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Geometric properties of the norm and

basic sequences in Banach spaces

Ivan Singer

We introduce some generalizations of Kadec'-Klee norms and use
them to study characteristics of subspaces of conjugate spaces
and smoothness. We give some connections between such
characteristics and basic sequences, which yield, in particular,
sharpenings and simpler proofs of some known characterizations

of reflexivity.

1.

We shall say (following [7], where this notion and term have been
introduced for spaces with separable conjugate spaces) that the norm of a
Banach space E 1is a (KK) norm (Kadec'-Klee norm) or, briefly, that E is
a (KK) space, if for every net {gd}dév C E* and every g € E* such that

*
9 AN g s HgdH > llgll , we have ”gd-gn + 0 . Here we introduce the

following formally weaker notion: we shall say that E is a sub-(KK)
space if the above condition is satisfied for every g € P , where P is
the set of functionals g in E* which attain their norm (that is, for
which there exists x € E with |zl =1, g(x) =ligll ). We shall also
consider the countable versions of these notions, namely, we shall use the

terms (KK@) space or sub—(KKw) space if one of the above conditions is
satisfied for sequences {gn} instead of nets {gd}dév (thus,
(kK) = (mw) = sub-{KK ) and (KK) = sub-(KK) = sub-(KK ) }. In 82 we

shall show that the results of [7] on characteristics of subspaces of the
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conjugate space of a (KK) space with separable conjugate space remain valid
for sub-(KK) spaces. In 83 we shall show that either one of the sub-{KK)
or sub- (KKw) properties is the link between smoothness and Fréchet
differentiability. In 84 we shall give some complements to our results of
[76] on non-smoothness of non-reflexive second conjugate spaces!. Finally,
in §5 we shall show that the converse of a connection between
characteristics and basic sequences, observed in [16], is also true; in
particular, this will yield sharpenings and simpler proofs of some known
characterizations of reflexivity of Banach spaces. We shall consider only

real Banach spaces, but the proofs can be easily extended to the complex

case.

2.

We recall (see [6]) that the characteristic of a subspace V (by
subspace we shall always mean closed linear subspace) of a conjugate Banach
space E* is the greatest number » = »(V) such that the unit cell
s,=1{fev | Ifl =1} of V is o(E*, E)-dense in the r-cell

rSp, = {f € B* | Ifll =7} of E* (clearly, O0<»(V)<1). In[7] it

was proved that if E is a (KK) space with separable conjugate space E* ,
then for every proper subspace V of E* we have »(V) <1 . Now we

shall prove that this result remains valid for arbitrary sub-(KK) spaces.

THEOREM 1. Let E be a sub-(KK) space. Then for every proper sub-
space V of E* we have r(V) <1 .

Proof. Assume, a contraric, that V is a (norm closed linear) sub-
space of E* with V # E* , »(V) =1 . Then there exists g € P\V with
igll =1 , wvhere P is the subset of E* occurring in the definition of
sub—{KK) norms (indeed, by the Bishop~Phelps Theorem [4], P is dense in

% : = ; < <
E* ). Since »(V) =1 , there exists a net {gd}dGD C V with Ilgdll <1
% _
(d €D) , such that g, 2 . g . Then 1= gl < Lim gl = Iim gl =1,
whence Hgdll -+ |igll . Consequently, since E is sub-(KK), Ilgd-gll >0,
whence g € V , a contradiction, which completes the proof.

! fThe author takes this opportunity of stating that on page 410, line 1k,
of [161, "® # 0" should read "O(f) # 0" .
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3.
Now we shall show that either one of the sub-(KK) or sub—(KKw)

properties is precisely the condition which must be added to smoothness
(denoted by (S) ), in order to obtain Fréchet differentiability of the

norm of F at every non-zero point (denoted vy (F) )

THEOREM 2. For a Banach space E the following statements are

equivalent:
1°. E s (F) ;
2°. E is (S) and sub-(KK) ;

3°. E is (S) and sub—(KKm) .

Proof. Clearly, (F) = (S) . Assume now that E is (F) and let

w* .
{gglyp B s g€P, g3 =9, lggl~llgl . Since g €P, 1et
x€E, lzfl =1, glz) =ligll . Then, since 94 wr, g » for every € >0
there exists do = do(e, x) such that |gd(x)—|[g|[| = Igd(x)-g(x)| <e,
whence gd(x) > |igll - € , whenever d = do(e, x) . But, since E is

(F) , by a result of Smulian [19] we have

diam Ax’e,“g” >0 as € y 0,
where A4 ={h €% | |lnl = 1, W(x) = llgll-e} . Hence, since
z,e,llgll
9 9 € A:x:,e,”g“ for d = do(s, x) , we obtain ||gd—gll +~0, so E is

sub-(KK). Thus, 1° = 2°
The implication 2° = 3° is obvious.

Finally, assume that E 1is both (S) and sub—(KKw) and let

x,, z €E, ||xn|| = llxll =1, € > . Then, by (S) , there are uniquely
< * 1 = = = =
determined fx , fx € E* with ”fx I Ilfo 1, fx (xn) fx(x) 1,
n n n
%
and they satisfy f‘x o, f:c , [9]. Hence, since E is sub-(KKw) , We
n

obtain "fx -fo + 0 . Thus, the "support mapping" x - f, is norm to
" .
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norm continuous on O = {z ¢ £ | |lzfl =1} , whence E is (F), [9].

Thus, 3° = 1°, which completes the proof.

REMARK [. We recall that a Banach space E 1is said to be (V8) (very

smooth) if it is smooth and if the support mapping x - f; is continuous
on 0y = {x € E| llzll =1} from the norm topology of E to the

o(E*, E**) +topology of E* , or, what is equivalent [10], if the canonical
image of E in E** is smooth as a subspace of F** (that is, with
respect to the functionals in E#*** ), Sullivan has proved ([20], Theorem
3) that if E is (S) and (KK), then E is (VS). Since (F) implies (VS)
[20], [10], the implications 2° = 1°, and 3° ® 1° of Theorem 2 above are
sharpenings of Sullivan's Theorem. The equivalence 1° < 3° can be also
proved by using characterizations of (F) in terms of "strongly smooth"
points, and of (S), due to 3mulian [18], [17] (see also [11]); 4in the
particular case of reflexive spaces, essentially this latter equivalence
has been obtained, with a different method, in [5]. In [14], Proof of
Theorem 3, it has been shown, with the argument of the above proof of the
implication 3° = 1°, that (S) A (KKw) = (F).

REMARK 2, Prom Theorems 1 and 2 it follows that 2f E <& (F), then
for every proper subspace V of E* we have »r(V) <1 . This can be also
proved as follows: by [20], [10], (F) implies (VS), and by [16], Theorem
1, (vS) implies that every proper subspace V C E* has »r(V) <1 .

Problem 1. If EF is sub-(KK), or if E is (F), does F admit an

equivalent (KK)-norm? What about the similar questions for sub-(KKm],

(kx,)?

4.

In [76] we have proved some results on the open problem whether the
second conjugate E** of a non-reflexive Banach space E is non-smooth,
showing that for a large class of spaces this is indeed the case. Here we
want to point out some more consequences of the results of [16] in the same

direction.

THEOREM 3. If a Banach space E contains a subspace isomorphic to
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1

e, or 1~ , then E** 4ig not smooth.

Proof. The statement on e, was observed in [76]. On the other

hand, if E contains a subspace (G isomorphic to Zl ., then

PR
dens G < dens G* , whence by [16], Corollary 1, G** = G < E** is not
smooth, so E** 1is not smooth, which completes the proof.

COROLLARY 1. If E 1is a non-reflexive subspace of a Banach space
with an (uncountable or countable) unconditional basis, then E** 1is not
smooth.

Proof. By [2], E satisfies the condition of Theorem 3 above.

More generally, the same conclusion also holds for non-reflexive sub-
spaces of cyclic Banach spaces and of O-complete and O-order continuous

Banach lattices ([27], Theorems 8 and 18).

5.
We recall that a sequence {mh} in a Banach space F 1is called a

basic sequence, if it is a basis of [xn] » the closed linear subspace of

E spanned by {xn} . A basic sequence {xn} C F 1is said to be
(a) asymptotically momotone, if lim Han = 1 , where s, is the
n—)m

© n
n-th partial sum operator E: aix. > z: aixi (defined on
i=1 Y i=1
[=,] s

(b) shrinking, if lim ”f l - “ =0 for all f € E* .

e [=:) s

In [16] we have observed that if E contains an asymptotically monotone
non-shrinking basic sequence, then E has a subspace F (namely,

F= Exn] } such that F* contains a proper subspace V with »(V) =1 .

Now we shall prove that the converse is also true and we shall deduce some
consequences; the techniques of the proof below, which is a natural
extension of the techniques of Mazur (see [3]) and Gelbaum [8], may be of

interest. for other applications too.
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We recall that if G, Y are subspaces of a Banach space F and

o, = {x €G | llzll = 1} , the number

.
(6; ) = dist{o,, ¥)

is called the ineclination of G to Y . In the proof of Lemma 1 below we
shall use the fact that for a subspace V of a conjugate space E* we

have r(V) =1 if and only if |zl = sup |f(z)| for all =x € E , [4].
Fev
I fll<1
LEMMA 1. Let E be a Banach space, V a linear subspace of E*
with »(V) =1, G a finite-dimensional subspace of E and 0 < e <1 .
Then there exists a finite set of functionals {hl, cees hm} CV such that
m

the finite codimensional subspace Y = N ker h
=1

: of E satisfies

(G;/\Y)>l—e.

In particular, if dim G =1 , one can take m=1 , Y = ker hl .

Proof. Since dim G < » , the set 9, = {z € G| flxll =1} is compact
and hence it has a finite ¢€'-net Bys sees zm , where 0 <g' < % Since
r(V) = 1 , there exist hl, e, hm € V such that IIth <1,

Ihz(zlﬂ 1 -€¢' (£=1, ..., m) . Then for every =« €0, and
m
y €Y= N Kker h'zl we have, with a suitable 2; s
i=1 0
lztyll = ||z, +y -“x-z.”z h. [z.+y] -€e' = |h. [z]' -—e'21-2¢",
15 %5 T2 To\7,

—
whence (G; Y) =21 -2¢' >1 -¢, If dim G=1 , then o consists of
two antipodal elements, say O = {zl, -zl} and thus any hl €V with
Inll =1, Ihl(zl)l >1 -¢€'>1-¢€ works.

LEMMA 2 (Banach [1], Theorew i, p. 122). Let E be a Banach space,
I a w*-closed linear subspace of E* , f € E*\I' and
0 < e < dist(f, T') . Then there existe an element =z € E such that

h(.‘C):O (hEI‘);
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lell S e
= Fist(fF, D)€ *

THEOREM 4. A Banach space E has a subspace E, such that E}

contains a proper subspace V with »(V) =1 if and only if E contains

an asymptotically monotone non-shrinking basic sequence.

Proof, ‘As we mentioned already in the preceding, the sufficiency part

was observed in [76].

Conversely, it is clearly enough to prove the necessity part under the
assumption that £E* contains a proper subspace V with =»(V) =1 (since

an asymptotically monotone non-shrinking basic sequence {xn} in E'O CcCE

has the same properties in F )

Let f € E*\V, 0« e, < dist(f, V) , 1lim €,=0. Put

yi>oo
_ 1
M= élist(f,V)—s::L
Since |Ifll = dist(f,V) > 1]"7 » there exists &z ¢ E with [leH =M

such that f'(xl) =1 ., Then, by Lemma 1 for G1 = [xl] , there exists

h By Lemma 2

0 € V such that Yl = ker ho satisfies [G H Yl) > 1 - € «

for I'l = [h0] cv (Fl is w*-closed since dim I‘l < oo) and for

f € EX\V C E"\I’l , there exists an element

5 € ker ho = Yl with

_ - 1 - 1
f(xe) =1, =l = g (FiT )¢, ~ aist(f,V)-e

=M . Next, by Lemma 1
1

for G2 = [xl, x2] , there exists a finite-dimensional subspace
m

Fl , such that Y2 = 7:20 ker hi

I, = [m)_, v with T,> [r]

T —
satisfies (02; _Y2) >1 - ¢ By Lemma 2 for I'2 CV and f € EX\T

2" 5

there exists an element s €Y, with f(x3) =1, ||x3|| < M . Continuing
in this way indefinitely, we obtain a sequence {xn} C E and a sequence of

subspaces {Yn} of E , such that
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/‘—n’\
(1) ([xi]i=l; yn] >l-¢, , O#x €Y , ¥ >Y (n=1,2, ...),

(2) flz,) =1, lgll=¥ (n=1,2,...).

Then, by (1), {xn} is an asymptotically monotone basic sequence [3],
[81 and, by (2), {xn} is non-shrinking (even "of type P#* " in the sense
of [15]), which completes the proof.

COROLLARY 2. If dens E < dens E* , or if E contains a subspace

E‘O isometric to a non-reflexive conjugate space B* , then E contains an

asymptotically monotone non-shrinking basic sequence.

Proof. In both cases it is well known (see, for example, [16]) that

E satisfies the condition of Theorem L.

REMARK 3, The weaker result that every non-reflexive second conjugate
space B** contains an asymptotically monotone non-shrinking basic

sequence, has been proved by PetczyAski [13],.with a different method.

COROLLARY 3. If E <8 a Banach space and V 1is a proper subspace

of E* with »r(V) > 0, then E contains a non-shrinking basic sequence

. . , . rarand 1
{xn} with partial sum operators {sn} satisfying }];i lle, I < =N
Proof. As was observed by Dieudonné (see [61), lMzll= sup |f(x)|
€
liFll=2

(x € E) 1is an equivalent norm on E , namely, |lzll=< llzll < I‘_:LV_)_ Ml
{(x € E) , and in this new norm we have rl”.”'( V) =1 . Hence, by Theorem L,

(E, |l*lll) has an asymptotically monotone non-shrinking basic sequence

{xn} , say, with ||lsn|HS 1+e, (n =1, 2, ...) , where e, >0,

lim € =0 . But then
n->°°n

3 1+€n 1+en
Ilsn(x)” = I’(V) |”Sn($)”|5 —Y'(—V)—“lx”ls RV—) ”-’C” (x €EE,n=1, 2, "-) >

whence 1lim Ilsnll < , which completes the proof.

REMARK 4. It is well known and immediate that E* contains a proper
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subspace V with r(V) > 0 if and only if E is non-reflexive. Thus
the above results constitute a sharpening of the theorem of Petczyfski
(123, [13] that every non-reflexive Banach space F contains a non-

shrinking bounded basic sequence {xn} such that f(xn) z1

(n=1, 2, ...) for some f € E* (this result was first obtained for
spaces with bases in [15]) and hence also of the classical Eberlein-Smulian
theorem that every non-reflexive space FE contains a bounded sequence

which has no weakly convergent subseguence (indeed, if a basic sequence

{xn} has a weakly convergent subsequence {xn } , then clearly
k

z, -0 ). Note that the above proof is considerably simpler than those
k .

of [12], [73]; and it avoids the use of the second conjugate space FE*#* .
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