ON CONVEX AND STARLIKE UNIVALENT FUNCTIONS

R.K. Pandey and G.P. Bhargava

In this paper we obtain some classical results by using the general integral operators which transform Jakubowski's class $K(m, M)$ into itself and $K(\mu) \times S(m, M)$ into $K(\mu)$. Our results generalize some recent known results due to Causey and Reade, Patil and Thakare.

1. Introduction

Let S denote the family of functions $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ which are regular and univalent in the unit disc $D=\{z:|z|<1\}$ with the normalization $f(0)=0=f^{\prime}(0)-1$. Let K and S^{*} be the subfamily of S whose members map D onto a domain which are respectively convex and starlike with respect to origin. Robertson [4] defined the convex and starlike functions of order μ for functions $f \in S$.

A function f of S belongs to the class $K(\mu)$, convex functions of order $\mu, 0 \leq \mu<1$, if

$$
\begin{equation*}
\operatorname{Re}\left\{1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\mu, \quad z \in D \tag{1.1}
\end{equation*}
$$

A function f of S belongs to the class $S^{*}(\mu)$, starlike functions of order $\mu, 0 \leq \mu<1$, if

Received 25 July 1983.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/83 $\$ \mathrm{~A} 2.00+0.00$.

$$
\operatorname{Re}\left\{z \frac{f^{\prime}(z)}{f(z)}\right\}>\mu, z \in D
$$

Jakubowski [2] defined the classes $K(m, M)$ and $S(m, M)$ of functions $f \in S$.

A function f of S belongs to the class $K(m, M)$ if the following condition is satisfied:

$$
\begin{equation*}
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-m\right|<M, \quad z \in D, \quad(m, M) \in E . \tag{1.3}
\end{equation*}
$$

A function f of S belongs to the class $S(m, M)$ if the following condition is satisfied:

$$
\begin{equation*}
\left|z \frac{f^{\prime}(z)}{f(z)}-m\right|<M, \quad z \in D, \quad(m, M) \in E \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
E=\{(m, M):|m-1|<M \leq m\} . \tag{1.5}
\end{equation*}
$$

Evidently

$$
\begin{equation*}
K(m, M) \subset K(m-M) \subset K(0) \subset S \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
S(m, M) \subset S^{*}(m-M) \subset S^{*}(0) \subset S . \tag{1.7}
\end{equation*}
$$

Recently Patil and Thakare [3] established the following result.
THEOREM A. Let γ be a real number and $f \in K(\mu)$; then the function F defined by

$$
\begin{equation*}
F(z)=\int_{0}^{z}\left\{f^{\prime}(u)\right\}^{\gamma} d u \tag{1.8}
\end{equation*}
$$

belongs to $K(\eta)$ for $0 \leq \gamma \leq(1-\eta) /(1-\mu)$.
In 1982, Causey and Reade [1] established the following result.
THEOREM B. Let α, β be real numbers and $f, g \in K$; then the function F defined by

$$
\begin{equation*}
F(z)=\int_{0}^{z}\left\{f^{\prime}(u)\right\}^{\alpha}\left\{\frac{g(u)}{u}\right\}^{\beta} d u \tag{1.9}
\end{equation*}
$$

belongs to K only for those (α, β) in the closed convex hull of the points $(0,0),(1,0)$ and $(0,2)$.

In this paper we study the integral operators of the form (1.8) and (1.9) which transform $K(m, M)$ into itself and $K(\mu) \times S(m, M)$ into $K(\mu)$ where β and γ are complex numbers. Powers in (1.8) and (1.9) are principal ones. Our results generalize the known results of Pa†il and Thakare [3], Causey and Reade [1].

2. Preliminary lemmas

LEMMA. If $f \in S$ then f is in $K(m, M)$ if and only if there exists a regular function $\omega(z)$ in D, satisfying $\omega(0)=0$ and $|\omega(z)|<1$ for z in D, such that

$$
\begin{equation*}
1+\frac{z f^{\prime \prime \prime}(z)}{f^{\prime}(z)}=\frac{1+a w(z)}{1-b w(z)}, \quad z \in D, \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\frac{M^{2}-m^{2}+m}{M}, \quad b=\frac{m-1}{M} \text { and }(m, M) \in E \tag{2.2}
\end{equation*}
$$

Proof. To prove our lemma we require the following result.
A general bilinear transformation which maps the circular disc $|z| \leq \rho$ into the circular disc $\left|\omega_{1}\right| \leq \rho^{\prime}$ can be put in the form

$$
\begin{equation*}
\omega_{1}=\rho \rho^{\prime} e^{i \lambda} \frac{z-\alpha}{\bar{\alpha} z-\rho^{2}}, \quad(|\alpha|<\rho) . \tag{2.3}
\end{equation*}
$$

Since $f \in K(m, M),\left|1+z\left(f^{\prime \prime}(z) / f^{\prime}(z)\right)-m\right|<M$. Let us take

$$
\begin{equation*}
p(z)=1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}-m \text { so that }|p(z)|<M ; \tag{2.4}
\end{equation*}
$$

from (2.3) we have

$$
\begin{equation*}
p(z)=\rho \rho^{\prime} e^{i \lambda} \frac{w_{1}(z)-\alpha}{\bar{\alpha} w_{1}(z)-\rho^{2}}=M e^{i \lambda} \frac{w_{1}(z)-\alpha}{\overline{\alpha_{1}} w_{1}(z)-1}, \quad \rho=1, \quad \rho^{\prime}=M . \tag{2.5}
\end{equation*}
$$

From (2.4) and (2.5) we get

$$
p(0)=(1-m)=M e^{i \lambda}(\alpha) \text { or } \alpha=((1-m) / M) e^{-i \lambda},|\alpha|<1 .
$$

Substituting the value of α in (2.5) we have

$$
\begin{equation*}
\left\{1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}=m+\frac{M e^{i \lambda} w_{1}(z)-((1-m) / M) e^{i \lambda}}{((1-m) / M) e^{i \lambda_{w_{1}}(z)-1}} \tag{2.6}
\end{equation*}
$$

Rearranging (2.6) by using $w(z)=-e^{i \lambda} \omega_{1}(z), w(0)=0,|w(z)|<1$ and (2.2), we get (2.1).

Conversely suppose that $f(z)$ satisfies (2.1). Then

$$
\begin{equation*}
1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}-m=M \frac{\{(1-m) / M\}+w(z)}{1+\{(1-m) / M\} w(z)}=M h(z) \tag{2.7}
\end{equation*}
$$

say. Since $|(1-m) / M|<1$, the function h given by

$$
h(z)=\frac{\{(1-m) / M\}+\omega(z)}{1+\{(1-m) / M\} \omega(z)}
$$

satisfies $|h(z)|<1$. Hence from (2.7) it follows now that the condition (2.1) is satisfied. This completes the proof of the lemma.

REMARK. Let us choose $m=N(1-\mu)+\mu$ and $M=N(1-\mu)$ where $N \geq 1$ and $0 \leq \mu<1$. Then $|m-1|<M \leq m, a=\mu / N+(1-2 \mu)$ and $b=1-1 / N$ also the condition $\left|1+z\left(f^{\prime \prime}(z) / f^{\prime}(z)\right)-m\right|<M$ can be written as

$$
\begin{equation*}
\left|\frac{1+z\left(f^{\prime \prime}(z) / f^{\prime}(z)\right)-\mu}{1-\mu}-N\right|<N, \quad z \in D \tag{2.8}
\end{equation*}
$$

Now, as $N \rightarrow \infty, \quad a \rightarrow(1-2 \mu)$ and $b \rightarrow 1$, the condition (2.8) reduces to $\operatorname{Re}\left\{1+z\left(f^{\prime \prime}(z) / f^{\prime}(z)\right)\right\}>\mu, \quad z \in D$. In this case the relation (2.1) becomes

$$
1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{1+(1-2 \mu) w(z)}{I-w(z)}, \quad z \in D
$$

which is a necessary and sufficient condition for f to be in $K(\mu)$.
3. Class preserving integral operator for $K(m, M)$

THEOREM. Let γ be a complex number and $f \in K(m, M)$; then the function F defined by

$$
\begin{equation*}
F(z)=\int_{0}^{z}\left\{f^{\prime}(u)\right\}^{\gamma} d u \tag{3.1}
\end{equation*}
$$

belongs to $K(m, M)$ for $0 \leq|\gamma| \leq \frac{1}{2}(1-b)$.
Proof. Let us choose a function w such that

$$
\begin{equation*}
1+z \frac{F^{\prime \prime}(z)}{F^{\prime}(z)}=\frac{1+a w(z)}{1-b w(z)} \tag{3.2}
\end{equation*}
$$

where $w(0)=0$ and w is either regular or meromorphic in D. From
(3.1) we have

$$
\begin{equation*}
F^{\prime}(z)=\left\{f^{\prime}(z)\right\}^{\gamma} . \tag{3.3}
\end{equation*}
$$

Differentiating logarithmically (3.3) with respect to z and using (3.2) we get

$$
\begin{equation*}
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{(a+b) \omega(z)}{\gamma(1-b w(z))} \tag{3.4}
\end{equation*}
$$

or

$$
\begin{equation*}
1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}-m=\frac{(1-m) \gamma+[a+b\{1-(1-m) \gamma\}] \omega(z)}{\gamma[1-b w(z)\}} . \tag{3.5}
\end{equation*}
$$

Let z_{1} with $\left|z_{1}\right|=r_{0}$ be the nearest pole of $\omega(z)$ in D. Hence $\omega(z)$ is regular in $|z|<r_{0}<1$. Thus for $|z| \quad r<r_{0}$ there is a point z_{0} for which

$$
\begin{equation*}
1+z_{0} \frac{f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}-m=\frac{(1-m) \gamma+[a+b\{1-(1-m) \gamma\}] \omega\left(z_{0}\right)}{\gamma\left\{1-b w\left(z_{0}\right)\right\}} \equiv \frac{N\left(z_{0}\right)}{D\left(z_{0}\right)} \tag{3.6}
\end{equation*}
$$

where

$$
\begin{align*}
& N\left(z_{0}\right)=(1-m) \gamma+[a+b\{1-(1-m) \gamma\}] w\left(z_{0}\right), \tag{3.7}\\
& D\left(z_{0}\right)=\gamma\left(1-b w\left(z_{0}\right)\right) . \tag{3.8}
\end{align*}
$$

Now suppose that it were possible to have $M(r, w)=\max _{|z|=r} w\left(z_{0}\right)=1$ for some $r<r_{0}<1$. At the point z_{0} where this occurred we would have $\left|w\left(z_{0}\right)\right|=1$.

CASE 1. When $\operatorname{Re}(\gamma) \geq 0, \operatorname{Im}(\gamma) \geq 0$ and $\operatorname{Re}(\gamma) \geq 0, \operatorname{Im}(\gamma)<0$,
(3.9) $\left|N\left(z_{0}\right)\right|^{2}=(a+b)^{2}+\left(1+b^{2}\right) M^{2}|\gamma|^{2}-2(a+b) M \operatorname{Re}\left\{\gamma \omega\left(z_{0}\right)\right\}$

$$
-2 b M^{2}|\gamma|^{2} \operatorname{Re}\left(w\left(z_{0}\right)\right\}+2 b M(a+b) \operatorname{Re}(\gamma)
$$

$$
\begin{equation*}
\left|D\left(z_{0}\right)\right|^{2}=\left(1+b^{2}\right)|\gamma|^{2}-2 b|\gamma|^{2} \operatorname{Re}\left(w\left(z_{0}\right)\right) . \tag{3.10}
\end{equation*}
$$

CASE 2. When $\operatorname{Re}(\gamma)<0, \operatorname{Im}(\gamma)<0$ and $\operatorname{Re}(\gamma)<0, \operatorname{Im}(\gamma) \geq 0$,

$$
\begin{align*}
\left|N\left(z_{0}\right)\right|^{2}=(a+b)^{2}+\left(1+b^{2}\right) M^{2}|\gamma|^{2} & +2(a+b) M \operatorname{Re}\left\{\gamma \omega\left(z_{0}\right)\right\} \tag{3.11}\\
& -2 b M^{2}|\gamma|^{2} \operatorname{Re}\left(\omega\left(z_{0}\right)\right\}-2 b M(a+b) \operatorname{Re}(\gamma)
\end{align*}
$$

and

$$
\begin{equation*}
\left|D\left(z_{0}\right)\right|^{2}=\left(1+b^{2}\right)|\gamma|^{2}-2 b|\gamma|^{2} \operatorname{Re}\left(\omega\left(z_{0}\right)\right) . \tag{3.12}
\end{equation*}
$$

Now for each case

$$
\begin{aligned}
\left|N\left(z_{0}\right)\right|^{2}-M^{2}\left|D\left(z_{0}\right)\right|^{2} & \geq(a+b)^{2}-2 M(a+b)(1+b)|\gamma| \\
& \geq 0 \text { for }|\gamma| \leq \frac{1}{2}(1-b) .
\end{aligned}
$$

Thus from (3.6) it follows that

$$
\left|1+z_{0} \frac{f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}-m\right|>M \text { for }|\gamma| \leq \frac{1}{2}(1-b) .
$$

But this is contrary to the fact that $f \in K(m, M)$. So we cannot have $M(x, w)=1$. Thus $|w(z)| \neq 1$ in $|z|<x_{0}$. Since $|w(0)|=0$, $|\omega(z)|$ is continuous and $|\omega(z)| \neq 1$ in $|z|<r_{0}, w(z)$ cannot have a pole at $\left|z_{1}\right|=r_{0}$. Therefore $\omega(z)$ is regular and $|\omega(z)|<1$ for z in D.

Hence $F \in K(m, M)$.
4. Integral operator that maps $K(\mu) \times S(m, M)$ into $K(\mu)$

THEOREM. Let α be a non zero positive real number and β be a complex number such that $0 \leq|\beta| \leq-(\alpha-1) / 2 M, \quad(m, M) \in E$.

Let $f \in K(\mu)$ and $g \in S(m, M)$; then the function F defined by

$$
\begin{equation*}
F(z)=\int_{0}^{z}\left\{f^{\prime}(u)\right\}^{\alpha}\left\{\frac{g(u)}{u}\right\}^{\beta} d u \tag{4.1}
\end{equation*}
$$

belongs to $K(\mu)$.
Proof. Let us choose a function w such that

$$
\begin{equation*}
1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{1+(2 \mu-1) w(z)}{1+w(z)} \tag{4.2}
\end{equation*}
$$

where $\omega(0)=0$ and ω is either regular or meromorphic in D.
Differentiating (4.1) with respect to z we have

$$
\begin{equation*}
F^{\prime}(z)=\left\{f^{\prime}(z)\right\}^{\alpha}\left\{\frac{q(z)}{z}\right\}^{\beta} \tag{4.3}
\end{equation*}
$$

Differentiating logarithmically (4.3) with respect to z and using (4.2) we have
(4.4) $\left\{1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}=\frac{\alpha+(1-m) \beta}{\alpha}-\frac{\beta}{\alpha}\left\{z \frac{q^{\prime}(z)}{g(z)}-m\right\}+\frac{2(\mu-1)}{\alpha} \frac{w(z)}{1+w(z)}$.

Let z_{1} with $\left|z_{1}\right|=r_{0}$ be the nearest pole of $w(z)$ in D. Hence $\omega(z)$ is reguiar in $|z|<r_{0}<1$. Thus for $|z| \leq r<r_{0}$ there is a point z_{0} for which
(4.5) $\left\{1+z_{0} \frac{f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right\}=\frac{\alpha-(m-1) \beta}{\alpha}-\frac{\beta}{\alpha}\left\{z_{0} \frac{g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}-m\right\}+\frac{2(\mu-1)}{\alpha} \frac{\omega\left(z_{0}\right)}{1+\omega\left(z_{0}\right)}$,
or
(4.6) $\operatorname{Re}\left\{1+z_{0} \frac{f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right\} \leq \frac{\alpha+(m-1)|\beta|}{\alpha}+\frac{|\beta|}{\alpha}\left|z_{0} \frac{g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}-m\right|$

$$
+\frac{2(\mu-1)}{\alpha} \frac{\operatorname{Re} \omega\left(z_{0}\right)+\left|w\left(z_{0}\right)\right|^{2}}{1+2 \operatorname{Re} \omega\left(z_{0}\right)+\left|w\left(z_{0}\right)\right|^{2}} .
$$

Now suppose that it were possible to have $M(r, w)=\max _{|a|=r}\left|\omega\left(z_{0}\right)\right|=1$ for some $r<r_{0}<1$. At the point z_{0} where this occurred we would have

$$
\begin{align*}
\operatorname{Re}\left\{1+z_{0} \frac{f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right\} & <\frac{\alpha+M|\beta|}{\alpha}+\frac{|\beta|}{\alpha} M+\frac{(\mu-1)}{\alpha} \tag{4.7}\\
& \leq \mu \text { for }|\beta| \leq-\frac{(\alpha-1)}{2 M} .
\end{align*}
$$

But this is contrary to the fact that $f \in K(\mu)$. So we cannot have $M(r, \omega)=1$. Thus $|\omega(z)| \neq 1$ in $|z|<r_{0}$. Since $w(0)=0,|\omega(z)|$ is continuous in $|z|<r_{0}$ and $|\omega(z)| \neq 1$ where $\omega(z)$ cannot have a pole at $\left|z_{1}\right|=r_{0}$. Therefore $|w(z)|<1$ and $w(z)$ is regular in D.

Hence from (4.2) it follows that $F \in K(\mu)$.
APPLICATIONS. By using the same techniques, we can also study the following types of integral operators of the forms
(i) $F(z)=\int_{0}^{z}\{f(u) / u\}^{\beta} d u$,
(ii) $F(z)=\int_{0}^{z}\left\{f^{\prime}(u)\right\}^{\alpha}\left\{g^{\prime}(u)\right\}^{\beta} d u$, and
(iii) $F(z)=\int_{0}^{z}\{f(u) / u\}^{\alpha}\left\{_{g}(u) / u\right\}^{\beta} d u$,
which transform $S(m, M)$ into $K(m, M), K(\mu) \times K(m, M)$ into $K(\mu)$ and $S^{*}(\mu) \times S(m, M)$ into $K(\mu)$ respectively where α is a real number and β is a complex number.

References

[1] W.M. Causey and M.O. Reade, "On the univalence of functions defined by certain integral transforms", J. Math. Anal. App2. 89 (1982), 28-39.
[2] Z.J. Jakubowski, "On the coefficients of starlike functions of some classes", Ann. PoZon. Math. 26 (1972), 305-313.
[3] D.A. Patil and N.K. Thakare, "On univalence of certain integrals", Indian J. Pure Appl. Math. 11 (1980), 1626-1642.
[4] M.S. Robertson, "On the theory of univalent functions", Ann. of Math. (2) 37 (1936), 374-408.
[5] S.L. Shukla and V. Kumar, "Jakubowski starlike integral operators", J. Austral. Math. Soc. Ser. A (to appear).

Department of Mathematics,
PPN College,
Kanpur - 208001,
India.

