Perron units which are not Mahler measures

DAVID W. BOYD
Department of Mathematics, University of British Columbia, Vancouver, B.C., V6T 1Y4, Canada

(Received 18 October 1986)

Abstract

The Mahler measure $M(\alpha)$ of an algebraic integer α is the product of the absolute value of the conjugates of α which lie outside the unit circle. The quantity $\log M(\alpha)$ occurs in ergodic theory as the entropy of an endomorphism of the torus. Adler and Marcus showed that if $\beta=M(\alpha)$ then β is a Perron number which is a unit if α is a unit. They asked whether the Perron number β whose minimal polynomial is $t^{m}-t-1$ is the measure of any algebraic integer. We show here that the answer is negative for all $m>3$.

Introduction

Let α be an algebraic integer with conjugates $\alpha=\alpha_{1}, \ldots, \alpha_{n}$ over the rationals. The Mahler measure $M(\alpha)$ of α is defined by

$$
M(\alpha)=\prod_{i} \max \left(\left|\alpha_{i}\right|, 1\right) .
$$

If we number the α_{i} so that

$$
\left|\alpha_{1}\right| \geq \cdots \geq\left|\alpha_{\nu}\right|>1 \geq\left|\alpha_{\nu+1}\right| \geq \cdots \geq\left|\alpha_{n}\right|
$$

then $M(\alpha)=\beta=u \alpha_{1} \cdots \alpha_{\nu}$ where $u= \pm 1$. Thus β is itself an algebraic integer. We wish to consider the inverse question of deciding if a given algebraic integer β is $M(\alpha)$ for some α, in which case we say that β is a measure.

The quantity $\log M(\alpha)$ occurs in ergodic theory as the entropy of an automorphism of the torus. In [1], Adler and Marcus observed that if $\beta=M(\alpha)$ then β is a Perron number, i.e. if γ is a conjugate of β different from β then $|\gamma|<\beta$. Furthermore, if α is a unit then so is β. They asked [$1, \mathrm{p} .80$] whether the positive zero β of $t^{m}-t-1$ can be a measure for any $m>3$.

Here we will present two additional requirements which must be satisfied by a measure and apply our results to show, in particular, that the above β is not a measure for any $m>3$. This may be regarded as indirect evidence in favour of Lehmer's conjecture [5] that the set of measures is bounded away from 1 since the above $\beta \rightarrow 1$ as $m \rightarrow \infty$.

Our interest in these questions was awakened by the interesting lecture of Boyle [4]. This research was supported in part by a grant from NSERC.

Theorem 1. Suppose α is an algebraic integer and that $\beta=M(\alpha)=u \alpha_{1} \cdots \alpha_{\nu}$. Then:
(a) All conjugates $\gamma \neq \beta$ of β lie in the annulus $\beta^{-1} \leq|\gamma|<\beta$. If $|\gamma|=\beta^{-1}$ then $\gamma= \pm \beta^{-1}$.
(b) If $\operatorname{deg} \alpha=n, \operatorname{deg} \beta=m$ and α has ν conjugates in $|z|>1$, then $m \nu / n=r$ is an integer and $N(\beta)=u^{m} N(\alpha)^{r}$.
In particular, if $N(\alpha)=1$ and m is even then $N(\beta)=1$.
Proof. (a) Let I denote a subset of $[1, n]=\{1,2, \ldots, n\}$ of cardinality $|I|$ and let J be its complement. Write

$$
\alpha(I)=\prod\left\{\alpha_{k}: k \in I\right\} .
$$

Then each conjugate γ of β is of the form

$$
\gamma=u \alpha(I), \quad \text { with }|I|=\nu
$$

Since $N(\alpha)=\alpha_{1} \cdots \alpha_{n}=\alpha(I) \alpha(J)$, we have

$$
\gamma^{-1}=u \alpha(J) / N(\alpha)
$$

Clearly $\beta=M(\alpha)=\max \{|\alpha(I)|: I \subset[1, n]\}$. If α is non-reciprocal then $\left|\alpha_{\nu+1}\right|<1$ so equality holds only if $I=[1, \nu]$. If α is non-reciprocal then $\left|\alpha_{k}\right|=1$ for $\nu+1 \leq k \leq$ $n-\nu$ so equality holds only if $[1, \nu] \subset I \subset[1, n-\nu]$.

Thus, if $\gamma \neq \beta$ then

$$
|\gamma|=|\alpha(I)|<\beta
$$

Also $\left|\gamma^{-1}\right|=|\alpha(J)| /|N(\alpha)| \leq \beta$. Equality here requires $N(\alpha)= \pm 1$ and $J=[1, n-\nu]$. Thus, either α is reciprocal and $\gamma^{-1}=\beta$ or else α is non-reciprocal, $2 \nu=n$ and $\gamma^{-1}=N(\alpha) \beta= \pm \beta$. This completes the proof of (a).
(b) Let G be the Galois group of $K=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ over \mathbb{Q} represented as a permutation group on [1,n]. Then G acts on the ν-subsets of $[1, n]$ in the obvious way.

Let $O=\left\{I_{1}, \ldots, I_{M}\right\}$ denote the orbit of $I_{1}=[1, \nu]$ under G. The conjugates of $\beta=u \alpha\left(I_{1}\right)$ are thus $\left\{u \alpha\left(I_{1}\right), \ldots, u \alpha\left(I_{M}\right)\right\}$. Each of the m conjugates of β appears, say, s times in the list $u \alpha\left(I_{1}\right), \ldots, u \alpha\left(I_{M}\right)$ with $M=m s$. But here $\beta=u \alpha\left(I_{1}\right)>$ $\left|u \alpha\left(I_{j}\right)\right|, j \neq 1$ so $s=1$ and thus $M=m$.

Consider $S_{j}=\left\{I_{k} \mid j \in I_{k}\right\}$ for $j=1, \ldots, n$. We claim that $\left|S_{j}\right|=r$ is independent of j. For G is transitive and hence for any i, j there is a π in G with $j=\pi(i)$. The action of π on O defines a one-one correspondence between S_{i} and S_{j} so $\left|S_{i}\right|=\left|S_{j}\right|$. The orbit O thus consists of $m \nu$-sets which together contain the n conjugates of αr times each. Hence $m \nu=n r$ and

$$
N(\beta)=u^{m} \prod_{k=1}^{m} \alpha\left(I_{k}\right)=u^{m}\left(\alpha_{1} \cdots \alpha_{n}\right)^{r}=u^{m} N(\alpha)^{r}
$$

Corollary. Let $\theta_{0}>1$ solve $t^{3}-t-1=0$. If $\beta<\theta_{0}, \beta$ is a measure and $\operatorname{deg} \beta$ is even, then $N(\beta)=1$.
Proof. By a theorem of Smyth [7]; if $M(\alpha)<\theta_{0}$ then α is reciprocal, i.e. α is an algebraic integer with α^{-1} a conjugate of α. Then $N(\alpha)=+1$ and by $(\mathrm{b}), N(\beta)=+1$ if m is even.

Proposition. Let r be as in (b) of theorem 1. Then $M(\beta) \leq \beta^{r}$. If $r=1$ then β is a Pisot or Salem number.

Proof. $M(\beta)$ is a product of certain $\left|\alpha\left(I_{k}\right)\right|$ with I_{k} in O. Since each α_{j} occurs at most r times in the disjoint union of the I_{k} in O we can estimate this product by

$$
M(\beta) \leq\left|\alpha_{1}\right|^{r} \cdots\left|\alpha_{\nu}\right|^{r} \cdot 1^{r} \cdots 1^{r}=M(\alpha)^{r}=\beta^{r} .
$$

If $r=1$ then $M(\beta)=\beta$ so $\beta>1$ and has all its other conjugates in $|z| \leq 1$, thus is a Pisot or Salem number.

Theorem 2. Let $m>3$ and let β be the positive zero of $t^{m}-t-1$. Then β is not a measure.

Proof. The complex zeros of $P(z)=z^{m}-z-1$ are discussed by Selmer [6] in his proof that P is irreducible. They clearly lie on the curve C_{m} defined by $|z|^{m}=|z+1|$. If $z=r e^{i \phi}$ then C_{m} has the polar equation $r^{2 m}=r^{2}-2 r \cos \phi+1$. This has a unique positive solution $r=f(\phi)$ where f is even and strictly decreasing on $0 \leq \phi \leq \pi$. Clearly $\beta=f(0)$.

A given $r \geq 0$ will be in the range of f if and only if the circles $|z|=r$ and $|z+1|=r^{m}$ intersect, i.e. if $r^{m}+r \geq 1$. In particular, if $r=1 / \beta$ then $r^{m}+r=1 /(\beta+1)+1 / \beta \geq 1$ since $\beta^{2}-\beta-1 \leq \beta^{m}-\beta-1=0$. Let $\beta^{-1} e^{i \phi_{0}}$ denote the point of intersection of $|z|=\beta^{-1}$ and $|z+1|=\beta^{-m}$ with $0<\phi_{0}<\pi$. If $m>2$ then $\phi_{0}<\pi$, and then $f(\phi)<\beta^{-1}$ for $\phi_{0}<\phi \leq \pi$.

To show that $P(z)=0$ has a zero γ with $|\gamma|<\beta^{-1}$ we must show that it has a zero $r e^{i \phi}$ with $\phi_{0}<\phi<\pi$. If $m>2$ is even this is clear since $-f(\pi)$ is such a zero.

If m is odd then the argument principle shows that $P(z)=0$ has two zeros in the sector $|\arg z-\pi|<\pi / m$. If $\pi / m<\pi-\phi_{0}$ then P has a zero with $\phi_{0}<\phi<\pi$.

Since $P(1+1 / m)>0>P(1)$, it follows that $1<\beta<1+1 / m$ so, for $m \geq 5, \beta<1.2$ and

$$
\begin{aligned}
\pi-\phi_{0} & =\cos ^{-1}\left(\frac{\beta}{2}\left(1+\beta^{-2}-(1+\beta)^{-2}\right)\right) \\
& >\cos ^{-1}\left(\frac{1.2}{2}\left(1+(1.2)^{-2}-(2.2)^{-2}\right)\right)=\delta
\end{aligned}
$$

where $\pi / \delta>6.7$. Thus P has a zero with $|\gamma|<\beta^{-1}$ if $m \geqslant 7$.
If $m=5$, a numerical calculation shows that $\beta=1.16730 \cdots$ and that there is a zero γ with $|\gamma|=0.84219 \cdots<1 / \beta$.

Applying theorem 1(a), β is not a measure for $m \geq 4$.
Remarks. (1) For even m, the corollary also applies since $\beta<\theta_{0}$ but $N(\beta)=-1$.
(2) The argument principle shows that $z^{m}-z-1$ has exactly one zero in each of the sectors

$$
S_{k}=\left\{\left|\arg z-\frac{2 k \pi}{m-1}\right| \leq \frac{\pi}{m}\right\} \quad \text { for } k=0,1, \ldots, m-2 ; k \neq(m-1) / 2
$$

Since the ϕ_{0} of the proof tends to $\pi-\cos ^{-1}(7 / 8)$ as $m \rightarrow \infty$, asymptotically $m \cos ^{-1}(7 / 8) / \pi$ of the zeros of $z^{m}-z-1$ satisfy $|z|<1 / \beta$.
(3) The positive zero β of $z^{6}-z^{5}-1$ satisfies theorem $1(\mathrm{a})$, but not $1(\mathrm{~b})$ hence is not a measure.
(4) The polynomial $z^{5}-z^{2}-1$ has zeros $\beta=1.1938 \ldots,\left|\beta_{2}\right|=\left|\beta_{3}\right|=1.0864 \cdots$ and $\left|\beta_{4}\right|=\left|\beta_{5}\right|=0.8423 \cdots>1 / \beta$ hence does not violate either part of theorem 1. It seems unlikely that β is a measure.
(5) There are reciprocal α for which $M(\alpha)$ is non-reciprocal. We presented some examples of degree 6 in [2]. In particular if the minimal polynomial of α is $P(t)=t^{6}+t^{5}+2 t^{4}+3 t^{3}+2 t^{2}+t+1$ then $\beta=M(\alpha)$ has minimal polynomial $t^{3}-t^{2}-$ $t-1$. The explanation depends on the Galois group G of P. Recently [3] we have constructed such examples of every degree $n=2(2 k+1) \geq 6$.
(6) A complete characterization of the set of measures would be very desirable but seems difficult.

REFERENCES

[1] R. L. Adler \& B. Marcus. Topological Entropy and Equivalence of Dynamical Systems. Memoirs Amer. Math. Soc. 20 (1979), no. 219.
[2] D. W. Boyd. Inverse problems for Mahler's measure. In Diophantine Analysis, ed. J. Loxton \& A. van der Poorten. LMS Lecture notes 109. Cambridge Univ. Press, 1986 (pp 147-158).
[3] D. W. Boyd. Reciprocal algebraic integers whose Mahler measures are non reciprocal. In Canad. Math. Bull.
[4] M. Boyle. Pisot, Salem and Perron numbers in ergodic theory and topological dynamics. Xeroxed notes, November 1982.
[5] D. H. Lehmer. Factorization of certain cyclotomic functions. Ann. of Math (2) 34 (1933), 461-479.
[6] E. S. Selmer. On the irreducibility of certain trinomials. Math. Scand. 4 (1956), 287-302.
[7] C. J. Smyth. On the product of the conjugates outside the unit circle of an algebraic integer. Bull. Lond. Math. Soc. 3 (1971), 169-175.

