RECTANGULARITY VERSUS PIECEWISE RECTANGULARITY OF PRODUCT SPACES

BY
KÔICHI TSUDA
Dedicated to my father, Professor Mitsuru Tsuda on the occasion of his 60th birthday.

Abstract

We shall discuss relations between rectangularity and piecewise rectangularity of product spaces. In particular, we show that for each positive integer n there exists an n-dimensional, collectionwise normal, non-piecewise rectangular product $X \times Y$ which satisfies the inequality $\operatorname{dim}(X \times Y) \leqq \operatorname{dim} X+\operatorname{dim} Y$.

0 . Definitions. A subset of the product space $X \times Y$ is said to be (piecewise) cozero rectangular if it is (a closed and open subset of the set) of the form $U \times V$, where U and V are cozero sets of X and Y, respectively. The product space $X \times Y$ is said to be (piecewise) rectangular if any finite cozero cover of it has a σ-locally finite refinement consisting of (piecewise) cozero rectangular subsets [8, 12, 13, 14, 15]. All spaces in this note are assumed to be Tychonoff. By the dimension $\operatorname{dim} X$ of a space X we mean the covering dimension of it [7]. In particular, we say that X is strongly zerodimensional when $\operatorname{dim} X=0$. For the undefined terminology refer to [6, 7].

1. Introduction. In [12] Pasynkov introduced the notion of a rectangular product and announced that the following inequality is valid for every rectangular product (see [14] for precise proof).

$$
{ }^{(*)} \operatorname{dim}(X \times Y) \leqq \operatorname{dim} X+\operatorname{dim} Y .
$$

The Pasynkov's theorem is relatively strong, but it is known that
(i) there exist non-rectangular strongly zero-dimensional products which satisfy the inequality $(*)[9,11,19,21,22]$.

Moreover, Ohta [11] showed a machine to produce normal non-rectangular products $X \times Y$ which satisfy the inequality $\left({ }^{*}\right)$ for every normal, non-paracompact (not necessarily strongly zero-dimensional) space X.

In [15] Pasynkov extended his result for every piecewise rectangular product (see [16] for its detailed proof). One of the remarkable consequences from it is that the

[^0]piecewise rectangularity of products is a necessary and sufficient condition for the validity of the inequality $\left({ }^{*}\right)$ when the factor spaces are strongly zero-dimensional. Hence, all the examples in (i) are included in the class of piecewise rectangular products.

In this note we construct at first the following example, using the method due to Ohta.

Example 1. There exists a one-dimensional, countably paracompact, collectionwise normal, non-piecewise rectangular product which satisfies the inequality $\left({ }^{*}\right)$.

Next, we construct higher dimensional, connected ones.
Example 2. For every pair of positive integers (m, n) there exist an n-dimensional connected countably compact normal space X_{n} and an m-dimensional connected stratifiable space S_{m} such that $X_{n} \times S_{m}$ is $(m+n)$-dimensional, countably paracompact, collectionwise normal, and non-piecewise rectangular.
2. Preliminary lemmas. We begin with the following easy but useful lemma (for its proof see [9]).

Lemma 0. A product space is (piecewise) rectangular if and only if every cozero set of it is a σ-locally finite union of (piecewise) cozero rectangular sets.

We need also the following result due to Terasawa [2, Lemma 1].
Lemma 1. Every product with a compact factor is rectangular.
Next, we show a lemma which will be used in the final section.
Lemma 2. Let $X \times Y$ be strongly zero-dimensional. Then, for every compact spaces K and $C, S \times T$ is piecewise rectangular, where $S=X \times K$ and $T=Y \times C$.

Proof. Let G be a cozero set in $S \times T$. Then, using Lemma 1 twice (to the products $(X \times Y) \times K$ and $(X \times Y \times K) \times C)$ we obtain a σ-locally finite collection $U=$ $\{U \times V \times W\}$, where U, V, and W are cozero sets in $X \times Y, K$ and C, respectively, whose union is equal to the set G. Since $X \times Y$ is strongly zero-dimensional, the set U is the union of countably many closed and open sets U_{i} of $X \times Y$ [22, Theorem 1]. Then, since $U_{i} \times V \times W$ is a closed and open subset of the rectangular cozero set $(X \times V) \times(Y \times W)$ in $S \times T$, the set G is a σ-locally finite union of piecewise cozero rectangular sets. Hence, $S \times T$ is piecewise rectangular by Lemma 0 . This completes the proof.

Finally, we show a lemma which gives a sufficient condition for the coincidence of rectangularity and piecewise rectangularity.

Lemma 3. Let $X \times Y$ be locally connected. then, $X \times Y$ is rectangular if and only if it is piecewise rectangular.

Proof. It suffices to see "if" part. Let G be an arbitrary cozero set in the product space $X \times Y$. Since it is piecewise rectangular, there exists a σ-locally finite collection
U whose union is equal to the set G, and each $U \in U$ is a closed and open subset of some cozero rectangular set $V \times W$. We show that each U is a union of a σ-locally finite family of cozero rectangular sets. Indeed, since both of X and Y are locally connected, V and W are topological sums of its connected components $\left\{V_{\alpha}\right\}$ and $\left\{W_{\beta}\right\}$, respectively. (Note that $V_{\alpha} \times W_{\beta}$ is closed and open in V and W, and hence is a cozero set in $X \times Y$.) Hence, the set U is a sum of some subcollection of $\left\{V_{\alpha} \times W_{\beta}\right\}$, since each $V_{\alpha} \times W_{\beta}$ is connected and U is closed and open. Because V and W are cozero sets, there exist two collections of countably many cozero sets $\left\{V_{i}\right\}$ and $\left\{W_{i}\right\}$ such that

$$
\bar{V}_{i} \subset V_{i+1} \subset V, \bar{W}_{i} \subset W_{i+1} \subset W, V=\cup V_{i}, \text { and } W=\cup W_{i}
$$

Then,

$$
\left\{\left(V_{\alpha} \times W_{\beta}\right) \cap\left(V_{i} \times W_{i}\right): V_{\alpha} \times W_{\beta} \subset U\right\}_{i=1}^{\infty}
$$

is a σ-locally finite family of cozero rectangular collection whose union is the set U. Since G is the union of U and U is σ-locally finite, the set G is also a union of a σ-locally finite family of cozero rectangular sets. This completes the proof by Lemma 0.
3. Examples. At first we construct Example 1.
(a) The factor space X. Let X be the well known Long line [20, p. 71]. Then, it is known that X is non-paracompact, countably compact, normal, connected, and locally connected of weight $w(X)=\omega_{1}$.
(b) The factor space Y. Let Y_{0} be the set of all points in the ω_{1} fold Tychonoff product of unit intervals $I^{\omega_{1}}$ consisting of points whose all but finitely many coordinates are equal to zero. (Note that the cardinality of Y_{0} is ω_{1}.) Let y_{0} be the point of $I^{\omega_{1}}$ whose all coordinates are equal to 1 . Put

$$
Y=Y_{0} \cup\left\{y_{0}\right\}
$$

U with the topology in which all points in Y_{0} are isolated, and the neighborhoods of y_{0} are the same as in the relative topology of I^{ω}. (In other words, the Hannerization $Y_{\left\{y_{0}\right\}}$ as in [6, Example 5.1.22].) Then, it is known [3, 4, 11] that Y is a σ-discrete stratifiable space and
(0) The point y_{0} has a closure-preserving base \mathscr{B} which is locally finite at every point of Y_{0}.
(c) The product space $X \times Y$. It is known [11, Theorem 1] that $X \times Y$ is collectionwise normal, non-rectangular. Since Y is σ-locally compact paracompact, the product satisfies the inequality (*) by [10, Theorem 1]. Moreover, it is one-dimensional, since it contains a unit interval. We shall show that it is also non-piecewise rectangular. (Note that it is countably paracompact, since X is countably compact and (0) holds.) It suffices to see that
(1) if $X \times Y$ is assumed to be piecewise rectangular, then $X \times Y$ is rectangular.

Suppose that the product is piecewise rectangular. Then, for any cozero set G of it there exists a σ-locally finite collection U whose union is equal to the set G and for each $U \in U$ there exist cozero sets V and W such that U is closed and open in V and W. Since X is locally connected, V is the topological sum of its connected components $\left\{V_{\lambda}\right\}$. We show that
(2) if $U \cap\left(V_{\lambda} \times\left\{y_{0}\right\}\right) \neq \varnothing$, then $U \supset V_{\lambda} \times B$ for some neighborhood $B \subset W$ of y_{0}.

Indeed, since V_{λ} is connected and U is closed and open in $V \times W, U \supset V_{\lambda} \times\left\{y_{0}\right\}$ if $U \cap\left(V_{\lambda} \times\left\{y_{0}\right\} \neq \varnothing\right.$. Then, for some $v \in V_{\lambda}$ take a neighborhood $B \subset W$ of y_{0} such that $\{v\} \times B \subset U$. Since U is closed and open and V_{λ} is connected, (2) holds for this B. Hence, for each V_{λ} there exists a closed and open set B_{λ} such that $y_{0} \in B, V_{\lambda} \times$ $B_{\lambda} \subset U$. Therefore, by the proof of Lemma 3 there exists a σ-locally finite rectangular cozero collection \mathscr{G} such that

$$
G \cap\left(X \times\left\{y_{0}\right\}\right) \subset \cup \mathscr{G} \subset G .
$$

Since $Y_{0}=Y \backslash\left\{y_{0}\right\}$ is σ-discrete, the remaining set $G \cap\left(X \times Y_{0}\right)$ is a union of σ-locally finite cozero rectangular sets. Hence, (1) holds, and this completes the proof.

Next, we construct Example 2.
(a) The factor space X_{n}. Let X be the Long line (that is the space X in Example 1). Put $X=\cup L_{\alpha}, L_{\alpha} \subset L_{\beta}$ for any $\alpha<\beta<\omega_{1}$, and each L_{α} is homeomorphic to the unit interval. Put $X_{n}=X \times I^{n-1}$, where I^{k} is the k-dimensional cube (I^{0} is the one point set). Then, it is easy to see that X_{n} is n-dimensional, countably compact, normal, connected, and locally connected.
(b) The factor space S_{m}. At first, we enlarge the factor space Y in Example 1 to a space S. Let $J\left(\omega_{1}\right)$ be the hedgehog space of weight ω_{1} [6, Example 4.1.5]. Let A be the set consisting of the origin o and all the end points 1_{α} of each segment I_{α} of it. (Note that $J\left(\omega_{1}\right)=\cup\left\{I_{\alpha}: \alpha<\omega_{1}\right\}$.) Then, A is a closed discrete subset of cardinality ω_{1} in the metric space $J\left(\omega_{1}\right)$. Let $f: A \rightarrow Y$ be a bijection satisfying $f(o)=y_{0}$. Let S be the underlying set of the adjunction space of $J\left(\omega_{1}\right)$ and Y with respect to f. Then, by the definition of S, we may think of $Y \subset S=J\left(\omega_{1}\right)$ as a set. We define a topology on S as follows. Each point except y_{0} has the same neighborhoods as in the ordinary adjunction topology (see [1, Definition 6.1]). We alter the topology only for the point y_{0}, so that our product space is normal. Namely, the point $y_{0}=f(o)$ has the following collection $\mathscr{\mathscr { L }}$ as its neighborhood base. Let $\left\{G_{i}\right\}$ be a countable connected neighborhood base of o in $J\left(\omega_{1}\right)$. For each $B \in \mathscr{B}$ and an integer i let

$$
S(B)=\cup\left\{I_{\alpha}: f\left(1_{\alpha}\right) \in B\right\}, \text { and } S(B, i)=S(B) \cup G_{i} .
$$

Then, put

$$
\mathscr{S}=\{S(B, i): B \in \mathscr{B}, i \in \omega\} .
$$

Note that S contains Y topologically as a closed set. Put

$$
S_{m}=S \times I^{m-1}
$$

Then, it is easy to see that S_{m} is a connected, locally connected, stratifiable space (note that the collection \mathscr{S} is closure-preserving, and that $S \backslash\left\{y_{0}\right\}$ is an F_{σ}-set by (0) and the definition of \mathscr{G}).
(c) The product space $X_{n} \times S_{m}$. Since S_{m} is σ-locally compact paracompact, the product satisfies the inequality (*) by [10, Theorem 1]. Moreover, it is $(m+n)$ -dimensional, since it contains $(m+n)$-dimensional cube. We shall show at first that $X \times S$ is normal. The basic idea of the proof is due to [5, Example 2]. We begin with the precise definition of the base \mathscr{B} in (0). For a finite set F of ω_{1}, put

$$
B(F)=\pi_{F}^{-1}\left(1_{F}\right),
$$

where $\pi_{F}: Y \rightarrow I^{F}$ is the restriction of the natural projection from $I^{\omega_{1}}$ into $|F|$-dimensional factor I^{F}, and 1_{F} is the point of I^{F} whose all coordinates are equal to 1 . Then

$$
\mathscr{B}=\left\{B(F): F \text { is a finite subset of } \omega_{1}\right\}
$$

is a closure-preserving neighborhood base of y_{0} in Y, and it is locally finite in Y_{0} [2, 5, 11]. Next, we show that
(3) for every open set $V \supset Z=X \times\left\{y_{0}\right\}$ there exists an open set $G \supset Z$ such that $\bar{G} \subset V$.

For each finite set $F \subset \omega_{1}$ let

$$
V_{F}=\cup\{W: W \text { is open in } X \text { and } W \times S(B(F)) \subset V\} .
$$

Then, we define a finite set $F_{\alpha} \subset \omega_{1}$ for each $\alpha<\omega_{1}$ inductively as follows.
(4) $L_{\alpha} \subset V_{F_{\alpha}}$, and $F_{\alpha} \neq F_{\beta}$ for any $\alpha<\beta$.

Indeed, it is possible, since L_{α} is compact, and the set $\left\{F_{\beta}: \beta<\alpha\right\}$ is countable for each α. For each V_{α} put

$$
K_{F}=L_{\alpha} \text { if } F=F_{\alpha}, \text { and } K_{F}=\phi \text { otherwise. }
$$

Then, by (4) K_{F} is well-defined, and $\left\{K_{F}\right\}$ covers X. Since X is normal, for each V_{F} of non-empty K_{F} take an open set G_{F} such that

$$
K_{F} \subset G_{F} \subset \overline{G_{F}} \subset V_{F}
$$

Then, put

$$
\mathscr{H}=\left\{G_{F} \times S\left(B(F): K_{F} \text { is non-empty }\right\}, \text { and put } H=\cup \mathscr{H} .\right.
$$

Then, since \mathscr{B} is locally finite in Y_{0}, \mathscr{H} is also locally finite, and hence is closurepreserving. Therefore, $Z \subset H \subset \bar{H} \subset V$. For each integer i let

$$
V_{i}=\cup\left\{W: W \text { is open in } X \text { and } W \times G_{i} \subset V\right\} .
$$

Then, $V_{i} \subset V_{i+1}$ and $\left\{V_{i}\right\}$ is a countable open cover of X. Since X is countably
compact, there exists an integer i such that $X=V_{i-1}$. Hence, $X \times \bar{G}_{i} \subset X \times G_{i-1} \subset$ V. Put

$$
G=\cup\left\{\left(G_{F} \times S(B(F), i): K_{F} \neq \varnothing\right\} .\right.
$$

Then, G is an open neighberhood of Z, and

$$
\bar{G}=\overline{\cup \mathscr{H} \cup} \overline{\left(\cup\left(G_{F} \times G_{i}\right)\right)} \subset \bar{H} \cup\left(X \times \bar{G}_{i}\right) \subset V .
$$

Hence, (3) holds. Now, we show that $X \times S$ is normal. Let A and B be disjoint closed sets in $X \times S$. Then, we show at first that, using (3), there exist disjoint open sets U_{0} and V_{0} such that
(5) $U_{0} \supset A \cap Z, V_{0} \supset B \cap Z$, and $\bar{U}_{0} \cap \bar{V}_{0}=\emptyset$.

Indeed, since X is normal and Z is homeomorphic to X, the exists an open set W in X such that

$$
W \times\left\{y_{0}\right\} \supset A \cap Z, \text { and } B \cap\left(\bar{W} \times\left\{y_{0}\right\}\right)=0 .
$$

Put

$$
H=W \times S, \text { and } V=X \times S \backslash(\bar{H} \cap B)
$$

Then, V is an open neighborhood of Z, and hence we can apply (3) so that there exists an open neighborhood G of Z such that $\bar{G} \subset V$. Put $U_{0}=H \cap G$. Then $\bar{U}_{0} \cap B=\emptyset$. Hence, (5) holds, since we can obtain V_{0} in a parallel way, using disjoint closed sets \bar{U}_{0} and B. Since $S \backslash\left\{y_{0}\right\}$ is a σ-locally compact metric space, there exist disjoint open sets U_{1} and V_{1} in $X \times S \backslash Z=X \times\left(S \backslash\left\{y_{0}\right\}\right)$ (hence, also open in $X \times S$) such that $U_{1} \supset\left(A \cup \bar{U}_{0}\right) \backslash Z$, and $V_{1} \supset\left(B \cup \bar{V}_{0}\right) \backslash Z$. Then, we obtain disjoint open neighborhoods $U_{0} \cup U_{1}$ and $V_{0} \cup V_{1}$ of closed sets A and B, respectively. This completes the proof that $X \times S$ is normal. It is not difficult to see that $X \times S$ is collectionwise normal in a parallel way to the above proof (cf. [11]). Because the above proof for the normality of $X \times S$ is valid for every countably compact space X which is the union of ω_{1} compact subspaces, $X_{n} \times S_{m}$ is also collectionwise normal, since $X_{n} \times S_{m}$ is the product of S and a countably compact space $X \times I^{m+n-2}$.

Our space $X_{n} \times S_{m}$ is not rectangular by [11, Theorem 3], since $X_{n} \times S_{m}$ is normal, X_{n} is not paracompact, and S_{m} contains a ω_{1}-cofinal point ($y_{0}, 1, \ldots, 1$) (see [11, Definition] for the definition of ω_{1}-cofinal point). Hence, $X_{n} \times S_{m}$ is not piecewise rectangular either by Lemma 3, since it is locally connected. This completes the proof.

4. Concluding remarks.

Remark 1. The use of the space Y in Examples 1 and 2 for producing nonrectangular products is due to Ohta [11]. The discovery of Y goes back to Mr. and Mrs. Chiba [3], and it was established that the space Y has many interesting properties [3, 4, 5].

Remark 2. One can show without difficulty, in a parallel way to Example 1, that the product space of the spaces $X \times I^{n-1}$ and $Y \times I^{m-1}$ for X and Y in Example 1 is
non-piecewise rectangular, either. But, in this case the product space is neither connected nor locally connected.

Remark 3. It is known that there exist normal non-piecewise rectangular product for every dimension which do not satisfy the inequality $\left({ }^{*}\right)[17,23,24,25,26]$.

Remark 4. The proof of the properties of our example leads to a problem whether or not every piecewise rectangular product is rectangular when it is non-strongly zero-dimensional. We can show, however, that it is not the case: for every pair of non-negative integers (m, n) there exists an $(m+n)$-dimensional collectionwise normal, non-rectangular product which is piecewise rectangular. Indeed, let $X=\left[0, \omega_{1}\right)$, and Y be the space in Remark 1. Then, put $S=X \times I^{n-1}$ and $T=Y \times I^{m-1}$. Then, $S \times T$ is normal, and $S \times T$ is non-rectangular, since T has a ω_{1}-cofinal point. On the other hand, by Lemma 2 the product $S \times T$ is piecewise rectangular, since $X \times Y$ is strongly zero-dimensional.

References

1. C. J. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16.
2. T. Chiba and K. Chiba, Q-paracompactness and closed mappings, Sci. Rep. Tokyo Kyoiku Daigaku 11 (1972), 231-234.
3. - A note on normally of product spaces, ibid. 12 (1974), 165-173.
4. K. Chiba, Two remarks on the normality of product spaces, Rep. Fac. Sci. Shizuoka Univ. 11 (1976), 17-22.
5. K. Chiba, T. C. Przymusiński and M. E. Rudin, Normality of products and Morita's conjectures, preprint.
6. R. Engelking, General Topology (PWN, Warsaw, 1977).
7. ——, Dimension Theory (North-Holland, Amsterdam, 1978).
8. V. V. Filippov, On normally situated subspaces (Russian), Trundy Mat. Inst. Steklov AN SSSR 154 (1983), 239-251.
9. T. Hoshina and K. Morita, On rectangular products of topological spaces, Top. Appl. $1 \mathbf{1 1}$ (1980), 47-57.
10. K. Morita, On the dimension of the product of topological spaces, Tsukuba J. Math. 1 (1977), 1-6.
11. H. Ohta, On normal, non-rectangular products, Quart. J. Math. Oxford (2), 32 (1981), 339-344.
12. B. A. Pasynkov, The dimension of products of normal spaces, Dokl. Akad. Nauk SSSR 209 (1973), 792-794 = Soviet Math. Dokl. 14 (1973), 530-533.
13. -_, On the dimension of rectangular products, Dokl. Akad. Nauk SSSR 221 (1975), 291-294 = Soviet Math. Dokl. 16 (1975), 344-347.
14. -, Factorization theorems in dimension theory, Uspekhi Mat. Nauk 36 (1981), 147-175 = Russian Math. Surveys 36 (1981), 175-209.
15. -_, On the monotonicity of dimension, Dokl. Akad. Nauk SSSR 267 (1982), 548-552 = Soviet Math. Dokl. 26 (1982), 654-658.
16. -, On dimension theory, in: I. M. James and E. Kronheimer (ed.) Aspects of Topology (In memory of Hugh Dowker 1912-1982), London Math. Soc. Lecture Note Ser. 93 (1985), 227-250.
17. T. C. Przymusiński, On the dimension of product spaces and an example of M. Wage, Proc. Amer. Math. Soc. 76(1979), 315-321.
18. -_, Product spaces, in: G. M. Reed (ed.) Surveys in General Topology (Academic Press, New York) (1980), 399-429.
19. -, A solution to a problem of E. Michael, Pacific J. Math. 114 (1984), 235-242.
20. L. A. Steen and J. A. Seebach, Jr., Counterexamples in topology 2nd. ed. (Springer-Verlag, New York, 1978).
21. K. Tamano, A note on E. Michael's example and rectangular products, J. Math. Soc. Japan 34 (1982), 187-190.
22. J. Terasawa, On the zero-dimensionality of some non-normal product spaces, Sci. Rep. Tokyo Kyoiku Daigaku 11 (1972), 95-102.
23. K. Tsuda, Some examples concerning the dimension of product spaces, Math. Japonica 27 (1982), 177-195.
24. - An n-dimensional version of Wage's example, Colloq. Math. 49 (1984), 15-19.
25. M. Wage, The dimension of product spaces, preprint 1976, Department of Mathematics, Yale University.
26. -, The dimension of product spaces, Proc. Natl. Acad. Sci. U.S.A. 75 (1978), 4671-4672.

Department of Mathematics,
Ehime University,
Matsuyama 790, Japan

[^0]: Received by the editors May 16, 1985, and, in revised form, December 5, 1985.
 AMS Subject Classification (1980): 54D20, 54F45.
 Key words and phrases: Covering dimension, normality, piecewise rectangularity, product space, strongly 0 -dimensionality, rectangularity.
 (c) Canadian Mathematical Society 1985.

