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Abstract

In this paper we study sums of micropulses that generate different kinds of processes.
Fractional Brownian motion and bifractional Brownian motion are obtained as limit
processes. Moreover, we not only prove the convergence of finite-dimensional laws but
also, in some cases, convergence in distribution in the space of right-continuous functions
with left limits. Finally, we obtain generalizations with multidimensional indices.
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1. Introduction

On the real line, a micropulse is a jump at a time τ of size ε followed by a canceling
jump at time τ + w of size −ε. In [5] and [6], Cioczek-Georges and Mandelbrot used a sum
of micropulses to obtain limit processes with interesting properties, in particular fractional
Brownian motion as a limit. Fractional Brownian motion (FBM) with parameter 0 < H ≤ 1 is
a centered Gaussian process that was introduced in [11] and developed in more detail in [12].
Its covariance function for s, t ∈ R+ is given by

r(s, t) = 1
2 (|t |2H + |s|2H − |t − s|2H ).

FBM is widely used in many different areas for modeling purposes thanks to its properties
(self-similarity and stationarity of increments, among others).

Micropulses were generalized as random ball models and studied by Biermé and Estrade [1],
with Kaj et al. [8] studying similar models. For more recent research on random ball models,
see [4] and Biermé et al. [2], who introduced a general framework for rescaled random ball
models.

In this work a different approach is highlighted. We consider only micropulses, but the
canceling jump may or may not be the same size as the first jump. Here, we will consider a
micropulse to be given by (X,X′, τ, w), with εX being the size of the jump at time τ and −εX′
being the size of the canceling jump at time τ + w. We will sum the size of all the initial and
canceling jumps occurring during a time interval.

Our aim is to study the limit process of a sum of micropulses between two times whether
or not the size of the initial and canceling jumps of a micropulse is the same. Micropulses
will be distributed according to a Poisson process such that, when ε tends to 0, the number of
micropulses will increase and their heights will simultaneously decrease.
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We will not only see that the limit process is different, but also that the scaling used to obtain
a nontrivial process depends on the equality of the size of the initial jump and the canceling
jump. The first model studied is almost identical to that introduced in [5], except that we allow
every micropulse to have a different height for the initial and canceling jumps. The limit process
will be an FBM or a standard Brownian motion. Moreover, we prove the convergence of the
finite-dimensional laws, and obtain the tightness of the family of processes, which means that
there is a weak convergence in the space D of functions that are right continuous and have
left-hand limits, which was not the case previously.

Finally, we modify and generalize the model to incorporate a multidimensional index.
The limit process will be either a standard Brownian sheet or a bifractional Brownian sheet.
The bifractional Brownian sheet, introduced by Tudor and Xiao [14], is the generalization
of bifractional Brownian motion to a multidimensional index. Bifractional Brownian motion
(BBM) motion is a centered Gaussian process introduced by Houdré and Villa [7]. This process
is a generalization of FBM which keeps some of its properties (self-similarity, stationarity of
small increments). BBM with parameters (H,K), where 0 < H ≤ 1 and 0 < K ≤ 1, is a
Gaussian process whose covariance function for s, t ∈ R+ is given by

r(s, t) = 1

2K
((|t |2H + |s|2H )K − |t − s|2HK ).

Note that, for K = 1, this is regular FBM. The bifractional Brownian sheet is a centered
Gaussian process whose covariance function for s, t ∈ R

d+ is given by

r(s, t) =
d∏
i=1

1

2K
((|ti |2H + |si |2H )K − |ti − si |2HK )

(see Section 3).
In the above two cases, the rescaling is different depending on whether the size of the

initial and canceling jumps are the same or not (i.e. ε1+θ/2 instead of ε for example). An
interpretation of this is that there is a standard Brownian motion (or sheet) and a ‘noise’ process
that are negligible at the limit. The standard Brownian motion is due to the contribution of
the micropulses which have both their initial and canceling jumps in the interval considered,
whereas the underlying noise process is due to the less frequent micropulses which only have
one of their jumps (initial or canceling) in the interval considered. When the size is the same,
the standard Brownian motion (or sheet) disappears and, consequently, the remaining noise
process becomes the main process, which explains why the scaling is different.

2. Convergence towards Brownian motion or fractional Brownian motion

For ε > 0, consider the measure nε on the space E = R
3 × R+ defined by

nε(dx, dx′, dτ, dw) = 1
2ε

−2w−1−θ 1{w>ε} F(dx, dx′) dτ dw,

where 0 < θ < 1 and F is the distribution of a random vector (X,X′) such that, for k, l ∈ N,
E[|X|k|X′|l] < ∞.

This measure can be seen as the intensity measure of a Poisson process �ε on R
3 × R+

and, consequently, of the Poisson random measure associated with �ε that we will denote by
Nε. The size of the rise of the micropulse occurring at time τ is εX, and the size of the fall
occurring at time τ +w is εX′. When ε goes to 0, the height of the micropulses goes to 0 while
their number goes to ∞.
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In this section we study the process Yε defined on R+ as the sum over the Poisson process�ε
(or, equivalently, the integral over the random measure Nε), i.e. we will sum the rises and falls
of micropulses which are taking place between 0 and t . We will be interested in the convergence
of this process when ε goes to 0. Process Yε is rigorously defined for t ≥ 0 by

Yε(t) =
∑
j∈N

ε(Xj 1{0≤τj<t} −X′
j 1{0≤τj+wj<t}),

where (Xj ,X′
j , τj , wj ) is an enumeration of the points of the Poisson point process �ε.

Moreover, we will be able to prove weak convergence, which is a consequence of the tightness
of the family of processes considered.

Theorem 2.1. (a) IfX = X′ almost surely then the process Yε converges weakly when ε → 0 to√
E[X2]
θ(1 − θ)

BH ,

where BH is an FBM of Hurst parameter H = (1 − θ)/2.

(b) IfX �= X′ on a nonnegligible set then the process εθ/2(Yε − E[Yε]) converges weakly when
ε → 0 to √

E[(X −X′)2]
2θ

B,

where B is a standard Brownian motion.

Remark 2.1. Note that the limit processes are FBMs of Hurst parameter H < 1
2 .

Proof of Theorem 2.1. The proof consists of two parts. First, we prove the convergence of
the finite-dimensional laws, then we prove the tightness of the family (Yε)ε∈[0,1) or (εθ/2(Yε −
E Yε))ε∈[0,1).

Part 1: proof of the convergence of the finite-dimensional laws. First of all, let us introduce
some notation which will be useful in the rest of the proof.

Define A1
t = {(τ, w) : 0 ≤ τ < t, w > 0} and A2

t = {(τ, w) : 0 ≤ τ + w < t, w > 0}. We
can rewrite process Yε in terms of the Poisson random measure Nε associated with �ε and
these two sets. Indeed,

Yε(t) = ε

∫
E

(x 1A1
t
(τ, w)− x′ 1A2

t
(τ, w))Nε(dx, dx′, dτ, dw).

In the following we will use other sets, because it will be easier to disjoin the sets where we
have complete micropulses X −X′ from those where there is only +X or −X′.

Let us rewrite process Yε using the following sets for s, t ≥ 0:

S1
t = {(τ, w) : τ < 0, 0 ≤ τ + w < t}, (2.1a)

S2
t = {(τ, w) : 0 ≤ τ < t, 0 ≤ τ + w < t}, (2.1b)

S3
t = {(τ, w) : 0 ≤ τ < t, t ≤ τ + w}, (2.1c)

S4
s,t = {(τ, w) : 0 ≤ τ < s, t ≤ τ + w}, (2.1d)

S5
s,t = {(τ, w) : 0 ≤ τ < s, s ≤ τ + w < t}. (2.1e)
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Using these sets, we have

Yε(t) = ε

∫
E

(x 1S3
t
(τ, w)− x′ 1S1

t
(τ, w)+ (x − x′) 1S2

t
(τ, w))Nε(dx, dx′, dτ, dw).

For 0 ≤ s ≤ t , we can easily obtain the following rules between the sets defined in (2.1a)–
(2.1e):

S1
s ∩ S1

t = S1
s , S1

s ∩ S2
t = ∅, S1

s ∩ S3
t = ∅, (2.2a)

S2
s ∩ S1

t = ∅, S2
s ∩ S2

t = S2
s , S2

s ∩ S3
t = ∅, (2.2b)

S3
s ∩ S1

t = ∅, S3
s ∩ S2

t = S5
s,t , S3

s ∩ S3
t = S4

s,t , (2.2c)

S4
s,t ∪ S5

s,t = S3
s . (2.2d)

In order to prove the convergence of the finite-dimensional laws, let us calculate the char-
acteristic function ψε(ξ1, . . . , ξn) of a linear combination

∑n
k=1 ξk(Yε(tk)− E[Yε(tk)]). Note

that E[Yε(tk)] = 0 when X = X′ almost surely.
Recall that if N is a Poisson random measure on a space E with intensity measure n then,

according to Lemma 12.2 of [9],

E

[
exp

(
i

∫
E

g dN

)]
= exp

(∫
E

(eig − 1) dn

)
. (2.3)

First, let us study the case X = X′. Using (2.3), we have

ψε(ξ1, . . . , ξn)

= E

[
exp

(
i

n∑
k=1

ξkYε(tk)

)]

= E

[
exp i

∫
E

ε

n∑
k=1

ξkx(1S3
tk

(τ, w)− 1S1
tk

(τ, w))Nε(dx, dx, dτ, dw)

]

= exp
∫
E

(
exp

(
iε

n∑
k=1

ξkx(1S3
tk

(τ, w)− 1S1
tk

(τ, w))

)
− 1

)
nε(dx, dx, dτ, dw)

= exp

[∫
E

(
exp

(
iε

n∑
k=1

ξkx(1S3
tk

(τ, w)− 1S1
tk

(τ, w))

)
− 1

−
(
iε

n∑
k=1

ξkx(1S3
tk

(τ, w)− 1S1
tk

(τ, w))

))
nε(dx, dx, dτ, dw)

]
. (2.4)

The last term on the right-hand side of (2.4) appears because Yε is centered. As we have
|exp(ix)− 1 − ix| ≤ Cx2, the integrand is bounded by

C

(
iε

n∑
k=1

ξkx(1S3
tk

(τ, w)− 1S1
tk

(τ, w))

)2

.

Since

nε(dx, dx, dτ, dw) = ε−2

2
w−1−θ 1{w>ε} F(dx, dx′) dτ dw,
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the integral of the above function is in fact

∫
E

C

(
i

n∑
k=1

ξkx(1S3
tk

(τ, w)− 1S1
tk

(τ, w))

)2 1

2
w−1−θF (dx, dx′) dτ dw.

We can conclude that

1

ε2

(
exp

(
iε

n∑
k=1

ξkx(1S3
tk

(τ, w)− 1S1
tk

(τ, w))

)
− 1

−
(
iε

n∑
k=1

ξkx(1S3
tk

(τ, w)− 1S1
tk

(τ, w))

))

is bounded uniformly in ε by

C

( n∑
k=1

ξkx(1S3
tk

(τ, w)− 1S1
tk

(τ, w))

)
,

which is an integrable function with respect tow−1−θF (dx, dx′) dτ dw. In order to avoid cum-
bersome notation, for a measure defined on R×R+, we will define pε = w−1−θ 1{w>ε} dτ dw.
Hence, the Lebesgue dominated convergence theorem yields

lim
ε→0

ψε(ξ1, . . . , ξn)

= exp

(
−E[X2]

2

∫
R×R+

( n∑
k=1

ξk(1S3
tk

(τ, w)− 1S1
tk

(τ, w))

)2 1

2
p0(dτ, dw)

)
.

Using the above rules between our sets given in (2.2a)–(2.2d), the integral above can be rewritten
as ∫

R×R+

( n∑
k=1

ξk(1S3
tk

(τ, w)− 1S1
tk

(τ, w))

)2

p0(dτ, dw)

=
n∑
k=1

n∑
l=1

ξkξl(p0(S
4
min(tk,tl ),max(tk,tl ))+ p0(S

1
min(tk,tl ))).

We can use Lemma A.2 in Appendix A to estimate values of pε(Sitk ) for i = 1, 2, or 3: the
bounds used in the description of Sitk are the values a, b, c, and d in the lemma. Then, letting
ε go to 0, we obtain

∫
R×R+

( n∑
k=1

ξk(1S3
tk

(τ, w)− 1S1
tk

(τ, w))

)2

p0(dτ, dw)

=
n∑
k=1

n∑
l=1

ξkξl
1

θ(1 − θ)
(t1−θ
k + t1−θ

l − |tk − tl |1−θ ).

Then, limε→0 ψε(ξ1, . . . , ξn) is the characteristic function of FBM up to a multiplicative
constant.

https://doi.org/10.1239/jap/1316796915 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1316796915


Micropulses and different types of Brownian motion 797

Now, if X �= X′ on a nonnegligible set, the method is almost the same, only there are more
terms to deal with. The characteristic function of the process we are studying is now

ψε(ξ1, . . . , ξn)

= E

[
exp

((
i

n∑
k=1

ξkε
θ/2Yε(tk)

)
− E

[
i

n∑
k=1

ξkε
θ/2Yε(tk)

])]

= E

[
exp iεθ/2

∫
E

ε

n∑
k=1

ξk(x(1S3
tk

(τ, w)+ 1S2
tk

(τ, w))

− x′(1S2
tk

(τ, w)+ 1S1
tk

(τ, w)))Nε(dx, dx′, dτ, dw)

]

× exp E

[
−i

n∑
k=1

ξkε
θ/2Yε(tk)

]
.

Applying the same steps as earlier yields

ψε(ξ1, . . . , ξn)

= exp

[∫
E

(
exp

(
iε(θ+2)/2

n∑
k=1

ξk(x(1S3
tk

(τ, w)+ 1S2
tk

(τ, w))

− x′(1S1
tk

(τ, w)+ 1S2
tk

(τ, w)))

)
− 1

−
(
iε(θ+2)/2

n∑
k=1

ξk(x(1S3
tk

(τ, w)+ 1S2
tk

(τ, w))

− x′(1S1
tk

(τ, w)+ 1S2
tk

(τ, w)))

))

× nε(dx, dx′, dτ, dw)

]
.

Unfortunately, the Lebesgue dominated convergence theorem cannot be used because the
integral is not finite when w is close to 0. Define

f (x, x′, τ, w) =
n∑
k=1

ξk(x(1S3
tk

(τ, w)+ 1S2
tk

(τ, w))− x′(1S1
tk

(τ, w)+ 1S2
tk

(τ, w)))

and

gε(x, x
′, τ, w) = 1

ε2+θ (e
iε(θ+2)/2f − 1 − iε(θ+2)/2f ),

so that

ψε(ξ1, . . . , ξn) = exp
∫
E

εθgε 1{w>ε}w−1−θF (dx, dx′) dτ dw.

Furthermore, define

h(x, x′, τ, w) = (x − x′)2
n∑
k=1

n∑
l=1

ξkξl 1S2
min(tk ,tl )

(τ, w),
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and consider∫
E

(
εθgε(x, x

′, τ, w)+ 1

2
εθh(x, x′, τ, w)

)
1{w>ε}w−1−θF (dx, dx′) dτ dw.

Note that ∣∣∣∣εθgε(x, x′, τ, w)+ 1

2
εθh(x, x′, τ, w)

∣∣∣∣ ≤ εθ
∣∣∣∣gε + 1

2
f 2

∣∣∣∣ + εθ

2
|f 2 − h|. (2.5)

On the one hand, we have

gε + 1

2
f 2 = 1

εθ+2

(
eiε

(θ+2)/2f − 1 − iε(θ+2)/2f + εθ+2

2
f 2

)
.

This implies that
εθ

∣∣gε + 1
2f

2
∣∣ ≤ Cε3θ/2+1|f |3.

However,

f 3 =
n∑

j,k,l=1

ξj ξkξl(x
3 1S4

min(tj ,tk ,tl ),max(tj ,tk ,tl )
+(x − x′)3 1S2

min(tj ,tk ,tl )

+ x2(x − x′)(1{S1
tj

∩S1
tk

∩S2
tl
} + 1{S1

tj
∩S2

tk
∩S1

tl
} + 1{S2

tj
∩S1

tk
∩S1

tl
})

+ x(x − x′)2(1{S1
tj

∩S2
tk

∩S2
tl
} + 1{S2

tj
∩S1

tk
∩S2

tl
} + 1{S2

tj
∩S2

tk
∩S1

tl
})

− x′3 1S1
min(tj ,tk ,tl )

). (2.6)

On the other hand, using the set rules given in (2.2a)–(2.2d), expanding f 2 − h yields

f 2 − h =
n∑
k=1

n∑
l=1

ξkξl(x
2 1S4

min(tk ,tl ),max(tk ,tl )
+x′2 1S1

min(tk ,tl )
). (2.7)

Now note that, according to Lemma A.2 in Appendix A and (2.6), we have∫
E

|f |3w−1−θ 1{w>ε} F(dx, dx′) dτ dw = Ct1,...,tnε
−θ ,

where Ct1,...,tn is a constant depending on t1, . . . , tn and not on ε. In (2.7), Lemma A.2 yields∫
E

|f 2 − h|w−1−θ 1{w>ε} F(dx, dx′) dτ dw = C′
t1,...,tn

,

where C′
t1,...,tn

does not depend on ε.
Using these two upper bounds in (2.5), we obtain

lim
ε→0

∫
E

(
εθgε(x, x

′, τ, w)+ 1

2
εθh(x, x′, τ, w)

)
1{w>ε}w−1−θF (dx, dx′) dτ dw = 0.

In other words,

lim
ε→0

∫
E

εθgε(x, x
′, τ, w) 1{w>ε}w−1−θF (dx, dx′) dτ dw

= lim
ε→0

−ε
θ

2

∫
E

h(x, x′, τ, w) 1{w>ε}w−1−θF (dx, dx′) dτ dw.
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Using Lemma A.2, we can compute the above integral:

lim
ε→0

∫
E

εθgε 1{w>ε}w−1−θF (dx, dx′) dτ dw

= −E[(X −X′)2]
4θ

n∑
k=1

n∑
l=1

ξkξl min(tk, tl).

Thus,

lim
ε→0

ψε(ξ1, . . . , ξn) = exp −
(

E[(X −X′)2]
4θ

n∑
k=1

n∑
l=1

ξkξl min(tk, tl)

)
,

which is the characteristic function of a standard Brownian motion up to a multiplicative
constant.

Part 2: proof of the tightness. In this part of the proof, C will denote a generic constant that
may change from line to line. The studied processes are in the spaceD of real-valued functions
on [0, 1] that are right continuous and have left-hand limits. According to Theorem 13.5 of [3],
tightness of the family (Yε(t))0<ε<1 is proven if there exist n ∈ N and γ > 1 such that, for
s ≤ t ≤ u,

E[|Yε(t)−Xε(s)|n|Yε(u)− Yε(t)|n] ≤ C|u− s|γ . (2.8)

The objective is to obtain a bound from above as in (2.8), which will be achieved using
Lemma A.1 in Appendix A. For each term appearing in Lemma A.1, we will lower bound the
highest power β possible in the bound of each Il,k by C(u− s)β .

In this part, we will use the sets introduced in the finite-dimensional proof. Recall that
A1
t = {(τ, w) : 0 ≤ τ < t, w > 0} and A2

t = {(τ, w) : 0 ≤ τ + w < t, w > 0}. Define, for
s < t , B1

s,t = A1
t \ A1

s and B2
s,t = A2

t \ A2
s . Then B1

s,t = {(τ, w) : s ≤ τ < t, w > 0} and
B2
s,t = {(τ, w) : s ≤ τ + w < t, w > 0}. As x 1A1

t
(τ, w)− x′ 1A2

t
(τ, w) ∈ L1(nε), we can

write the increment of Yε between s and t as

Yε(t)− Yε(s) = ε

∫
E

(x 1B1
s,t
(τ, w)− x′ 1B2

s,t
(τ, w))Nε(dx, dτ, dw).

Let 0 ≤ s < t < u, and define

f1(x, x
′, τ, w) = ε(x 1B1

s,t
(τ, w)− x′ 1B2

s,t
(τ, w))

and
f2(x, x

′, τ, w) = ε(x 1B1
t,u
(τ, w)− x′ 1B2

t,u
(τ, w)).

We are ready to apply Lemma A.1 with f1 and f2 defined above and�ε the Poisson process
(Xj ,X

′
j , τj , wj )j∈N. The assumptions are those of Lemma A.1 (note that condition (A.1) is

satisfied because we set E[|X|k|X′|l] < ∞). Thus, we have to evaluate the following integrals,
denoted by Ik,l :

Il,k = εl+k
∫
E

(x 1B1
s,t
(τ, w)− x′ 1B2

s,t
(τ, w))l(x 1B1

t,u
(τ, w)− x′ 1B2

t,u
(τ, w))k

× nε(dx, dx′, dτ, dw).
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Note that B1
s,t ∩ B1

t,u = B2
s,t ∩ B2

t,u = B1
t,u ∩ B2

s,t = ∅. Consequently, for k �= 0 and l �= 0,
when we develop the product in the integrand, the only nonvanishing term is xl(−x′)k 1B1

s,t
1B2

t,u
.

Then we obtain, for k > 0 and l > 0,

Il,k = 1
2ε
k+l−2 E[Xl(−X′)k]pε(B1

s,t ∩ B2
t,u).

Let us bound from above εk+l−2pε(B
1
s,t ∩ B2

t,u). As B1
s,t ∩ B2

t,u = {(τ, w) : s ≤ τ < t, t ≤
τ + w < u}, using Lemma A.3 in Appendix A,

• if u− s ≤ ε then εk+l−2pε(B
1
s,t ∩ B2

t,u) = 0,

• if u− s > ε then εk+l−2pε(B
1
s,t ∩ B2

t,u) ≤ (2/θ)(u− s)k+l−1−θ .

To sum up,

Il,k ≤ 2

θ(1 − θ)
(u− s)k+l−1−θ . (2.9)

We still have to compute Il,0 and I0,k . As the computations are the same, we only provide
details for the Il,0 integral.

From now on, we will have to distinguish between the cases whenX �= X′ on a nonnegligible
set and X = X′ almost surely.

Case (a): X = X′ almost surely. We have

Il,0 = εl
∫
E

xl(1B1
s,t
(τ, w)− 1B2

s,t
(τ, w))l dnε(x, x

′, τ, w). (2.10)

By expanding this expression,

Il,0 = εl−2

2
E[Xl]

l∑
i=0

(
l

i

)
(−1)l−i

∫
1B1

s,t
(τ, w)i 1B2

s,t
(τ, w)l−i dpε(τ,w).

Note that, for 0 < i < l, the integral above does not depend on i. For i = 0,∫
1B2

s,t
(τ, w)l dpε(τ,w) = pε(B

2
s,t ) = pε(B

2
s,t ∩ B1

s,t )+ pε(B
2
s,t ∩ (B1

s,t )
c),

where Ac is the complement of the set A in R × R+. For i = l, in the same way, we have∫
1B1

s,t
(τ, w)l dpε(τ,w) = pε(B

1
s,t ) = pε(B

1
s,t ∩ B2

s,t )+ pε(B
1
s,t ∩ (B2

s,t )
c).

Then, (2.10) becomes

Il,0 = εl−2

2
E[Xl]

(
pε(B

1
s,t ∩ B2

s,t )

l∑
i=0

(
l

i

)
(−1)l−i + pε(B

2
s,t ∩ (B1

s,t )
c)

+ (−1)lpε(B
1
s,t ∩ (B2

s,t )
c)

)
.

According to Lemma A.2 we have pε(B1
s,t ∩ (B2

s,t )
c) = pε(B

2
s,t ∩ (B1

s,t )
c), and as

l∑
i=0

(
l

i

)
(−1)l−i = 0,
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we can deduce that

Il,0 =
{
εl−2 E[Xl]pε(B1

s,t \ B2
s,t ) if l is even,

0 if l is odd.

Note that B1
s,t ∩ (B2

s,t )
c = {(τ, w) : s ≤ τ < t, t ≤ τ + w}. When l = 2 and t − s > ε,

Lemma A.2 yields

pε(B
1
s,t ∩ (B2

s,t )
c) = ε1−θ

θ
+ 1

θ(1 − θ)
((t − s)1−θ − ε1−θ ) < 1

θ(1 − θ)
(t − s)1−θ .

Otherwise, Lemma A.3 is enough to obtain interesting bounds. If l ≥ 3 then

εl−2pε(B
1
s,t ∩ (B2

s,t )
c) ≤ εl−2−θ

θ
(t − s) ≤ t − s

θ
.

If l = 2 and t − s < ε, then the same lemma yields

pε(B
1
s,t ∩ (B2

s,t )
c) ≤ ε−θ

θ
(t − s) ≤ (t − s)1−θ

θ
.

To sum up, we have

Il,0 ≤

⎧⎪⎨
⎪⎩
Cmax((u− s), (u− s)l−θ−1) if l is even and l > 2,

C(u− s)l−1−θ if l = 2,

0 if l is odd.

Case (b): X �= X′ on a nonnegligible set. Remember that this is the second case of
Theorem 2.1 so there is a coefficient of εθ/2 multiplying the process. Therefore, in this case
we will be interested in Ĩl,k , which we use to denote εθ(k+l)/2Il,k . When k �= 0 and l �= 0, the
previous calculation we carried out to obtain (2.9) is still valid because ε ≤ 1, i.e.

Ĩl,k ≤ 2ε(k+l)θ/2

θ(1 − θ)
(u− s)k+l−1−θ ≤ 2

θ(1 − θ)
(u− s)k+l−1−θ .

When k = 0,

Ĩl,0 = εl(1+θ/2)−2
∫
E

(x 1B1
s,t
(τ, w)− x′ 1B2

s,t
(τ, w))l dn(x, x′, τ, w).

Expanding this expression, we obtain

Ĩl,0 = εl(1+θ/2)−2
( l−1∑
i=1

(
l

i

)
E[Xi(−X′)l−i]

2
pε(B

1
s,t ∩ B2

s,t )+ pε(B
1
s,t )+ pε(B

2
s,t )

)
.

Thanks to Lemma A.3, we have pε(B1
s,t ∩ B2

s,t ) = 0 if t − s < ε, and if t − s > ε,

εl(1+θ/2)−2pε(B
1
s,t ∩ B2

s,t ) ≤ εl(1+θ/2)−2

θ
(t − s)ε−θ .
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Remember that we are interested in elements of Sn, where Sn is as defined in Lemma A.1 in
Appendix A. If (l, 0) appears in Sn then l ≥ 2. This implies that

εl(1+θ/2)−2pε(B
1
s,t ∩ B2

s,t ) ≤ 2εl−2

θ
(t − s) ≤ 2(t − s)l−1

θ
.

Using Lemma A.2, we have pε(B1
s,t ) = pε(B

2
s,t ), and using Lemma A.3, we obtain

εl(1+θ/2)−2pε(B
1
s,t ) = εl(1+θ/2)−2−θ

θ
(t − s) ≤ 1

θ
(t − s).

To conclude this second case, we can see that, for l > 0 and k > 0, Ĩl,k ≤ (u− s)(k+l)−1−θ ,
otherwise Ĩl,0 ≤ C(u− s) and Ĩ0,k ≤ C(u− s).

For every pair (l, k) of nonnegative integers, we thus have either Il,k ≤ C(u− s)k+l−1−θ or
Il,k ≤ C(u− s), with the same statement holding for Ĩl,k because ε ≤ 1.

Let us evaluate the product
d∏
i=1

(
ki+li
li

)
d! (ki + li )!Ili ,ki

with (l1, . . . , ld , k1, . . . , kd) ∈ Sn. Recall that

Sn =
n⋃
d=1

{
k, l ∈ N

d ,

d∑
i=1

ki =
d∑
i=1

li = n and ki + li ≥ 2

}
.

Using the upper bounds we obtained earlier for Il,k , we have

d∏
i=1

(
ki+li
li

)
d! (ki + li )!Ili ,ki ≤ C(u− s)β,

with β = ∑d
i=1 βli ,ki , where the βli ,ki are the upper bounds of the power we just obtained for

Ili ,ki ≤ C(u− s)βli ,ki . Let us show that β > 1.

• If, for some i, βli ,ki = 1 then ki = 0 or li = 0. Consequently, as
∑d
i=1 ki = ∑d

i=1 li = n,
then we must have d ≥ 2. This implies that β > βli ,ki = 1.

• If, for all i, βli ,ki = ki + li − 1 − θ then

β =
∑

ki + li − 1 − θ = 2n− d(1 + θ).

As d ≤ n, then
β ≥ n(1 − θ).

If we take n > 1/(1 − θ) then β > 1.

Consequently, for n > 1/(1 − θ), there exists β > 1 such that

d∏
i=1

(
ki+li
li

)
d! (ki + li )!Ili ,ki ≤ C(u− s)β .

As the above holds for Ĩl,k in place of Il,k , the tightness criterion is proved.
This completes the proof of Theorem 2.1.
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3. Convergence towards a Brownian sheet or a bifractional Brownian sheet

This section will be devoted to the study of processes indexed by t = (t1, . . . , td ) ∈ R
d+ for

d ≥ 2.
In this section we will obtain a bifractional Brownian sheet as a limit process. The bifractional

Brownian sheet is a Gaussian process with parameters (H,K) whose covariance function for
t = (t1, . . . , td ), s = (s1, . . . , sd) ∈ R

d+ is given by

1

2dK

d∏
i=1

|(t i)2H + (si)2H |K − |t i − si |2HK .

Let us consider the Poisson random measure Mε defined through its intensity measure on
E = R × R × R

d × R
d+ by

µε(dx, dx′, dτ, dw) = 1

2
ε−2

d∏
i=1

(w−1−θ
i 1{wi>ε} dτi dwi)F (dx, dx′)

with 0 < θ < 1 and F as in the previous section. Moreover, denote by �′
ε the Poisson point

process associated with Mε. For j ∈ {1, 2, 3}, consider sets S
j
t = ∏d

i=1 S̃
j

t i
, where the sets S̃j

t i

are subsets of R
2 defined for t > 0 by

S̃1
t = {(τ, w) : τ < −t, −t ≤ τ + w < t},
S̃2
t = {(τ, w) : − t ≤ τ < t, −t ≤ τ + w < t},
S̃3
t = {(τ, w) : − t ≤ τ < t, t ≤ τ + w}.

Consider the process defined for t ∈ R
d+ by

Y̆ε(t) =
∑
j∈N

ε(Xj 1(τj ,wj )∈S
3
t
−X′

j 1(τj ,wj )∈S
1
t
+(X −X′) 1

S
2
t
(τj , w)),

where (Xj ,X′
j , τj , wj )j∈N is an enumeration of the Poisson point process �′

ε.

Theorem 3.1. (a) If X = X′ almost surely then the finite-dimensional laws of Y̆ε converge to
those of √

2d(1−θ)−1 E[X2]
θd(1 − θ)d

BH,K,

where B(H,K) is a bifractional Brownian sheet with parameters (H,K) = ( 1
2 , 1 − θ).

(b) If X �= X′ on a nonnegligible set, the finite-dimensional laws of the process εdθ/2(Y̆ε(t)−
E[Y̆ε]) converge to those of √

2d−1 E[(X −X′)2]
θd

B,

where B is a Brownian sheet.

Proof. (a) The process Y̆ε can be written as

Y̆ε(t) = ε

∫
E

x(1
S

3
t
(τ, w)− 1

S
1
t
(τ, w))Mε(dx, dx′, dτ, dw).
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We can write

Z̆1
ε (t) = ε

∫
E

x 1
S

1
t
(τ, w)Nε(dx, dx′, dτ, dw)− ε

∫
E

x 1
S

1
t
(τ, w)µε(dx, dx′, dτ, dw)

and

Z̆3
ε (t) = ε

∫
E

x 1
S

3
t
(τ, w)Nε(dx, dx′, dτ, dw)− ε

∫
E

x 1
S

3
t
(τ, w)µε(dx, dx′, dτ, dw),

both of which are centered processes. They are independent because, for every s, t ∈ R
d+,

S
1
s ∩ S

3
t = ∅. Finally, Lemma A.2 in Appendix A can show that∫

E

x 1
S

1
t
(τ, w)µε(dx, dx′, dτ, dw) =

∫
E

x 1
S

3
t
(τ, w)µε(dx, dx′, dτ, dw).

Then,
Y̆ε = Z̆3

ε − Z̆1
ε .

Now we will show that the finite-dimensional laws of Z̆3
ε converge to those of a bifractional

Brownian sheet. The same statement holds for Z̆1
ε , but as the proof is the same as for Z̆3

ε , we
omit the details.

Denote by ψε(ξ1, . . . , ξn) the characteristic function of Z̆3
ε . Using (2.3), we have

ψε(ξ1, . . . , ξn) = exp

(∫
E

(
exp

(
iε

n∑
k=1

ξkx 1
S

3
tk

(τ, w)

)
− 1

−
(
iε

n∑
k=1

ξkx 1
S

3
tk

(τ, w)

))
µε(dx, dx, dτ, dw)

)
.

Using |exp(ix)− 1 − ix| ≤ Cx2, we have

∫
E

1

ε2

(
exp

(
iε

n∑
k=1

ξkx 1
S

3
tk

(τ, w)

)
− 1 − iε

n∑
k=1

ξkx 1
S

3
tk

(τ, w)

)
≤ Cx2 1

S
3
tk

(τ, w).

As Cx2 1
S

3
tk

(τ, w) is integrable with respect to
∏d
i=1w

−1−θ
i F (x, x′) dw dτ dx dx′, we can

apply the Lebesgue dominated convergence theorem to obtain

lim
ε→0

ψε(ξ1, . . . , ξn) = exp

(
−E[X2]

2

∫
Rd×R

d+

( n∑
k=1

ξk 1
S

3
tk

(τ, w)

)2 1

2
p′

0(dτ, dw)

)
.

Recall that p′
0 = ⊗d

i=1 p0. Expanding the product, we obtain

lim
ε→0

ψε(ξ1, . . . , ξn)

= exp

(
−E[X2]

4

n∑
k=1

n∑
l=1

ξkξl

∫
R×R+

1
S

3
tk

(τ, w) 1
S

3
tl

(τ, w)p′
0(dτ, dw)

)
. (3.1)

As we have

S
3
tk

∩ S
3
tl

= {(τ, w) : for all i,−min(t ik, t
i
l ) ≤ τ < min(t ik, t

i
l ), max(t ik, t

i
l ) ≤ τ + w},
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using Lemma A.2, we obtain

p′
0(S

3
tk

∩ S
3
tl
) = 1

θd(1 − θ)d

d∏
i=1

(|t ik + t il |1−θ − |t ik − t il |1−θ ).

Using this in (3.1) yields

lim
ε→0

ψε(ξ1, . . . , ξn) = exp

(
− E[X2]

4θd(1 − θ)d

n∑
k=1

n∑
l=1

ξkξl

d∏
i=1

(|t ik + t il |1−θ − |t ik − t il |1−θ )
)
.

We recognize the covariance function of a bifractional Brownian sheet, which means that the
finite-dimensional laws of Z̆3

ε converge to those of a BBM with parameters ( 1
2 , 1 − θ) times√

(2θd(1 − θ)d − 1)/E[X2].
Since the difference between two independent symmetric Gaussian processes with the same

distribution is up to a multiplicative constant of
√

2 a process with the same distribution, and
since Z̆3

ε and Z̆1
ε converge to independent processes with the same distribution, the finite-

dimensional laws of Z̆3
ε − Z̆1

ε converge to those of a BBM with parameters ( 1
2 , 1 − θ) times√

2θd(1 − θ)d/E[X2].
(b) We will compute the characteristic function of the process εdθ/2(Y̆ε(t)− E[Y̆ε]). Take

ξ1, . . . , ξn ∈ R and t1, . . . , tn ∈ R
d with ti = (t1i , . . . , t

d
i ). We have

ψε(ξ1, . . . , ξn)

= E

[
exp

((
i

n∑
k=1

ξkε
dθ/2Y̆ε(tk)

)
− E

[
i

n∑
k=1

ξkε
dθ/2Y̆ε(tk)

])]

= E

[
exp iεdθ/2

∫
E

ε

n∑
k=1

ξk(x(1S
2
tk

(τ, w)+ 1
S

3
tk

(τ, w))

− x′(1
S

2
tk

(τ, w)+ 1
S

1
tk

(τ, w)))Nε(dx, dx′, dτ, dw)

]

× exp E

[
−i

n∑
k=1

ξkε
dθ/2Y̆ε(tk)

]
.

Following the same steps as in the proof of Theorem 2.1, we obtain

ψε(ξ1, . . . , ξn) = exp

[∫
E

(
exp

(
iε(dθ+2)/2

n∑
k=1

ξk(x(1S
2
tk

(τ, w)+ 1
S

3
tk

(τ, w))

− x′(1
S

2
tk

(τ, w)+ 1
S

1
tk

(τ, w)))

)

− 1 − iε(dθ+2)/2
n∑
k=1

ξk(x(1S
2
tk

(τ, w)+ 1
S

3
tk

(τ, w))

− x′(1
S

2
tk

(τ, w)+ 1
S

1
tk

(τ, w)))

)

× µε(dx, dx′, dτ, dw)

]
.
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Again, the Lebesgue dominated convergence theorem cannot be used here because the integral
is not convergent when wj → 0. Define

f (x, x′, τ, w) =
n∑
k=1

ξk(x(1S
2
tk

(τ, w)+ 1
S

3
tk

(τ, w))− x′(1
S

2
tk

(τ, w)+ 1
S

1
tk

(τ, w)))

and

gε(x, x
′, τ, w) = 1

ε2+dθ (e
iε(dθ+2)/2f − 1 − iε(dθ+2)/2f ),

so that

ψε(ξ1, . . . , ξn) =
∫
E

εdθgε

d∏
i=1

w−1−θ
i dwi dx dx′ dτ. (3.2)

Furthermore, define

h(x, x′, τ, w) =
n∑
k=1

n∑
l=1

ξkξl(x − x′)2 1
S

2
tl
∩S

2
tk

(τ, w),

and consider∫
E

(
εθgε(x, x

′, τ, w)+ 1

2
εθh(x, x′, τ, w)

)
1{w>ε}w−1−θF (dx, dx′) dτ dw.

Note that∣∣∣∣εdθgε(x, x′, τ, w)+ 1

2
εdθh(x, x′, τ, w)

∣∣∣∣ ≤ εdθ
∣∣∣∣gε + 1

2
f 2

∣∣∣∣ + εdθ

2
|f 2 − h|. (3.3)

On the one hand, we have

gε + 1

2
f 2 = 1

εdθ+2

(
eiε

(dθ+2)/2f − 1 − iε(dθ+2)/2f + εdθ+2

2
f 2

)
,

which implies that
εdθ

∣∣gε + 1
2f

2
∣∣ ≤ Cε3dθ/2+1|f |3.

According to Lemma A.3 in Appendix A,

∫
E

|f 3|
d∏
i=1

w−1−θ
i 1{wi>ε} dwi dx dx′ dτ ≤ εdθCt1,...,tn ,

whereCt1,...,tn is a constant depending on t1, . . . , tn and not on ε. On the other hand, expanding
f 2 − h, the terms giving the εdθ vanish, which implies that

∫
E

|f 2 − h|
d∏
i=1

w−1−θ
i 1{wi>ε} dwi dx dx′ dτ ≤ ε(d−1)θC′

t1,...,tn
,

where Ct1,...,tn is another constant depending on t1, . . . , tn and not on ε.
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Using the two upper bounds in (3.3) and integrating, we obtain

lim
ε→0

∫
E

(
εdθgε(x, x

′, τ, w)+ 1

2
εdθh(x, x′, τ, w)

) d∏
i=1

w−1−θ
i 1{wi>ε} dwi dx dx′ dτ = 0.

In other words,

lim
ε→0

∫
E

εdθgε(x, x
′, τ, w)

d∏
i=1

w−1−θ
i 1{wi>ε} dwi dx dx′ dτ

= lim
ε→0

−ε
dθ

2

∫
E

h(x, x′, τ, w)
d∏
i=1

w−1−θ
i 1{wi>ε} dwi dx dx′ dτ.

Using Lemma A.2 in Appendix A, we obtain

lim
ε→0

∫
E

εdθgε

d∏
i=1

w−1−θ
i 1{wi>ε} dwi dx dx′ dτ

= −2d E[(X −X′)2]
4θd

n∑
k=1

n∑
l=1

ξkξl

d∏
i=1

min(t ik, t
i
l ).

Using (3.2) yields the conclusion.

Note that Theorem 3.1 is not a generalization of Theorem 2.1, but a modification which
ensures a better-known limit process. To establish a theorem from which Theorem 2.1 is a
special case for d = 1, we would have to

• use the same Poisson process �′
ε defined in this section,

• consider the sets S̄jt = ∏d
i=1 S

j
ti

defined for t = (t1, . . . , td ) ∈ R
d+ and j = 1, 2, 3, where

the sets Sjti are given in (2.1a)–(2.1e).

Denote by Ȳε the process defined by

Ȳε(t) =
∑
j∈N

ε(Xj 1(τj ,wj )∈S̄3
t
−X′

j 1(τj ,wj )∈S̄1
t
+(Xj −X′

j ) 1(τj ,wj )∈S̄2
t
), (3.4)

where (Xj ,X′
j , τj , wj )j∈N is an enumeration of the Poisson point process �′

ε.
Then we can obtain the following result using the same methods.

Theorem 3.2. (a) If X = X′ almost surely then ε(d−1)θ/2Ȳε converges in distribution to a
centered Gaussian process whose covariance function for t = (t1, . . . , td ) ∈ R

d+ and s =
(s1, . . . , sd) ∈ R

d+ is given by

r(s, t) = E[X2]
4θd(1 − θ)d

( d∏
i=1

(max(t i , si)1−θ − |t i − si |1−θ )+
d∏
i=1

min(t i , si)1−θ
)
,

which is an extension of FBM in higher dimensions.
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(b) If X �= X′ on a nonnegligible set, the process εdθ/2(Ȳε(t)− E[Ȳε]) converges in distribu-
tion to √

2d−1 E[(X −X′)2]
θd

B,

where B is a Brownian sheet.

Unfortunately, the limit process obtained is not as interesting as the bifractional Brownian
sheet and the proof is similar, so we omit the details.

Remark 3.1. This model and others with similar behaviors are studied in detail in the author’s
PhD thesis [13].

Appendix A. Lemmas

This appendix contains a lemma used to prove tightness in the proof of Theorem 2.1. To
this end, we will compute moments of a process which is the sum of a function over a Poisson
process. Denote by � a Poisson process on a space E. If f is a real-valued function defined
on E, the sum of f over � is

	 =
∑
x∈�

f (x).

If we denote by N the random measure associated with �, i.e. N = ∑
x∈� δx , we can also

write

	 =
∫
E

f (x)N(dx).

Denote by µ the intensity measure of �, i.e. the measure on E such that µ(A) = E[N(A)] for
all A measurable sets in E. Lemma A.1 below was not found in the literature, but it can be
proven following the leads found in Chapter 3 of [10].

Lemma A.1. Let � be a Poisson process of intensity measure µ on a space E. Take n ∈ N
∗.

Let f1 and f2 be two real-valued functions over E such that, for all k ∈ N,∫
E

max(|f1|, |f2|)k dµ < ∞. (A.1)

Define 	1 = ∑
X∈� f1(X) and 	2 = ∑

X∈� f2(X). Then,

E[(	1 − E	1)
n(	2 − E	2)

n] = (2n)!(2n
n

) ∑
k,l∈Sn

d∏
i=1

(
ki+li
li

)
d! (ki + li )!Ili ,ki , (A.2)

where

Sn =
n⋃
d=1

{
k, l ∈ N

d ,

d∑
i=1

ki =
d∑
i=1

li = n and ki + li ≥ 2

}

and Ili ,ki = ∫
E
f
li
1 f

ki
2 dµ.

The following two technical lemmas are often used in the paper to compute integrals. Recall
the measure pε = w−1−θ 1{w>ε} dτ dw defined on R × R+. Lemma A.2 below is often used
to prove the convergence of finite-dimensional laws, whereas Lemma A.3 below is helpful to
prove tightness.

In the following, we will define a ∨ b = max(a, b) and a ∧ b = min(a, b). Both the
following lemmas are proved with straightforward computations, so we will omit their proofs.
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Lemma A.2. (a) Let a, b, c, d ∈ R be such that a < b, c < d, a ≤ c, and b ≤ d. We have

pε(a ≤ τ < b, c ≤ τ + w < d)

= ε−θ

θ
((c − a) ∧ ε − (c − b) ∧ ε − (d − a) ∧ ε + (d − b) ∧ ε)

+ 1

θ(1 − θ)
(((c − a) ∨ ε)1−θ − ((c − b) ∨ ε)1−θ

− ((d − a) ∨ ε)1−θ + ((d − b) ∨ ε)1−θ ).

(b) If d = ∞,

pε(a ≤ τ < b, c ≤ τ + w) = ε−θ

θ
((c − a) ∧ ε − (c − b) ∧ ε)

+ 1

θ(1 − θ)
(((c − a) ∨ ε)1−θ − ((c − b) ∨ ε)1−θ ).

(c) If a = −∞,

pε(τ < b, c ≤ τ + w < d) = ε−θ

θ
((d − b) ∧ ε − (c − b) ∧ ε)

+ 1

θ(1 − θ)
(((d − b) ∨ ε)1−θ − ((c − b) ∨ ε)1−θ ).

(d) If two numbers among a, b, c, and d are infinite, pε(a ≤ τ < b, c ≤ τ + w < d) = ∞.

Remark A.1. Note that pε does not charge {a ≤ τ < b, c ≤ τ +w < d} if a ≥ d because pε
only charges sets where w > 0. This is why we assumed that b ≤ d and a ≤ c in Lemma A.2.

Lemma A.3. (a) Let a, b, c, d ∈ R be such that a < b, c < d, a ≤ c, and b ≤ d. We have

pε(a ≤ τ < b, c ≤ τ + w < d) ≤ 2

θ
min(b − a, d − c)((c − b) ∨ ε)−θ .

In some cases, we can even have a bound depending on d − a: if d − a ≤ ε then

pε(a ≤ τ < b, c ≤ τ + w < d) = 0.

Furthermore, if b = c, we have

pε(a ≤ τ < b, b ≤ τ + w < d) ≤ (d − a)1−θ

θ(1 − θ)
.

(b) If d = ∞,

pε(a ≤ τ < b, c ≤ τ + w) ≤ b − a

θ
((c − b) ∨ ε)−θ .

(c) If a = −∞,

pε(τ < b, c ≤ τ + w < d) = d − c

θ
((c − b) ∨ ε)−θ .
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