

Winter Meeting, 5-6 December 2017, Diet, nutrition and the changing face of cancer survivorship

Effects of artificial sweeteners on glucagon-like peptide 1 secretion in GLUTag cells, an in vitro model of enteroendocrine cells

K. Mehat and C. Corpe

Division of Diabetes and Nutritional Sciences, King's College London, SEI 9NH, UK.

The effects of artificial sweeteners (AS) on the peptide hormone-producing enteroendocrine cells (EEC) of the gastrointestinal tract are controversial (contradictory studies in humans, animals and cells)⁽¹⁾. Recently, sucralose, a highly potent AS, has been shown to induce secretion of the insulin regulating and blood glucose lowering hormone, glucagon-like peptide 1 (GLP-1), from intestinal in vitro models⁽²⁾. It is suggested that it may be interacting with the sweet taste-receptors found on EECs⁽³⁾. However the effects of other commonly used AS in the UK, such as aspartame, acesulfame-k and Canderel® (1.4% aspartame; 0.95% acesulfame-k) have not been investigated. The aim of the present study was to assess the effects of these AS on GLP-1 secretion in GLUTag cells (mouse EEC line).

GLUTag cells were incubated with test reagents for 2 hours at 37° C and the supernatant collected. GLP-1 was measured from the supernatant using a GLP-1 (Active) ELISA assay (EMD Millipore[®], UK). Data is presented as means and standard deviation.

At dietary relevant doses (0.25-5 mM) the individual AS, aspartame and acesulfame-k, and the AS mixture, Canderel® significantly induced GLP-1 secretion in GLUTag cells when compared to baseline (except for 0.25 mM acesulfame-k) and values were similar to glucose-induced GLP-1 secretion (table 1). Cells incubated in a combination of Canderel® and glucose (0.4 mM and 5 mM) showed the highest secretion of GLP-1 (table 1); indicating a potential synergistic effect of AS and other nutrients in EEC function. In conclusion, our in vitro data suggests certain AS given alone and in combination with glucose may result in a GLP-1 response.

Table 1. Values are means (n = 6; different passage numbers). Mean values were significantly different compared to baseline (ANOVA* or Student's T test::); *::P < 0.05; a: Canderel® dose = 0.4 mM aspartame and 0.4 mM acesulfame-k.

Test Reagents	Glucose GLP-1(pM)		Aspartame GLP-1(pM)		Acesulfame-K GLP-1(pM)		Canderel ^{®a} GLP-1(pM)		Canderel®a + 0.4 mM Glucose GLP-1(pM)		Canderel ^{®a} + 5 mM Glucose GLP-1(pM)	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
0 (baseline)	86	13	86	13	86	13	86	13	86	13	86	13
0.25	123*	16	113*	13	92	15		_		_		_
0.4	134*	17	102*	18	131*	18	122□	8	180□	42	203□	43
2.5	165*	35	142*	15	116*	12		_		_		_
5	145*	20	147*	36	119*	31		-		_		_

Margolskee R, Dyer J, Kokrashvili Z et al. (2007) Proc Natl Acad Sci 104, 15075–15080.
Jang H, Kokrashvili Z, Theodorakis M et al. (2007) Proc Natl Acad of Sci 104, 15069–15074.

