $F=F_{1}+F_{2}+\cdots$ $+F_{k}$. So

$$
\begin{array}{rlr}
B & =\left(V^{C T} X^{C T} D X^{C} V^{C}\right)\left(V^{T} X^{T} F X^{C} V^{C}\right) \\
& =\left(V^{C T} X^{C T} F X V\right)\left(V^{C T} X^{C T} D X^{c} V^{C}\right)=S_{1} U_{1}=U_{1}^{c} S_{1} & \text { and } \\
S_{1} & =V^{C T} X^{C T} D X^{C} V^{C} \neq V^{C T} D V^{c}=S & \text { and } \\
U_{1} & =V^{T} X^{T} F X^{C} V^{c} \neq V^{T} W V^{C}=U . &
\end{array}
$$

3. Normal products of matrices

It was shown in [6] that the following are true: if A, B, and $A B$ are normal matrices, the $B A$ is normal; a necessary and sufficient condition that the product, $A B$, of two normal matrices A and B be normal is that each commute with the hermitian polar matrix of the other. First a generalization of this theorem is obtained here and then an analog for the quasi-normal case is developed.

Theorem 2. Let A be a normal matrix. Then $A B$ and $B A$ are normal if and only if $\left(A^{C T} A\right) B=B\left(A A^{C T}\right)$ and $\left(B^{C T} B\right)=A\left(B B^{C T}\right)$.
(In a sense, the latter conditions might be described as stating that each matrix is 'normal relative to the other'.)

If $A B$ and $B A$ are normal, let U be a unitary matrix such that $U A U^{C T}=D$ is diagonal, $d_{i} d_{i} \geqq d_{j} d_{j} \geqq 0$ for $i<j$, and let $U B U^{C T}=B_{1}=\left(b_{i j}\right)$. From
$A B B^{C T} A^{C T}=B^{C T} A^{C T} A B$ it follows that $D B_{1} B_{1}^{C T} D^{C}=B_{1}^{C T} D^{C} D B_{1}$; by equating diagonal elements it follows that $\sum_{j=1}^{n} d_{i} d_{i} b_{i j} b_{i j}=\sum_{j=1}^{n} d_{j} d_{j} b_{j i} b_{j i}$ for $i=1,2, \cdots, n$. Similarly from $B A A^{C T} B^{C T}=A^{C T} B^{C T} B A$ follows $B_{1} D D^{C} B_{1}^{C T}=$ $D^{C} B_{1}^{C T} B_{1} D$ and $\sum_{j=1}^{n} d_{j} \bar{d}_{j} b_{i j} \bar{b}_{i j}=\sum_{j=1}^{n} \bar{d}_{i} d_{i} \bar{b}_{j i} b_{j i}$. Let $i=1$ in each of these equations so that $\sum_{j=1}^{n} d_{1} d_{1} b_{1 j} b_{1 j}=\sum_{j=1}^{n} d_{j} \bar{d}_{j} b_{j 1} b_{j 1}$ and $\sum_{j=1}^{n} d_{j} d_{j} b_{1 j} b_{1 j}=$ $\sum_{j=1}^{n} d_{1} d_{1} b_{j 1} b_{j 1}$ from which follows $\sum_{j=1}^{n}\left(d_{1} \vec{d}_{1}-d_{j} d_{j}\right) b_{1 j} \bar{b}_{1 j}=\sum_{j=1}^{n}\left(d_{j} d_{j}-\right.$ $\left.d_{1} d_{1}\right) b_{j 1} \bar{b}_{j 1}$ so that $\sum_{j=1}^{n}\left(d_{1} d_{1}-d_{j} d_{j}\right)\left(b_{1 j} b_{1 j}+b_{j 1} \bar{b}_{j 1}\right)=0$. Let $d_{1} d_{1}=d_{2} d_{2}=$ $\cdots=d_{l} \partial_{l}>d_{l+1} d_{l+1}$; then $b_{1 j} b_{1 j}+b_{j 1} b_{j 1}=0$ for $j=l+1, l+2, \cdots, n$ since $d_{1} \bar{d}_{1}-d_{j} \bar{d}_{j}$ is zero or positive and is the latter for $j>l$. So $b_{1 j}=0$ and $b_{j 1}=0$ for $j=l+1, l+2, \cdots, n$. For $i=2, \cdots, l$ in turn it follows that $b_{i j}=0$ and $b_{j i}=0$ for $i=1,2, \cdots, l$ and for $j=l+1, l+2, \cdots, n$. Let $U A U^{C T}=D$ $=r_{1} D_{1}+r_{2} D_{2} \dot{+} \cdots r_{s} D_{s}$ where the r_{i} are real, $r_{i}>r_{j}$ for $i<j$ and the D_{i} are unitary. Then by repeating the above process it follows that $U B U^{C T}=B_{1}=$ $C_{1}+C_{2}+\cdots+C_{s}$ is conformable to D.

It follows from the given conditions that $r_{i} D_{i} C_{i} C_{i}^{C T} D_{i}^{C} r_{i}=C_{i}^{C T}\left(r_{i} D_{i}^{C}\right)\left(D_{i} r_{i}\right) C_{i}$ and $C_{i} r_{i} D_{i} D_{i}^{C} r_{i} C_{i}^{C T}=r_{i} D_{i}^{C} C_{i}^{C T} C_{i} D_{i} r_{i}$ or that $D_{i} C_{i} C_{i}^{C T}=C_{i}^{C T} C_{i} D_{i}$ and $D_{i} C_{i} C_{i}^{C T}$ $=C_{i}^{C T} C_{i} D_{i}$ if $r_{i}>0$. If $r_{s}=0, D_{s}$ is arbitrary insofar as D is concerned and so may be chosen so that $D_{s} C_{s} C_{s}^{C T}=C_{s}^{C T} C_{s} D_{s}$ in which case D_{s} may not be diagonal. But whether or not this is done, it follows that $D B_{1} B_{1}^{C T}=B_{1}^{C T} B_{1} D$ and that $B_{1} D D^{C T}=D^{C T} D B_{1}$ sc that $A\left(B B^{C T}\right)=\left(B^{C T} B\right) A$ and $B\left(A A^{C T}\right)=\left(A^{C T} A\right) B$.

The converse is immediate. It may be noted that if the roots of A are all distinct in absolute value, B must be normal. The following further clarifies the situation.

Theorem 3. Let $A=L W=W L$ be the polar form of the normal matrix A. Then $A B$ and $B A$ are normal if and only if $B=N W^{C T}$ where N is normal and $L N=N L$.

In the above proof let $C_{i}=H_{i} U_{i}=U_{i} K_{i}$ be polar forms of the C_{i}. Then $U_{i}^{C T} H_{i} U_{i}=K_{i}$ so that $U_{i}^{C T} C_{i} C_{i}^{C T} U_{i}=C_{i}^{C T} C_{i}$ or $U_{i}^{C T} C_{i} C_{i}^{C T}=C_{i}^{C T} C_{i} U_{i}^{C T}$. Also, from the above $D_{i} C_{i} C_{i}^{C T}=C_{i}^{C T} C_{i} D_{i}$. Let $R_{i}=D_{i}^{C} U_{i}^{C T}$; then

$$
R_{i} C_{i} C_{i}^{C T}=D_{i}^{C} U_{i}^{C T} C_{i} C_{i}^{C T}=D_{i}^{C} C_{i}^{C T} C_{i} U_{i}^{C T}=C_{i} C_{i}^{C T} D_{i}^{C} U_{i}^{C T}=C_{i} C_{i}^{C T} R_{i}
$$

where R_{i} is unitary. (If $r_{s}=0, D_{s}$ may be chosen $=U_{s}^{C T}$ as described above). So $R_{i} H_{i}^{2}=H_{i}^{2} R_{i}$ and since H_{i} has positive or zero roots, $R_{i} H_{i}=H_{i} R_{i}$ and so $H_{i} R_{i}^{C T}=R_{i}^{C T} H_{i}$. Then $A=U^{C T} D U=U^{C T} D_{r} U U^{C T} D_{u} U=L W=W L$ and

$$
\begin{aligned}
B & =U^{C T} B_{1} U=U^{C T}\left(C_{1}+C_{2}+\ldots+C_{s}\right) U \\
& =U^{C T}\left(H_{1} U_{1}+H_{2} U_{2}+\cdots+H_{s} U_{s}\right) U \\
& =U^{C T}\left(H_{1} R_{1}^{C T} D_{1}^{C}+H_{2} R_{2}^{C T} D_{2}^{C} \dot{+}+H_{s} R_{s}^{C T} D_{s}^{C}\right) U=N W^{C T}
\end{aligned}
$$

where $N=U^{C T}\left(H_{1} R_{1}^{C T}+H_{2} R_{2}^{C T}+\cdots+H_{s} R_{s}^{C T}\right) U$ (which is normal since the hermitian H_{i} and unitary $R_{i}^{C T}$ commute) and $W^{C T}=U^{C T}\left(D_{1}^{C}+D_{2}^{C}+\cdots+D_{s}^{C}\right) U$. It is evident that $L N=N L$.

Conversely, if $A=L W=W L$ and $B=N W^{C T}$ as described, then $A B=$ $W L N W^{C T}$ which is obviously normal as is $B A=N W^{C T} W L=N L$.

It is easily seen that $B=N W^{C T}$ is normal if and only if $N W^{C T}=W^{C T} N$. If $B=N W^{C T}=(H R) W^{C T}$ is quasi-normal, then $B=H\left(R W^{C T}\right)=\left(R W^{C T}\right) H^{T}=$ $R H W^{C T}$ (from property a), section 2) so $W^{C T} H^{T}=H W^{C T}$ or $W H=H^{T} W$ and $W\left(B B^{C T}\right)=\left(B^{C T} B\right) W$.

If A is normal, if B is quasi-normal, and if $A B$ is normal, it does not necessarily follow that $B A$ is normal though it can occur. For example, if $B=H U=U H^{T}$ is quasi-normal and if $A=U^{C T}$, then $A B=U^{C T} U H^{T}=H^{T}$ and $B A=H U U^{C T}$ $=H$ are both normal. But the following is an example in which $A B$ is normal but not $B A$. Let $B=H U=U H^{T}$ be quasi-normal but not normal (i.e., H is not real by property b) section 2) and let H be non-singular. Let $A=H^{-1}$ which is hermitian (so normal) and not quasi-normal (since H^{-1} is not real). Then $A B=$ $H^{-1} H U=U$ is normal. If $B A$ were also normal, then by the above theorem $\left(A^{C T} A\right) B=B\left(A A^{C T}\right)$ and $\left(B^{C T} B\right) A=A\left(B B^{C T}\right)$. But $\left(B^{C T} B\right) A=\left(H^{T}\right)^{2} H^{-1}$ and $A\left(B B^{C T}\right)=\left(H^{-1}\right)\left(H^{2}\right)$ and if these were equal, $\left(H^{T}\right)^{2}=H^{2}$ would follow which means that $H^{2}=\left(H^{T}\right)^{2}=\left(H^{C T}\right)^{2}$ so that H^{2} is real. But this is not possible for if $H=V D V^{C T}$ where D is diagonal with positive real elements (since H is nonsingular), then $H^{2}=V D^{2} V^{C T}=V^{C} D^{2} V^{T}$ if H^{2} is real so that $V^{T} V D^{2}=$ $D^{2} V^{T} V$ so $V^{T} V D=D V^{T} V$ so $V D V^{C T}=V^{C} D V^{T}=H$ is real which contradicts the above assumption.

But the following theorems result when A and B are both quasi-normal.
Theorem 4. If A and B are quasi-normal and if $A B$ is normal, then $B A$ is normal.
Let U be a unitary matrix such that $U A U^{T}=F$ is the normal form described in Theorem 1 and where $F F^{C T}=F F^{T}=r_{1}^{2} I_{1}+r_{2}^{2} I_{2}+r_{3}^{2} I_{3}+\cdots+r_{k}^{2} I_{k}$ which is real diagonal with $r_{1}^{2}>r_{2}^{2}>\cdots>r_{k}^{2} \geqq 0$. These r_{i}^{2} may be either the squares of diagonal elements of F or they may arise when matrices of the form

$$
\left[\begin{array}{rr}
a & b \\
-b & a
\end{array}\right]
$$

are squared. Assume that any of the latter whose r_{i}^{2} are equal are arranged first in a given block followed by any diagonal elements whose square is the same r_{i}^{2}.

Let $U^{C} B U^{C T}=B_{1}$ which is quasi-normal and then $U A U^{T} U^{C} B U^{C T}=F B_{1}$ is normal. Let V be the unitary matrix

$$
\sqrt{2}^{-1}\left[\begin{array}{cc}
1 & i \\
i & 1
\end{array}\right]
$$

Then the following matrix relation holds, independent of a and b :

$$
V\left[\begin{array}{rr}
a & b \\
-b & a
\end{array}\right] V^{C T}=\left[\begin{array}{cc}
a-b i & 0 \\
0 & a+b i
\end{array}\right]
$$

Let $F=F_{1}+F_{2} \dot{+}+\cdots F_{k}$ where the direct sum is conformable to that of $F F^{C T}$ given above (i.e., $F_{i} F_{i}^{C T}=r_{i}^{2} I_{i}$) and consider $F_{1}=G_{1}+G_{2}+\cdots+G_{l} \dot{+} r_{1} I$ where each G_{i} is 2×2 as described above and I is an identity matrix of proper size. Let $W_{1}=V \dot{+} V \dot{+} \cdots \dot{+} V \dot{+} I$ be conformable to F_{1}; define W_{i} for each F_{i} in like manner and let $W=W_{1}+W_{2}+\cdots+W_{k}$. If $r_{k}=0, W_{k}=I$. Then $W F W^{C T}=D$ is complex diagonal, where if d_{i} is the $i^{\text {th }}$ diagonal element $d_{i} \bar{d}_{i} \geqq d_{i+1} \bar{d}_{i+1}$. Then $W\left(U A U^{T}\right) W^{C T} W\left(U^{C} B U^{C T}\right) W^{C T}=\left(W F W^{C T}\right)\left(W B_{1} W^{C T}\right)=D B_{2}$ is normal for $B_{2}=W B_{1} W^{C T}$ (or $B_{1}=W^{C T} B_{2} W$). Since B_{1} is quasi-normal, $B_{1} B_{1}^{C T}=B_{1}^{T} B_{1}^{C}$ so that $W^{C T} B_{2} W W^{C T} B_{2}^{C T} W=W^{T} B_{2}^{T} W^{C} W^{T} B_{2}^{C} W^{C}$ or that $B_{2} B_{2}^{C T} W W^{T}=$ $W W^{T} B_{2}^{T} B_{2}^{C}$. Now $V V^{T}$ is a matrix of the form

$$
\left[\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right]
$$

so that $W W^{T}$ is a direct sum of matrices of this form and 1 's.
Let $B_{2}=\left(b_{i j}\right)$ and consider $\left(W W^{T}\right)^{C T} B_{2} B_{2}^{C T}\left(W W^{T}\right)=B_{2}^{T} B_{2}^{C}$. Let $B_{2} B_{2}^{C T}=$ $\left(c_{i j}\right), B_{2}^{T} B_{2}^{C}=\left(f_{i j}\right), c_{i j}$ and $f_{i j}$ are identifiable with the $b_{i j}$, both matrices being hermitian. Consider two cases:
a) If $d_{1} \bar{d}_{1}=d_{j} d_{j}$ for all j (where d_{j} is the $j^{\text {th }}$ diagonal element of D), then $D=k D_{u}$ where D_{u} is unitary diagonal. Since $W F B_{1} W^{C T}=D B_{2}=k D_{u} B_{2}=$ $D_{u}\left(k B_{2}\right)$ is normal, then $D_{u}^{C}\left(D_{u} B_{2} k\right) D_{u}=B_{2} D=W B_{1} F W^{C T}$ is normal as is $B_{1} F$ $=U^{C} B U^{C T} U A U^{T}$ so $B A$ is normal.
b) If $d_{1} d_{1} \neq d_{j} d_{j}$ for some j, let $d_{1} d_{1}=d_{2} d_{2}=\cdots=d_{l} \partial_{1}$ for $1 \leqq l<n$ (so that $d_{l} \bar{d}_{l}>d_{l+1} \bar{d}_{l+1}$).

Suppose $F_{1}=G_{1}+G_{2}+r_{1} I_{1}$ where I_{1} is the 2×2 identity matrix. (The general case will be seen to follow from this example.) From $\left(W W^{T}\right)^{C T} B_{2} B_{2}^{C T}\left(W W^{T}\right)=$ $B_{2}^{T} B_{2}^{C}$ and the fact that $W_{1}=V+V+I_{1}$, it follows that $c_{11}=f_{22}, c_{22}=f_{11}, c_{33}$ $=f_{44}, c_{44}=f_{33}, c_{55}=f_{55}, c_{66}=f_{66}$ (and $\bar{c}_{12}=f_{12}, \bar{c}_{34}=f_{34}$, etc.). These equalities supply the following relations (where the summations is over $i=1$ to n):

$$
\begin{array}{ll}
c_{11}=\Sigma b_{1 i} \bar{b}_{1 i}=\Sigma b_{i 2} \bar{b}_{i 2}=f_{22} ; & c_{22}=\Sigma b_{2 i} \bar{b}_{2 i}=\Sigma b_{i 1} b_{i 1}=f_{11} \\
c_{33}=\Sigma b_{3 i} b_{3 i}=\Sigma b_{i 4} b_{i 4}=f_{44} ; & c_{44}=\Sigma b_{4 i} b_{A, i}=\Sigma b_{i 3} b_{i 3}=f_{33} \\
c_{55}=\Sigma b_{5 i} \bar{b}_{5 i}=\Sigma b_{i 5} \bar{b}_{i 5}=f_{55} ; & c_{66}=\Sigma b_{6 i} b_{6 i}=\Sigma b_{i 6} b_{i 6}=f_{66}
\end{array}
$$

$D B_{2}$ is normal so that the following relations also hold:

$$
\begin{aligned}
d_{1} \bar{d}_{1} \Sigma b_{1 i} \bar{b}_{1 i}=\Sigma d_{i} \bar{d}_{i} b_{i 1} \bar{b}_{i 1} ; & d_{2} \bar{d}_{2} \Sigma b_{2 i} \bar{b}_{2 i}=\Sigma d_{i} \bar{d}_{i} b_{i 2} b_{i 2} \\
d_{3} \bar{d}_{3} \Sigma b_{3 i} \bar{b}_{3 i}=\Sigma d_{i} \bar{d}_{i} b_{i 3} \bar{b}_{i 3} ; & d_{4} \bar{d}_{4} \Sigma b_{4 i} \bar{a}_{4 i}=\Sigma d_{i} d_{i} b_{i 4} \bar{b}_{i 4} \\
d_{5} \bar{d}_{5} \Sigma b_{5 i} \bar{b}_{5 i}=\Sigma d_{i} d_{i} b_{i 5} \bar{b}_{i 5} ; & d_{6} \bar{d}_{6} \Sigma b_{6 i} b_{6 i}=\Sigma d_{i} \bar{d}_{i} b_{i 6} \bar{b}_{i 6}
\end{aligned}
$$

Since $d_{1} d_{1}=d_{2} d_{2}$, on combining the first 2 relations in each of these sets, $d_{1} \bar{d}_{1}\left(\Sigma b_{1 i} \bar{b}_{1 i}+\Sigma b_{2 i} \bar{b}_{2 i}\right)=d_{1} \bar{d}_{1}\left(\Sigma b_{i 1} \bar{b}_{i 1}+\Sigma b_{i 2} \bar{b}_{i 2}\right)=\Sigma d_{i} \bar{d}_{i}\left(b_{i 1} \bar{b}_{i 1}+b_{i 2} \bar{b}_{2}\right)$ so that $\Sigma\left(d_{1} \bar{d}_{1}-d_{i} \bar{d}_{i}\right)\left(b_{i 1} \bar{b}_{i 1}+b_{i 2} \bar{b}_{i 2}\right)=0 . \quad d_{1} \bar{d}_{1}=d_{j} \bar{d}_{j}$ for $j=1,2, \cdots, 6$ but for j beyond $6, d_{1} \bar{d}_{1}-d_{j} \bar{d}_{j}>0$ so that $b_{i 1} \bar{b}_{i 1}+b_{i 2} \bar{b}_{i 2}=0$ or $b_{i 1}=0$ and $b_{i 2}=0$
for $i=7,8, \cdots n$. Similarly, $b_{13}=0$ and $b_{i 4}=0$ for $i>6$. The third relations in each set give $b_{i 5}=0$ and $b_{i 6}=0$ for $i>6$.

On adding all 6 relations in the first set,

$$
\sum_{i, j=1}^{6} b_{i j} \bar{b}_{i j}+\sum_{i=1}^{6} \sum_{j=7}^{n} b_{i j} \bar{b}_{i j}=\sum_{i, j=1}^{6} b_{i j} \bar{b}_{i j}+\sum_{i=7}^{n} \sum_{j=1}^{6} b_{i j} \bar{b}_{i j}
$$

and on cancelling the first summations on each side,

$$
\sum_{i=1}^{6} \sum_{j=7}^{n} b_{i j} b_{i j}=\sum_{i=7}^{n} \sum_{j=1}^{6} b_{i j} b_{i j}
$$

But the right side is 0 from the above, so the left side is 0 and so $b_{i j}=0$ for $i=1,2, \cdots, 6$ and $j>6$.

From this it is evident that this procedure may be repeated, and that if

$$
D=r_{1} D_{1}+r_{2} D_{2}+\cdots+r_{k} D_{k}
$$

where the D_{i} are unitary and the r_{i} non-negative real, as above, then

$$
B_{2}=C_{1}+C_{2}+\cdots+C_{k}
$$

conformable to D. Then $r_{i} D_{i} C_{i}$ is normal so $D_{i}^{C T}\left(D_{i} C_{i} r_{i}\right) D_{i}=C_{i} r_{i} D_{i}$ is normal so $B_{2} D$ is normal, so $B_{1} F$ and so $U^{C} B U^{C T} U A U^{T}$ and $B A$.

THEOREM 5. If A and B are quasi-normal, then $A B$ is normal if and only if $A^{C T} A B=B A A^{C T}$ and $A B B^{C T}=B^{C T} B A$ (i.e., if and only if each is 'normal relative to the other').

If $A B$ is normal, from the above, $D^{C T} D B_{2}=B_{2} D D^{C T}$ so that $F^{C T} F B_{1}=$ $B_{1} F F^{C T}$ or $A^{C T} A B=B A A^{C T}$. Similarly, since $D B_{2}$ is normal, $D B_{2} B_{2}^{C T} D^{C}=$ $B_{2}^{C T} D^{C} D B_{2}$ so $D B_{2} B_{2}^{C T}=B_{2}^{C T} B_{2} D$ or $F B_{1} B_{1}^{C T}=B_{1}^{C T} B_{1} F$ or $A B B^{C T}=B^{C T} B A$. The converse is directly verifiable.

Theorem 6. Let A and B be quasi-normal. If $A B$ is normal, then $A=L W=$ $W L^{T}$ (with L hermitian and W unitary) and $B=N W^{C T}$ where N is normal and $L^{T} N=N L^{T}$; and conversely.

As above, let $U A U^{T}=F=W^{C T} D W=W^{C T} D_{r} W W^{C T} D_{u} W$ (where D_{r} and D_{u} are the hermitian and unitary polar matrices of D) and $U^{C} B U^{C T}=B_{1}=$ $W^{C T} B_{2} W=W^{C T}\left(C_{1}+C_{2}+\cdots+C_{k}\right) W$. As in the proof of Theorem 3 it follows that for all $i, D_{i} C_{i} C_{i}^{C T} \doteq C_{i}^{C T} C_{i} D_{i}$ and $U_{i}^{C T} C_{i} C_{i}^{C T}=C_{i}^{C T} C_{i} U_{i}^{C T}$, with U_{i} as defined there, so that when $R_{i}=D_{i}^{C} U_{i}^{C T}$ (where D, here, $=r_{1} D_{1} \dot{+} r_{2} D_{2}+\cdots+$ $r_{k} D_{k}$, as earlier), then $C_{i}=H_{i} U_{i}=H_{i} R_{i}^{C T} D_{i}^{C}$ with $H_{i} R_{i}=R_{i} H_{i}$. Then, since

$$
\begin{aligned}
W D_{r} & =D_{r} W, U A U^{T}=W^{C T} D_{r} W W^{C T} D_{u} W=D_{r}\left(W^{C T} D_{u} W\right) \text { and } \\
A & =\left(U^{C T} D_{r} U\right)\left(U^{C T} W^{C T} D_{u} W U^{C}\right)=L X \\
& =\left(U^{C T} W^{C T} D_{u} W U^{C}\right)\left(U^{T} D_{r} U^{C}\right)=X L^{T}
\end{aligned}
$$

with $L=U^{C T} D_{r} U$ hermitian and $X=U^{C T} W^{C T} D_{u} W U^{C}$ unitary. Also,

$$
U^{C} B U^{C T}=W^{C T}\left(H_{1} R_{1}^{C T} D_{1}^{C}+H_{2} R_{2}^{C T} D_{2}^{C}+\cdots+H_{k} R_{k}^{C T} D_{k}^{C}\right) W=N_{1} Y
$$

where

$$
N_{1}=W^{C T}\left(H_{1} R_{1}^{C T}+H_{2} R_{2}^{C T}+\cdots+H_{k} R_{k}^{C T}\right) W
$$

is normal and

$$
Y=W^{C T}\left(D_{1}^{C}+D_{2}^{C}+\cdots+D_{k}^{C}\right) W
$$

is unitary; then

$$
B=U^{T} N_{1} Y U=\left(U^{T} N_{1} U^{C}\right)\left(U^{T} Y U\right)=N X^{C T}
$$

where $N=U^{T} N_{1} U^{C}$ is normal and $X^{C T}=U^{T} Y U=U^{T} W^{C T} D_{u}^{C} W U$. Also $L^{T} N=N L^{T}$ since $D_{r} N_{1}=N_{1} D_{r}, D_{r}^{C} N_{1}=N_{1} D_{r}^{C}$ so

$$
\left(U^{c} \tilde{L}^{c} U^{T}\right)\left(U^{c} N U^{T}\right)=\left(U^{c} N U^{T}\right)\left(U^{c} L^{c} U^{T}\right)
$$

so $L^{T} N=N L^{T}$. The converse is immediate.

4. Quasi-normal products of matrices

It is possible if A is normal and B quasi-normal that $A B$ is quasi-normal. For example, any quasi-normal matrix $C=H U=U H^{T}$ is such a product with $A=H$ and $B=U$. Or if $C=H U=U H^{T}$ and $A=H$, then $A C=H^{2} U=H U H^{T}=$ $U\left(H^{T}\right)^{2}$ is quasi-normal. The following theorems clarify this matter.

Theorem 7. If A is normal and B is quasi-normal, then $A B$ is quasi-normal if and only if $A B B^{C T}=B B^{C T} A$ and $B^{C} A A^{C T}=A^{T} A^{C} B^{C}\left(\right.$ or $\left.B A^{C} A^{T}=A^{C T} A B\right)$.
(If one were to define ' N is normal with respect to $M^{\prime \prime}$ to mean $N N^{C T} M=$ $M N^{C T} N$ and ' Q is quasi-normal with respect to P ' to mean $P Q Q^{C T}=Q^{T} Q^{C} P$, the above theorem would say that if A is normal and B quasi-normal, then $A B$ is quasi-normal if and only if (quasi-normal) B is normal with respect to A and (normal) A is quasi-normal with respect to B^{C}.)

If the latter conditions hold, then: $(A B)(A B)^{C T}=A B B^{C T} A^{C T}=B B^{C T} A A^{C T}$ and $(A B)^{T}(A B)^{C}=B^{T} A^{T} A^{C} B^{C}=B^{T} B^{C} A A^{C T}$ which are equal.

Conversely, let $A B$ be quasi-normal and let $U A U^{C T}=D=d_{1} I \dot{+} d_{2} I_{2} \dot{+} \cdots \dot{+}$ $d_{k} I_{k}$ where $d_{i} d_{i}>d_{j} d_{j}, i>j$. Let $U B^{T} U^{T}=B_{1}=\left(b_{i j}\right)$. If $(A B)(A B)^{c T}=$ $A B B^{C T} A^{C T}=A B^{T} B^{C} A^{C T}=(A B)^{T}(A B)^{C}=B^{T} A^{T} A^{C} B^{C}=B^{T} A^{C} A^{T} B^{C}$, then

$$
\begin{aligned}
& \left(U A U^{C T}\right)\left(U B^{T} U^{T} U^{c} B^{C} U^{C T}\right)\left(U A^{C T} U^{C T}\right) \\
& \quad=\left(U B^{T} U^{T}\right)\left(U^{C} A^{C} U^{T} U^{c} A^{T} U^{T}\right)\left(U^{C} B^{C} U^{C T}\right)
\end{aligned}
$$

so that $D B_{1} B_{1}^{C T} D^{C T}=B_{1} D^{C} D B_{1}^{C T}$. Equating diagonal elements on each side of this relation, $\sum_{j=1}^{n} d_{i} d_{i} b_{i j} b_{i j}=\sum_{j=1}^{n} d_{j} d_{j} b_{i j} b_{i j}, i=1,2, \cdots, n$, or $\sum_{j=1}^{n}\left(d_{i} d_{i}-\right.$ $\left.d_{j} d_{j}\right) b_{i j} b_{i j}=0$.

Let $d_{1} d_{1}=d_{2} d_{2}=\cdots d_{l} d_{l}>d_{l+1} \bar{d}_{l+1}$. Then $b_{i j}=0$ for $i=1,2, \cdots, l$ and
$j=l+1, l+2, \cdots, n$. Since B_{1} is quasi-normal, $\sum_{j=1}^{n} b_{i j} \bar{b}_{i j}=\sum_{j=1}^{n} b_{j i} \bar{b}_{j i}$ for $i=1,2, \cdots, n$. On adding the first l of these equations and cancelling, $b_{i j}=0$ for $i=l+1, l+2, \cdots, n$ and $j=1,2, \cdots, l$. In this manner if $D=r_{1} D_{1}+r_{2} D_{2}+$ $\cdots+r_{t} D_{t}$ with $r_{i}>r_{i+1}$ and D_{i} unitary, then $B_{1}=C_{1}+C_{2}+\cdots+C_{t}$ conformable to D. Since $r_{i} D_{i} D_{i}^{C T} r_{i} C_{i}^{T}=r_{i}^{2} C_{i}^{T}=C_{i}^{T} r_{i}^{2}=C_{i}^{T} r_{i} D_{i} D_{i}^{C T} r_{i}$, all i, $D D^{C T} B_{1}^{T}=B_{1}^{T} D D^{C T}$ and so $U^{C T} D D^{C T} U U^{C T} B_{1}^{T} U^{C}=U^{C T} B_{1}^{T} U^{C} U^{T} D D^{C T} U^{C}$ or $A A^{C T} B=B A^{T} A^{C}$ or $A^{C T} A B=B A^{T} A^{C}$ or $A^{T} A^{C} B^{C}=B^{C} A A^{C T}$.

Also, $D\left(B_{1} B_{1}^{C T} D^{C T}\right)=B_{1} D^{C} D B_{1}^{C T}=D^{C} D B_{1}^{C T}=D\left(D^{C} B_{1} B_{1}^{C T}\right)$ so that $C_{i} C_{i}^{C T}\left(r_{i} D_{i}^{C}\right)=\left(r_{i} D_{i}^{C}\right) C_{i} C_{i}^{C T}$ for $i=1,2, \cdots, t$. (If $r_{t}=0$, this is still true and D_{t} may be chosen to be the identity matrix.) Therefore $B_{1} B_{1}^{C T} D^{C T}=D^{C T} B_{1} B_{1}^{C T}$ and $U B^{T} U^{T} U^{C} B^{C} U^{C T} U A^{C T} U^{C T}=U A^{C T} U^{C T} U B^{T} U^{T} U^{C} B_{1}^{C} U^{C T}$ so $B^{T} B^{C} A^{C T}=$ $A^{C T} B^{T} B^{C}$ or $A B^{T} B^{C}=B^{T} B^{C} A$.

Corollary. Let A be normal, B quasi-normal; if $A B$ is quasi-normal, then $B A^{c}$ is quasi-normal, and conversely.

From the above, $U A U^{C T} U B U^{T}=D B_{1}^{T}$ is quasi-normal, and if $D=D_{r} D_{u}$, D_{r} real and D_{u} unitary, then since $D_{u}^{C}=D_{u}^{C T}, D_{u}^{C}\left(D B_{1}^{T}\right) D_{u}^{C}=D_{r} B_{1}^{T} D_{u}^{C}=B_{1}^{T} D_{r} D_{u}^{C}$ $=B_{1}^{T} D^{C}$ is quasi-normal as are $U B U^{T} U^{C} A^{C} U^{T}$ and $B A^{C}$. Reversing the steps proves the converse.

If A is normal and B is quasi-normal, $B A^{C}$ is quasi-normal if and only if $A B$ is quasi-normal if and only if $\left(B^{T} B^{C}\right) A=A\left(B B^{C T}\right)$ and $\left(A^{T} A^{C}\right) B^{C}=B^{C}\left(A A^{C T}\right)$. Therefore, if A is normal and B quasi-normal, $B A$ is quasi-normal if and only if $\left(B^{T} B^{C}\right) A^{C}=A^{C}\left(B B^{C T}\right)$ and $\left(A^{C T} A\right) B^{C}=B^{C}\left(A^{C} A^{T}\right)$, i.e., replace A by A^{C} in the preceding, or $\left(B^{C T} B\right) A=A\left(B^{C} B^{T}\right)=A\left(B^{C T} B\right)$ and $\left(A^{C T} A\right) B^{C}=B^{C}\left(A^{C} A^{T}\right)$, thus exhibiting the fact that when $A B$ is quasi-normal, $B A$ is not necessarily so.

Theorem 8. If $A=L W=W L$ is normal and $B=K V=V K^{T}$ is quasi-normal (where L and K are hermitian and W and V are unitary) then $A B$ is quasi-normal if and only if $L K=K L, L V=V L^{T}$ and $W K=K W$.

If the three relations hold, then $A B=L W K V=L K W V$ on one hand, and $A B \doteq W L K V=W K L V=W K V L^{T}=W V K^{T} L^{T}=W V(L K)^{T}$ is quasi-normal since $L K$ is hermitian and $W V$ is unitary.

Conversely, let

$$
\begin{aligned}
& A=U^{C T} D U=\left(U^{C T} D_{r} U\right)\left(U^{C T} D_{u} U\right)=L W \text { and } \\
& B=U^{C T} B_{1}^{T} U^{C}=\left(U^{C T} K_{1} U\right)\left(U^{C T} V_{1} U^{C}\right)=K V=V K^{T}
\end{aligned}
$$

where K_{1} and V_{1} are hermitian and unitary and direct sums conformable to B_{1}^{T} and D. A direct check shows that $L K=K L$ and $L V=V L^{T}$; also $W K=U^{C T} D_{u} K_{1} U$ $=U^{C T} K_{1} D_{u} U=K W$ since $D_{u} B_{1} B_{1}^{C T}=B_{1} B_{1}^{C T} D_{u}$ implies $D_{u} K_{1}=K_{1} D_{u}$.

A sufficient condition for the simultaneous reduction of A and B is given by the following:

Theorem 9. If A is normal, B quasi-normal, and $A B=B A^{T}$, then $W A W^{C T}=$ D and $W B^{T} W=F$, the normal form of Theorem 1 , where W is a unitary matrix; also $A B$ is quasi-normal.

Let $U A U^{C T}=D$, diagonal, and $U B U^{T}=B_{2}$ which is quasi-normal. Then $A B=B A^{T}$ implies $D B_{2}=U A U^{C T} U B U^{T}=U B U^{T} U^{C} A^{T} U^{T}=B_{2} D^{T}=B_{2} D$. Let $D=c_{1} I_{1}+c_{2} I_{2}+\cdots+c_{k} I_{k}$, where the c_{i} are complex and $c_{i} \neq c_{l}$ for $i \neq j$, and $B_{2}=C_{1}+C_{2}+\cdots+C_{k}$. Let V_{i} be unitary such that $V_{i} C_{i} V_{i}^{T}=F_{i}=$ the real normal form of Theorem 1, and let $V=V_{1}+V_{2} \dot{+\cdots+V_{k} \text {. Then } V U A U^{C T} V^{C T}, ~\left(V^{C T}\right.}$ $=D, V U B U^{T} V^{T}=F=$ a direct sum of the F_{i}.

Also, $A B=B A^{T}$ implies $B^{T} A^{T}=A B^{T}$ and so $A B B^{C T} A^{C T}=A B^{T} B^{C} A^{C T}=$ $B^{T} A^{T} A^{C} B^{C}=(A B)^{T}(A B)^{C}$. (The fact that A is normal is not used in the latter.)

It is also possible for the product of two normal matrices A and B to be quasinormal. If $Q=H U=U H^{T}$ is quasi-normal and if $A=U$ and $B=H$ this is so or if $K V=V K^{T}$ is quasi-normal and if $A=U K=K U$ is normal with K hermitian and V and U unitary, for $B=V, A B=(U K) V=K(U V)=(U V) K^{T}$ is quasinormal. But if in the first example, $U^{2} H$ is not normal, then $H U$ is not quasi-normal (see section $2, \mathrm{c}$)) so that $B A$ is not necessarily quasi-normal though $A B$ is. When A alone is normal an analog of Theorem 2 can be obtained which states the following: If A is normal, then $A B$ and $A B^{T}$ are quasi-normal if and only if $A B B^{C T}=$ $B^{T} B^{C} A, B B^{C T} A=A B^{T} B^{C}$, and $B^{C} A A^{C T}=A^{T} A^{C} B^{C}$. (The proof is not included here because of its similarity to that above.) When B is quasi-normal, two of these conditions merge into one in Theorem 7.

It is possible for the product of two quasi-normal matrices to be quasi-normal, but no such simple analogous necessary and sufficient conditions as exhibited above are available. This may be seen as follows. Two non-real complex commutative matrices $S=S^{T}$ and $T=T^{T}$ can form a quasi-normal (and non-real symmetric) matrix $S T$ (such that $T S$ is also quasi-normal) which need not be normal. Then two symmetric matrices:

$$
X=\left[\begin{array}{cc}
i & i+i \\
1+i & -i
\end{array}\right], \quad Y=\left[\begin{array}{cc}
1+2 i & 3-4 i \\
3-4 i-(1+2 i)
\end{array}\right]
$$

are such that $X Y=Z$ is real, normal and quasi-normal (and not symmetric). Finally, if U and V are two complex unitary matrices of the same order, they can be chosen so $U V$ is non-real complex, normal and quasi-normal. If $A=S+X+U$ and $B=T \dot{+} Y \dot{+} V, A B=S T \dot{+} X Y+U V$ where A and B are quasi-normal as in $A B$ (but not symmetric). A simple inspection of these matrices shows that relations on the order of $\left(B^{T} B^{C}\right) A=A\left(B B^{C T}\right)=\left(B B^{C T}\right) A$ and $\left(A^{T} A^{C}\right) B^{C}=\left(A A^{C T}\right) B^{C}=$ $B^{C}\left(A A^{C T}\right)$ do not necessarily hold; these are sufficient, however, to guarantee that $A B$ is quasi-normal (as direct verification from the definition will show).

References

[1] R. Bellman, Introduction to Matrix Analysis (McGraw-Hill, New York, 1960).
[2] K. Morita, 'UUber normale antilineare Transformationen', J. Acad. Proc. Tokyo, 20 (1944), 715-720.
[3] I. Schur, 'Ein Satz über quadratische Formen mit komplexen Koeffizienten', Amer. J. Math. 67 (1945), 472-480.
[4] J. Stander and N. Wiegmann, 'Canonical Forms for Certain Matrices under Unitary Congruence', Can. J. Math. 12 (1960), 427-445.
[5] U. Wegner and J. Wellstein, 'Bermerkung zur Transformationen von komplexen symmetrischen Matrizen', Monatshefte für Math. and Physik. 40 (1933), 319-332.
[6] N. Wiegmann, 'Normal Products of Matrices', Duke Math. Journal 15 (1948), 633-638.

California State College

Dominguez Hills

