Perron units which are not Mahler measures

DAVID W. BOYD

Department of Mathematics, University of British Columbia, Vancouver, B.C., V6T 1Y4, Canada

(Received 18 October 1986)

Abstract. The Mahler measure $M(\alpha)$ of an algebraic integer α is the product of the absolute value of the conjugates of α which lie outside the unit circle. The quantity log $M(\alpha)$ occurs in ergodic theory as the entropy of an endomorphism of the torus. Adler and Marcus showed that if $\beta = M(\alpha)$ then β is a Perron number which is a unit if α is a unit. They asked whether the Perron number β whose minimal polynomial is $t^m - t - 1$ is the measure of any algebraic integer. We show here that the answer is negative for all m > 3.

Introduction

Let α be an algebraic integer with conjugates $\alpha = \alpha_1, \ldots, \alpha_n$ over the rationals. The Mahler measure $M(\alpha)$ of α is defined by

$$M(\alpha) = \prod \max(|\alpha_i|, 1).$$

If we number the α_i so that

$$|\alpha_1| \geq \cdots \geq |\alpha_{\nu}| > 1 \geq |\alpha_{\nu+1}| \geq \cdots \geq |\alpha_n|$$

then $M(\alpha) = \beta = u\alpha_1 \cdots \alpha_{\nu}$ where $u = \pm 1$. Thus β is itself an algebraic integer. We wish to consider the inverse question of deciding if a given algebraic integer β is $M(\alpha)$ for some α , in which case we say that β is a measure.

The quantity log $M(\alpha)$ occurs in ergodic theory as the entropy of an automorphism of the torus. In [1], Adler and Marcus observed that if $\beta = M(\alpha)$ then β is a Perron number, i.e. if γ is a conjugate of β different from β then $|\gamma| < \beta$. Furthermore, if α is a unit then so is β . They asked [1, p. 80] whether the positive zero β of $t^m - t - 1$ can be a measure for any m > 3.

Here we will present two additional requirements which must be satisfied by a measure and apply our results to show, in particular, that the above β is not a measure for any m > 3. This may be regarded as indirect evidence in favour of Lehmer's conjecture [5] that the set of measures is bounded away from 1 since the above $\beta \rightarrow 1$ as $m \rightarrow \infty$.

Our interest in these questions was awakened by the interesting lecture of Boyle [4]. This research was supported in part by a grant from NSERC.

THEOREM 1. Suppose α is an algebraic integer and that $\beta = M(\alpha) = u\alpha_1 \cdots \alpha_{\nu}$. Then: (a) All conjugates $\gamma \neq \beta$ of β lie in the annulus $\beta^{-1} \leq |\gamma| < \beta$. If $|\gamma| = \beta^{-1}$ then $\gamma = \pm \beta^{-1}$. (b) If deg $\alpha = n$, deg $\beta = m$ and α has ν conjugates in |z| > 1, then $m\nu/n = r$ is an integer and $N(\beta) = u^m N(\alpha)^r$.

In particular, if $N(\alpha) = 1$ and m is even then $N(\beta) = 1$.

Proof. (a) Let I denote a subset of $[1, n] = \{1, 2, ..., n\}$ of cardinality |I| and let J be its complement. Write

$$\alpha(I) = \prod \{ \alpha_k \colon k \in I \}.$$

Then each conjugate γ of β is of the form

$$\gamma = u\alpha(I), \quad \text{with } |I| = \nu.$$

Since $N(\alpha) = \alpha_1 \cdots \alpha_n = \alpha(I)\alpha(J)$, we have

$$\gamma^{-1} = u\alpha(J)/N(\alpha).$$

Clearly $\beta = M(\alpha) = \max \{ |\alpha(I)| : I \subset [1, n] \}$. If α is non-reciprocal then $|\alpha_{\nu+1}| < 1$ so equality holds only if $I = [1, \nu]$. If α is non-reciprocal then $|\alpha_k| = 1$ for $\nu + 1 \le k \le n - \nu$ so equality holds only if $[1, \nu] \subset \dot{I} \subset [1, n - \nu]$.

Thus, if $\gamma \neq \beta$ then

$$|\gamma| = |\alpha(I)| < \beta.$$

Also $|\gamma^{-1}| = |\alpha(J)|/|N(\alpha)| \le \beta$. Equality here requires $N(\alpha) = \pm 1$ and $J = [1, n - \nu]$. Thus, either α is reciprocal and $\gamma^{-1} = \beta$ or else α is non-reciprocal, $2\nu = n$ and $\gamma^{-1} = N(\alpha)\beta = \pm\beta$. This completes the proof of (a).

(b) Let G be the Galois group of $K = \mathbb{Q}(\alpha_1, \ldots, \alpha_n)$ over \mathbb{Q} represented as a permutation group on [1, n]. Then G acts on the ν -subsets of [1, n] in the obvious way.

Let $O = \{I_1, \ldots, I_M\}$ denote the orbit of $I_1 = [1, \nu]$ under G. The conjugates of $\beta = u\alpha(I_1)$ are thus $\{u\alpha(I_1), \ldots, u\alpha(I_M)\}$. Each of the *m* conjugates of β appears, say, *s* times in the list $u\alpha(I_1), \ldots, u\alpha(I_M)$ with M = ms. But here $\beta = u\alpha(I_1) > |u\alpha(I_i)|, j \neq 1$ so s = 1 and thus M = m.

Consider $S_j = \{I_k | j \in I_k\}$ for j = 1, ..., n. We claim that $|S_j| = r$ is independent of j. For G is transitive and hence for any i, j there is a π in G with $j = \pi(i)$. The action of π on O defines a one-one correspondence between S_i and S_j so $|S_i| = |S_j|$. The orbit O thus consists of m ν -sets which together contain the n conjugates of α r times each. Hence $m\nu = nr$ and

$$N(\beta) = u^m \prod_{k=1}^m \alpha(I_k) = u^m (\alpha_1 \cdots \alpha_n)^r = u^m N(\alpha)^r.$$

COROLLARY. Let $\theta_0 > 1$ solve $t^3 - t - 1 = 0$. If $\beta < \theta_0$, β is a measure and deg β is even, then $N(\beta) = 1$.

Proof. By a theorem of Smyth [7]; if $M(\alpha) < \theta_0$ then α is reciprocal, i.e. α is an algebraic integer with α^{-1} a conjugate of α . Then $N(\alpha) = +1$ and by (b), $N(\beta) = +1$ if *m* is even.

PROPOSITION. Let r be as in (b) of theorem 1. Then $M(\beta) \leq \beta'$. If r = 1 then β is a Pisot or Salem number.

Proof. $M(\beta)$ is a product of certain $|\alpha(I_k)|$ with I_k in O. Since each α_j occurs at most r times in the disjoint union of the I_k in O we can estimate this product by

$$M(\beta) \leq |\alpha_1|^r \cdots |\alpha_\nu|^r \cdot 1^r \cdots 1^r = M(\alpha)^r = \beta^r.$$

If r = 1 then $M(\beta) = \beta$ so $\beta > 1$ and has all its other conjugates in $|z| \le 1$, thus is a Pisot or Salem number.

THEOREM 2. Let m > 3 and let β be the positive zero of $t^m - t - 1$. Then β is not a measure.

Proof. The complex zeros of $P(z) = z^m - z - 1$ are discussed by Selmer [6] in his proof that P is irreducible. They clearly lie on the curve C_m defined by $|z|^m = |z+1|$. If $z = r e^{i\phi}$ then C_m has the polar equation $r^{2m} = r^2 - 2r \cos \phi + 1$. This has a unique positive solution $r = f(\phi)$ where f is even and strictly decreasing on $0 \le \phi \le \pi$. Clearly $\beta = f(0)$.

A given $r \ge 0$ will be in the range of f if and only if the circles |z| = r and $|z+1| = r^m$ intersect, i.e. if $r^m + r \ge 1$. In particular, if $r = 1/\beta$ then $r^m + r = 1/(\beta+1) + 1/\beta \ge 1$ since $\beta^2 - \beta - 1 \le \beta^m - \beta - 1 = 0$. Let $\beta^{-1} e^{i\phi_0}$ denote the point of intersection of $|z| = \beta^{-1}$ and $|z+1| = \beta^{-m}$ with $0 < \phi_0 < \pi$. If m > 2 then $\phi_0 < \pi$, and then $f(\phi) < \beta^{-1}$ for $\phi_0 < \phi \le \pi$.

To show that P(z) = 0 has a zero γ with $|\gamma| < \beta^{-1}$ we must show that it has a zero $re^{i\phi}$ with $\phi_0 < \phi < \pi$. If m > 2 is even this is clear since $-f(\pi)$ is such a zero.

If *m* is odd then the argument principle shows that P(z) = 0 has two zeros in the sector $|\arg z - \pi| < \pi/m$. If $\pi/m < \pi - \phi_0$ then *P* has a zero with $\phi_0 < \phi < \pi$.

Since P(1+1/m) > 0 > P(1), it follows that $1 < \beta < 1+1/m$ so, for $m \ge 5$, $\beta < 1.2$ and

$$\pi - \phi_0 = \cos^{-1} \left(\frac{\beta}{2} \left(1 + \beta^{-2} - (1 + \beta)^{-2} \right) \right)$$

> $\cos^{-1} \left(\frac{1.2}{2} \left(1 + (1.2)^{-2} - (2.2)^{-2} \right) \right) = \delta,$

where $\pi/\delta > 6.7$. Thus P has a zero with $|\gamma| < \beta^{-1}$ if $m \ge 7$.

If m = 5, a numerical calculation shows that $\beta = 1.16730 \cdots$ and that there is a zero γ with $|\gamma| = 0.84219 \cdots < 1/\beta$.

Applying theorem 1(a), β is not a measure for $m \ge 4$.

Remarks. (1) For even *m*, the corollary also applies since $\beta < \theta_0$ but $N(\beta) = -1$.

(2) The argument principle shows that $z^m - z - 1$ has exactly one zero in each of the sectors

$$S_k = \left\{ \left| \arg z - \frac{2k\pi}{m-1} \right| \le \frac{\pi}{m} \right\}$$
 for $k = 0, 1, ..., m-2; k \ne (m-1)/2.$

Since the ϕ_0 of the proof tends to $\pi - \cos^{-1}(7/8)$ as $m \to \infty$, asymptotically $m \cos^{-1}(7/8)/\pi$ of the zeros of $z^m - z - 1$ satisfy $|z| < 1/\beta$.

(3) The positive zero β of $z^6 - z^5 - 1$ satisfies theorem 1(a), but not 1(b) hence is not a measure.

(4) The polynomial $z^5 - z^2 - 1$ has zeros $\beta = 1.1938 \dots$, $|\beta_2| = |\beta_3| = 1.0864 \dots$ and $|\beta_4| = |\beta_5| = 0.8423 \dots > 1/\beta$ hence does not violate either part of theorem 1. It seems unlikely that β is a measure.

(5) There are reciprocal α for which $M(\alpha)$ is non-reciprocal. We presented some examples of degree 6 in [2]. In particular if the minimal polynomial of α is $P(t) = t^6 + t^5 + 2t^4 + 3t^3 + 2t^2 + t + 1$ then $\beta = M(\alpha)$ has minimal polynomial $t^3 - t^2 - t - 1$. The explanation depends on the Galois group G of P. Recently [3] we have constructed such examples of every degree $n = 2(2k+1) \ge 6$.

(6) A complete characterization of the set of measures would be very desirable but seems difficult.

REFERENCES

- R. L. Adler & B. Marcus. Topological Entropy and Equivalence of Dynamical Systems. Memoirs Amer. Math. Soc. 20 (1979), no. 219.
- [2] D. W. Boyd. Inverse problems for Mahler's measure. In *Diophantine Analysis*, ed. J. Loxton & A. van der Poorten. LMS Lecture notes 109. Cambridge Univ. Press, 1986 (pp 147-158).
- [3] D. W. Boyd. Reciprocal algebraic integers whose Mahler measures are non reciprocal. In Canad. Math. Bull.
- [4] M. Boyle. Pisot, Salem and Perron numbers in ergodic theory and topological dynamics. Xeroxed notes, November 1982.
- [5] D. H. Lehmer. Factorization of certain cyclotomic functions. Ann. of Math (2) 34 (1933), 461-479.
- [6] E. S. Selmer. On the irreducibility of certain trinomials. Math. Scand. 4 (1956), 287-302.
- [7] C. J. Smyth. On the product of the conjugates outside the unit circle of an algebraic integer. Bull. Lond. Math. Soc. 3 (1971), 169-175.