
Parasitology

Supplement to Parasitology 1996

Molecular biochemistry and physiology of helminth neuromuscular systems

EDITED BY D. W. HALTON

CO-ORDINATING EDITOR L. H. CHAPPELL

CAMBRIDGE UNIVERSITY PRESS

Subscriptions may be sent to any bookseller or subscription agent or direct to the publisher: Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge CB2 2RU. Subscriptions in the USA, Canada and Mexico should be sent to Cambridge University Press, Journals Department, 40 West 20th Street, New York, NY 10011–4211. All orders must be accompanied by payment. The subscription price (excluding VAT) of volumes 112 and 113, 1996 is £292 (US \$540 in the USA, Canada and Mexico), payable in advance, for twelve parts plus supplements; separate parts cost £26 or US \$48 each (plus postage). EU subscribers (outside the UK) who are not registered for VAT should add VAT at their country's rate. VAT registered subscribers should provide their VAT registration number. Japanese prices for institutions (including ASP delivery) are available from Kinokuniya Company Ltd, P.O. Box 55, Chitose, Tokyo 156, Japan. Periodicals postage paid at New York, NY and at additional mailing offices. POSTMASTER : send address changes in USA, Canada and Mexico to *Parasitology*, Cambridge University Press, 110 Midland Avenue, Port Chester, New York, NY 10573–4930.

ISBN 0 521 57637 7

Front Cover Illustration: Illustration by Professor P. A. V. Anderson

© Cambridge University Press 1996

The Edinburgh Building, Cambridge CB2 2RU, United Kingdom 40 West 20th Street, New York, NY 10011–4211, USA 10 Stamford Road, Oakleigh, Melbourne 3166, Australia

Printed in the United Kingdom at the University Press, Cambridge

Parasitology

Volume 113 Supplement 1996

Molecular biochemistry and physiology

EDITED BY D. W. HALTON

CO-ORDINATING EDITOR L. H. CHAPPELL

Contents

List of contributions

Evolution and overview of classical	
transmitter molecules and their	
receptors	S 3
Summary	S 3
Introduction	S 4
Classical transmitter molecules	S 7
Co-localization	S 8
Acetylcholine	S11
5-Hydroxytryptamine (5-HT, serotonin)	S14
Dopamine	S14
Octopamine	S14
Histamine	S16
GABA	S16
Glycine	S19
Glutamate receptors	S19
Nitric oxide, carbon monoxide and hydrogen	
peroxide	S23
Purines	S52
References	S52
Neuropeptides and their evolution	S35
Summary	S35
Introduction	S35
Evolution of methodologies	S36
Evolution of general concepts	S36
Evolutionary origins of regulatory peptides	S37
Regulatory peptide systems in higher	
invertebrates - insects and molluscs	S38
Regulatory peptides in helminths	S39
The discovery of neuropeptide F in	
flatworms	S39
Flatworm FMRFamide-related peptides	
(FaRPs)	S41
Nematode neuropeptides – exceptions to	
the rule?	S43
Summary and future trends	S43
References	S43
Functional morphology of the	
platyhelminth nervous system	S47
Summary	S47
Introduction	S47
Neuroanatomy	S48
Gross morphology of the nervous system	S48
The brain	S51
The orthogon	S51
The main nerve cords	S53
The plexuses	S53

The main herve cords	533
The plexuses	S53
The pharyngeal and stomatogastric	
nervous system	S53

Attachment organs	S55
Neurocytology and ultrastructure	S58
Glia-like cells	S59
Synapses and non-synaptic release sites	S60
Neurocrine (synaptocrine) release	S60
Paracrine (nonsynaptic) release	S60
Sense organs	S61
Neurochemistry	S61
Acetylcholine	S62
Serotonin	S62
Catecholamines	S63
Histamine	S63
Glutamate	S63
γ-Amino butyric acid	S64
Nitric oxide	S64
Neuropeptides	S64
Neuronal mapping and co-localization of	
neuroactive substances	S65
Neuroactive substances in reproduction and	
development	S65
Conclusion	S66
Acknowledgements	S67
References	S67

S1

Physiology and pharmacology of

turbe	ellarian neuromuscular systems	S73
Summary		S73
Introduct	ion	S73
Taxonom	y of the Turbellaria	S73
Basic biol	ogy and neuroanatomy	S74
Behaviou	of the Turbellaria	S74
Neuronal	physiology	S74
Muscle ar	natomy and organization	S77
Neuromu	scular pharmacology	S77
Muscle pl	hysiology	S78
Conclusio	ns	S79
Acknowle	dgements	S79
Reference	s	S79

Neuromuscular physiology and

pharmacology of parasitic flatworms	S83
Summary	S83
Introduction	S83
Anatomy of somatic muscle	S83
Ion channels of somatic muscle	S85
Receptors on somatic muscle	S86
Serotonin	S87
Peptides	S88
Acetylcholine	S89
Glutamate	S91
Conclusions	S92
References	S92

The motornervous system of Ascaris:	
electrophysiology and anatomy of the neurons and their control by	
neuromodulators	S97
Summary	S97
Introduction	S97
Overview of motorneuronal anatomy and	
physiology: early studies	S97
Properties of individual neurons	S99
Determination of motorneuronal	277
membrane properties	S 99
Nature of motorneuronal signalling: small,	577
transient active conductances	S100
Nature of motorneuronal signalling: slow	5100
potentials	S101
Nature of motorneuronal signalling:	5101
absence of all-or-none spikes	S102
Non-motorneuronal spiking activity:	5102
analysis using extracellular recording	S102
techniques	S102
Nature of neurotransmission: graded	
synaptic transmission and tonic release	0404
of transmitter	S104
System properties: neuronal interactions and	~
behavioural considerations	S104
Anatomical circuitry	S104
Physiology of motorneuron interactions	S106
Outstanding issues	S107
Pharmacology of neurotransmission	S108
Acetylcholine	S108
Gamma aminobutyric acid (GABA)	S108
Glutamate	S108
GLU transporter	S109
Serotonin	S110
Neuropeptides	S111
Acknowledgements	S113
References	S113
FMRFamide-related peptides (FaRPs) in	
nematodes: occurrence and	
neuromuscular physiology	S119
Summary	S119
Introduction: FMRFamide-related peptides	
(FaRPs)	S119
Peptides in nematodes	S120
Distribution of FMRFamide-related	
peptides in nematodes	S120
Identification of nematode FaRPs	S121
Isolation and structural characterization	S123
Characterization of nematode FaRP-	2120
encoding genes	S123
Physiological activity of FaRPs in	0120
nematodes	S123
Ascaris suum peptides	S123
Panagrellus redivivus peptides	S124 S126
	S120 S130
Caenorhabditis elegans peptides	
Platyhelminth FaRPs	S130
Arthropod FaRPs	S130

Nitric oxide involvement in FaRP	
effects	S130
Nematode G proteins and second	
messengers	S131
Nematode neuropeptide metabolism	S132
Conclusion and future directions	S132
References	S133
Electrophysiology of Ascaris muscle and	
anti-nematodal drug action	S137
Summary	S137
Introduction	S137
The anatomy and physiology of the somatic	
neuromuscular system of Ascaris	S137
The nervous system	S137
The anatomy of somatic muscle	S138
Electrophysiology of somatic muscle	S140
Membrane potential	S140
Permeability of Ca ²⁺ -dependent Cl ⁻	
channels in the bag membrane and	
excretion of organic anions	S140
Depolarizing potentials	S143
Acetylcholine	S144
Ascaris muscle has acetylcholine receptors	S144
Pharmacology of the Ascaris nicotinic	
acetylcholine receptor	S144
The nicotinic anthelmintics	S144
Intracellular potential and conductance	
effects of nicotinic anthelmintics	S145
Single-channel currents activated by	
nicotinic anthelmintics	S147
There may be more than one block site in	
the pores of Ascaris nicotinic channels	S148
Non-nicotinic or 'muscarinic' cholinergic	
receptors in nematodes	S149
Kostyuk technique for recording voltage-	
dependent currents from the bag region	
of the muscle and effects mediated by	
cholinergic receptors	S149
Resistance to anthelmintics	S149
Pharmacology of the Ascaris GABA	
receptor	S149
Possible therapeutic uses of GABA	
antagonists	S150
Piperazine	S150
The avermectin receptor	S151
Effect of glutamate	S153
Effect of milbemycin D	S153
Conclusion	S153
Acknowledgements	S154
References	S154
Metabolism and inactivation of	
neurotransmitters in nematodes	S157
Summary	S157
Introduction	S157
Metabolic inactivation	S157
Inactivation of acetylcholine	S157
Metabolism and inactivation of biogenic	
amines	S158

S130

Mechanism of action

Which biogenic amines are functional	
in nematodes?	
Metabolism of biogenic amines	S159
Neuropeptide metabolism	S161
Neurotransmitter uptake	S165
Biochemical studies of uptake	S165
Neurotransmitter transporter gene families	S165
The sodium- and chloride-dependent	
neurotransmitter gene family	S165
The glutamate transporter gene family	S165
The vesicular amine transporter gene	
family	S165
Sodium- and chloride-dependent	
neurotransmitter transporters	S166
Cloning and characterization of	
neurotransmitter transporters	S166
Pharmacology of neurotransmitter	
transporters	S166
Neurotransmitter uptake in helminths	S167
Serotonin uptake in filarial worms	S167
GABA uptake in Ascaris	S167
Serotonin uptake in C. elegans	S168
C. elegans as a model system for studying	
neurotransmitter transporters	S168
Cloning of neurotransmitter transporter	
genes	S168
Cloning of vesicular amine transporter	S168
Cloning of a glutamate transporter	S168
Cloning of a sodium- and chloride-	
dependent transporter	S168
Concluding remarks	S169
Acknowledgements	S169
References	S169

Molecular cloning and *in vitro* expression of *C. elegans* and parasitic nematode ionotropic

parasitic nematode ionotropic	
receptors	S175
Summary	S175
Introduction	S175
C. elegans, a model for ionotropic receptors	S175
C. elegans ionotropic receptors	S177
Nicotinic acetylcholine receptors	S177
Molecular cloning	S178
Isolation of genes for parasitic nematodes	S178
In vivo functional studies	$\mathbf{S180}$
Direct localization of nAChR subunit gene	
expression	S180
Reverse genetics	S180
Other approaches to identifying nAChR	
function	S181
Sequence comparison of nematode nAChR	
sequences	S182
Functional expression	S183
L-Glutamate receptors (L-GluRs)	S185
GABA receptors (GABARs) and other	
putative amino acid receptors	S186
Ryanodine receptors (RyRs)	S187
Inositol 1,4,5 triphosphate receptors	S187

S187
S188
S188

v

Molecular biology and	
electrophysiololgy of glutamate-	
gated chloride channels of	
invertebrates	S191
Summary	S191
General background	S191
Electrophysiological and pharmacological	~
properties of glutamate-gated chloride	
channels	S191
Anthropods	S191
Nematodes	S192
Molecular biology and expression of	5172
cloned glutamate-gated chloride	
	S193
channels	S195
Conclusions	
Acknowledgements	S198
References	S198
Pharmacology of anthelmintic	0004
resistance	S201
Summary	S201
Introduction	S201
Anthelmintics	S201
Development of resistance	S202
Definitions and measurement of resistance	
Research on anthelmintic resistance	S203
Imidothiazole (Levamisole) resistance	S204
In vivo pharmacology of the imidothiazoles	
In vitro assays for LEV resistance	S205
LEV resistance and the physiology of	
parasitic stages	S205
Ligand binding and LEV resistance	S206
Genetics of LEV resistance	S206
Mechanisms of resistance to LEV	S207
LEV resistance in C. elegans	S207
Macrocyclic lactone (ivermectin) resistance	S208
IVM resistance in vivo and in vitro	S208
Binding of IVM	S209
Genetics of IVM resistance	S210
Mechanisms of IVM resistance	S210
IVM resistance in C. elegans	S210
I VIVI Tesistance III C. cieguns	0210
Acetylcholinesterases (naphthalophos)	
resistance	S211
Piperazine	S211
Schistosomicides	S211
Study of parasitic helminths	S211
Conclusions	S211 S213
	S213
Acknowledgements References	S213
References	0210

Prospects for rational approaches to	
anthelmintic discovery	S217
Summary	S217
Introduction	S217

Contents

Drug design	S218
Mechanism-based screening	S218
Enzyme inhibitors	S218
Receptor binding	S218
Protein: protein and protein: DNA	
interactions	S219
Sources of compounds	S219
Compound collections	S220
Electronic libraries	S220
Combinatorial libraries	S220
Natural products – plants and animals	S220
– microbial	
fermentations	S220
Examples of mechanism-based anthelmintic	
discovery	S221
Recombinant microorganism-based screens	S221
Molecular modelling: schistosome cysteine	
protease inhibitors	S222
Potential anthelmintic targets in	
neuromuscular systems	S222

GABA receptorsS222Acetylcholine receptorsS224Glutamate receptorsS225Targets derived from physiologyS225Ion channelsS227Glycine receptorsS228Neuropeptides – peptide receptorsS229Targets derived from drugs with unknownreceptorsreceptorsS230ParaherquamideS230Potential targets identified through basicS231The nematode pharynxS231Amphid functionS231Contributions of C. elegansS232	Targets derived from pharmacology	S222
Glutamate receptorsS225Targets derived from physiologyS225Ion channelsS225Serotonin receptorsS227Glycine receptorsS228Neuropeptides – peptide receptorsS228— processing enzymesS229Targets derived from drugs with unknownreceptorsreceptorsS230ParaherquamideS230Potential targets identified through basicS231The nematode pharynxS231Amphid functionS231Contributions of C. elegansS232	GABA receptors	S222
Targets derived from physiologyS225Ion channelsS225Serotonin receptorsS227Glycine receptorsS228Neuropeptides – peptide receptorsS228- processing enzymesS229Targets derived from drugs with unknownreceptorsreceptorsS230ParaherquamideS230Potential targets identified through basicS231The nematode pharynxS231Amphid functionS231Contributions of C. elegansS232	Acetylcholine receptors	S224
Ion channelsS225Serotonin receptorsS227Glycine receptorsS228Neuropeptides – peptide receptorsS228- processing enzymesS229Targets derived from drugs with unknownreceptorsreceptorsS230ParaherquamideS230PF1022AS230Potential targets identified through basicresearchresearchS231The nematode pharynxS231Amphid functionS232	Glutamate receptors	S225
Serotonin receptorsS227Glycine receptorsS228Neuropeptides – peptide receptorsS228– processing enzymesS229Targets derived from drugs with unknownreceptorsreceptorsS230ParaherquamideS230PF1022AS230Potential targets identified through basicresearchresearchS231The nematode pharynxS231Amphid functionS232Contributions of C. elegansS232	Targets derived from physiology	S225
Glycine receptorsS228Neuropeptides – peptide receptorsS228– processing enzymesS229Targets derived from drugs with unknownreceptorsreceptorsS230ParaherquamideS230PF1022AS230Potential targets identified through basicresearchresearchS231The nematode pharynxS231Amphid functionS232Contributions of C. elegansS232	Ion channels	S225
Neuropeptides – peptide receptorsS228 – processing enzymesTargets derived from drugs with unknown receptorsS230 ParaherquamidePF1022AS230 Potential targets identified through basic researchS231 S231 S231 Amphid functionThe nematode pharynxS231 S231 S231 S231Contributions of C. elegansS232	Serotonin receptors	S227
- processing enzymesS229Targets derived from drugs with unknownreceptorsreceptorsS230ParaherquamideS230PF1022AS230Potential targets identified through basicresearchresearchS231The nematode pharynxS231Amphid functionS231Contributions of C. elegansS232	Glycine receptors	S228
Targets derived from drugs with unknown receptorsS230 S230 ParaherquamideS230 S230 PF1022APotential targets identified through basic researchS231 S231 The nematode pharynxS231 S231 S231 Contributions of C. elegans	Neuropeptides – peptide receptors	S228
receptors S230 Paraherquamide S230 PF1022A S230 Potential targets identified through basic research S231 The nematode pharynx S231 Amphid function S231 Contributions of <i>C. elegans</i> S232	- processing enzymes	S229
ParaherquamideS230PF1022AS230Potential targets identified through basicresearchresearchS231The nematode pharynxS231Amphid functionS231Contributions of C. elegansS232	Targets derived from drugs with unknown	
PF1022AS230Potential targets identified through basic researchS231The nematode pharynxS231Amphid functionS231Contributions of C. elegansS232	receptors	S230
Potential targets identified through basic researchS231The nematode pharynxS231Amphid functionS231Contributions of C. elegansS232	Paraherquamide	S230
researchS231The nematode pharynxS231Amphid functionS231Contributions of C. elegansS232	PF1022A	S230
The nematode pharynxS231Amphid functionS231Contributions of C. elegansS232	Potential targets identified through basic	
Amphid functionS231Contributions of C. elegansS232	research	S231
Contributions of C. elegans S232	The nematode pharynx	S231
a	Amphid function	S231
	Contributions of C. elegans	S232
References S232	References	S232