Torsion in Mordell-Weil groups of Fermat Jacobians

PAVLOS TZERMIAS

Department of Mathematics, University of California, Berkeley, CA 94720

Received 25 July 1995; accepted in final form 17 December 1995.

Abstract

We study the torsion in the Mordell-Weil group of the Jacobian of the Fermat curve of exponent p over the cyclotomic field obtained by adjoining a primitive p-th root of 1 to Q. We show that for all (except possibly one) proper subfields of this cyclotomic field, the torsion parts of the corresponding Mordell-Weil groups are elementary abelian p-groups.

Mathematics Subject Classifications (1991): 14H25, 14G05, 11D41.
Key words: Torsion, Mordell-Weil groups, Fermat Jacobians.

1. Introduction

Let Q be the field of rational numbers and let \bar{Q} be a fixed algebraic closure of Q. Also let p be a fixed prime, where $p \geqslant 5$ and $p \neq 7$. The Fermat curve F_{p} is the projective nonsingular curve (over Q) given in projective coordinates by

$$
F_{p}=\left\{(X, Y, Z) \epsilon P^{2}(Q): X^{p}+Y^{p}+Z^{p}=0\right\} .
$$

Let $K=Q(\zeta)$, where ζ is a fixed primitive p-th root of 1 in \bar{Q}. Let K^{+}denote the maximal real subfield of K.

There are $3 p$ points on F_{p} for which $X Y Z=0$, namely

$$
a_{j}=\left(0, \epsilon \zeta^{j}, 1\right), \quad b_{j}=\left(\epsilon \zeta^{j}, 0,1\right), \quad c_{j}=\left(\epsilon \zeta^{j}, 1,0\right),
$$

where ϵ is a primitive $2 p$ th root of 1 such that $\epsilon^{2}=\zeta$ and $j=0,1, \ldots, p-1$. These points are all K-rational points and will be referred to as 'points at infinity' on F_{p}.

Also let J_{p} denote the Jacobian of F_{p}. The well-known Mordell-Weil theorem asserts that the group $J_{p}(K)$ of K-rational points on J_{p} is a finitely generated abelian group, hence it has a free part and a torsion part. There are some known bounds for the rank of the free part (see [3], [5], [10]). In addition, it follows easily from results in the literature that the torsion subgroup is a p-group (see Proposition 2.2 below). However, little is known about the precise structure of the torsion subgroup.

In this paper, we will prove some results on the torsion part $J_{p}(K)_{\text {torsion }}$ of $J_{p}(K)$. We prove that the group $p J_{p}(K)_{\text {torsion }}$ is contained in a certain group G of order p^{3}, which we explicitly describe. This allows us to show that for all proper subfields L of K different than K^{+}, the group $p J_{p}(L)_{\text {torsion }}$ is the zero group.

2. Background

In this section, we present some of the well-known facts about J_{p}.
We note the following automorphisms of F_{p} :

$$
\begin{aligned}
& A:(X, Y, Z) \mapsto(\zeta X, Y, Z) \\
& B:(X, Y, Z) \mapsto(X, \zeta Y, Z) \\
& \rho:(X, Y, Z) \mapsto(Y, X, Z)
\end{aligned}
$$

The automorphism B induces an endomorphism of the Jacobian J_{p} of F_{p}. We will denote this endomorphism by B as well, without fear of confusion. We also consider the elements $\pi=B-1$ and $\pi^{\prime}=A-1$ of the endomorphism ring of J_{p}.

Now let s be an integer, where $1 \leqslant s \leqslant p-2$. Consider the automorphism $g_{s}=A B^{-s}$ of F_{p}. We then consider the quotient of F_{p} by the action of the finite group generated by g_{s}. We obtain the curve $F_{s}=F_{p} /\left\langle g_{s}\right\rangle$ and call it a cyclic Fermat quotient.

Let $f_{s}: F_{p} \rightarrow F_{s}$ be the natural morphism.
The curve F_{s} has an affine equation $v^{p}=u^{s}(1-u)$ and the map f_{s} is given in affine coorinates by:

$$
(x, y, 1) \mapsto(u, v, 1),
$$

where $u=x^{p}$ and $v=x^{s} y$.
The curve F_{s} has an endomorphism $(u, v, 1) \mapsto(u, \zeta v, 1)$, which we shall also call B. It is clear that B commutes with f_{s}.

Let J_{s} denote the Jacobian of F_{s}. We have the endomorphism $\pi=B-1$ of J_{s}.
The map f_{s} induces a morphism (also denoted by f_{s})

$$
f_{s}: J_{p} \rightarrow J_{s}
$$

and its dual

$$
f_{s}^{*}: J_{s} \rightarrow J_{p} .
$$

Now consider the maps

$$
\begin{aligned}
& f=\prod_{s=1}^{p-2} f_{s}: J_{p} \rightarrow \prod_{s=1}^{p-2} J_{s}, \\
& f^{*}=\sum_{s=1}^{p-2} f_{s}^{*}: \prod_{s=1}^{p-2} J_{s} \rightarrow J_{p} .
\end{aligned}
$$

It can be proved (see [7]) that $f^{*} f=p$ on J_{p}. One simply proves that the two maps have the same effect on the differentials of the first kind on F_{p}. Therefore f is a Q-isogeny of J_{p} to a product of cyclic Fermat quotients.

The following is an immediate consequence of what has been said above:
LEMMA 2.1. For all s, the maps $f_{s}, f_{s}^{*}, f, f^{*}$ all commute with π.
Let l be a prime, such that $l \neq p$. Since K is unramified above l, it follows from Coleman's work (see Proposition 10 and Corollary 13.1 in [1]) that there are no l-torsion points on $J_{s}(K)$. This fact, combined with results of Greenberg (see [4]) and Kurihara (see [6]), shows that the group $J_{s}(K)_{\text {torsion }}$ equals the kernel of the isogeny π^{3} of J_{s}.

Now, since f is a Q - isogeny of J_{p} onto the product of the J_{s} 's and $\operatorname{Ker}(f)$ consists of points of order p, it immediately follows that:

PROPOSITION 2.2. The group $J_{p}(K)_{\text {torsion }}$ is a p-group.

3. Obtaining some information on $p J_{p}(K)_{\text {torsion }}$

We can now prove the following:
THEOREM 3.1. The group $J_{p}(K)_{\text {torsion }}$ is killed by $p \pi^{2}$.
Proof. Let T be in $J_{p}(K)_{\text {torsion }}$. Then for $s=1,2, \ldots, p-2$, we have that $f_{s}(T) \in J_{s}\left[\pi^{3}\right]$. Then Lemma 2.1 implies that $f_{s}\left(\pi^{2} T\right) \in J_{s}[\pi]$. But, by [5], $f_{s}^{*}\left(J_{s}[\pi]\right)=0$. Therefore, for all s,

$$
f_{s}^{*}\left(f_{s}\left(\pi^{2} T\right)\right)=0,
$$

hence

$$
p \pi^{2} T=\sum_{s=1}^{p-2} f_{s}^{*}\left(f_{s}\left(\pi^{2} T\right)\right)=0
$$

which proves the theorem.
We are now able to obtain some information on $p J_{p}(K)_{\text {torsion }}$. We will need an important result of Rohrlich (see Corollary 1 in [11]), which we restate here for the sake of convenience:

PROPOSITION 3.2 (Rohrlich). A divisor of degree 0 supported at the points at infinity on F_{p} is principal if and only if, modulo p, it is in the span of

$$
\begin{aligned}
& \sum_{j=0}^{p-1} a_{j}, \quad \sum_{j=0}^{p-1} b_{j}, \quad \sum_{j=0}^{p-1} c_{j}, \\
& \sum_{j=0}^{p-1} j\left(a_{j}+b_{j}\right), \quad \sum_{j=0}^{p-1} j\left(b_{j}+c_{j}\right), \quad \sum_{j=0}^{p-1} j(j+1)\left(a_{j}+b_{j}+c_{j}\right) .
\end{aligned}
$$

We now have:
LEMMA 3.3. The Kernel of π on J_{p} equals the set of divisor classes of degree 0 that can be represented by a divisor supported only on the points b_{j}.

Proof. Clearly any divisor class of degree 0 represented by a divisor supported only on the b_{j} 's is in the kernel of π. Any such divisor class is of order p. The only principal such divisors are, modulo p, in the span of $b_{0}+b_{1}+\cdots+b_{p-1}$, by Proposition 3.2. Therefore, the cardinality of the set of these divisor classes of degree 0 equals p^{p-2}.

On the other hand, one can show (see [4]) that $\operatorname{Ker}\left(\pi^{p-1}\right)=\operatorname{Ker}(p)$, therefore $\operatorname{Ker}(\pi)$ has cardinality p^{p-2}, which proves the lemma.

Now, for a divisor D, let $[D]$ denote the class of D. Then we have the following:
PROPOSITION 3.4. If a divisor class of degree 0 on J_{p} is invariant under both A and B, then it is a multiple of

$$
\left[\sum_{j=0}^{p-1} j\left(b_{j}-b_{0}\right)\right] .
$$

Proof. By Lemma 3.3, we can choose a representative D supported only on the points b_{j}, say

$$
D=\sum_{j=1}^{p-1} x_{j} b_{j}-\left(\sum_{j=1}^{p-1} x_{j}\right) b_{0} .
$$

Now since $\pi^{\prime} D$ is principal, and since $A b_{j}=b_{j+1}$, for $0 \leqslant j \leqslant p-2$ and $A b_{p-1}=b_{0}$, we get that the divisor

$$
\left(x_{p-1}+\left(\sum_{j=1}^{p-1} x_{j}\right)\right) b_{0}-\left(x_{1}+\left(\sum_{j=1}^{p-1} x_{j}\right)\right) b_{1}+\sum_{j=2}^{p-1}\left(x_{j-1}-x_{j}\right) b_{j}
$$

is also principal.
Since the only principal divisors supported on the b_{j} 's are, modulo p, the multiples of $b_{0}+b_{1}+\cdots+b_{p-1}$, there exists an integer k such that, modulo p, we have

$$
x_{j}=x_{1}+(j-1) k,
$$

for $j=2,3, \ldots, p-1$. Hence, modulo p, we have

$$
D=\sum_{j=0}^{p-1}\left(x_{1}+(j-1) k\right) b_{j}=\sum_{j=0}^{p-1}\left(x_{1}-k+j k\right) b_{j} .
$$

But

$$
\sum_{j=0}^{p-1}\left(x_{1}-k\right) b_{j}
$$

is principal, therefore the class of D is a multiple of

$$
\left[\sum_{j=0}^{p-1} j\left(b_{j}-b_{0}\right)\right],
$$

which proves the proposition.
We can now prove:

THEOREM 3.5.

$$
p \pi J_{p}(K)_{\text {torsion }} \subseteq\left\langle\left[\sum_{j=0}^{p-1} j\left(b_{j}-b_{0}\right)\right]\right\rangle
$$

Proof. Let $T \epsilon J_{p}(K)_{\text {torsion. }}$. Then, for all s, we have $\pi f_{s}(\pi T) \epsilon J_{s}[\pi]$. Therefore, as before, we get

$$
0=f_{s}^{*}\left(\pi f_{s}(\pi T)\right)=\pi \sum_{j=0}^{p-1}\left(A B^{-s}\right)^{j}(\pi T)
$$

Therefore the divisor class

$$
D_{s}=\sum_{j=0}^{p-1}\left(A B^{-s}\right)^{j}(\pi T)
$$

is invariant under B. It is evidently also invariant under $A B^{-s}$, therefore it is invariant under both A and B.

Therefore, by Proposition 3.4, we get

$$
D_{s} \epsilon\left\langle\left[\sum_{j=0}^{p-1} j\left(b_{j}-b_{0}\right)\right]\right\rangle .
$$

This is true for all s, therefore we obtain that

$$
p \pi T=\sum_{s=1}^{p-2} f_{s}^{*}\left(f_{s}(\pi T)\right)=\sum_{s=1}^{p-2} D_{s}
$$

is also also a multiple of the divisor class of Proposition 3.4, which proves the theorem.

4. Bounding $p J_{p}(K)_{\text {torsion }}$ effectively

Now we will prove the following:
PROPOSITION 4.1.

$$
p J_{p}(K)_{\text {torsion }} \subseteq\left\langle\left[\sum_{j=0}^{p-1} j(j+1)\left(a_{j}-a_{0}\right)\right], \quad \operatorname{Ker}(\pi)\right\rangle
$$

Proof. In view of Theorem 3.5, it suffices to show that

$$
\pi\left[\sum_{j=0}^{p-1} j(j+1)\left(a_{j}-a_{0}\right)\right] \in\left\langle\left[\sum_{j=0}^{p-1} j\left(b_{j}-b_{0}\right)\right]\right\rangle .
$$

We will use Proposition 3.2 again. We have the following equalities, modulo p :

$$
\begin{aligned}
\pi \sum_{j=0}^{p-1} j(j+1)\left(a_{j}-a_{0}\right) & =\sum_{j=1}^{p-2} j(j+1) a_{j+1}-\sum_{j=1}^{p-2} j(j+1) a_{j} \\
& =\sum_{j=2}^{p-1} j(j-1) a_{j}-\sum_{j=1}^{p-2} j(j+1) a_{j} \\
& =(p-1)(p-2) a_{p-1}-2 a_{1}-2 \sum_{j=2}^{p-2} j a_{j} \\
& =-2 \sum_{j=0}^{p-1} j a_{j} \\
& =-2 \sum_{j=0}^{p-1} j\left(a_{j}-a_{0}\right) .
\end{aligned}
$$

By Proposition 3.2, we have that the divisor

$$
\sum_{j=0}^{p-1} j\left(a_{j}-a_{0}+b_{j}-b_{0}\right)
$$

is principal, which proves the proposition.
We now come to an effective bound on the cardinality of $p J_{p}(K)_{\text {torsion }}$.
Let

$$
D_{1}=\left[\sum_{j=0}^{p-1} j(j+1)\left(a_{j}-a_{0}\right)\right],
$$

$$
\begin{aligned}
& D_{2}=\left[\sum_{j=0}^{p-1} j(j+1)\left(b_{j}-b_{0}\right)\right], \\
& D_{3}=\left[\sum_{j=0}^{p-1} j\left(b_{j}-b_{0}\right)\right] .
\end{aligned}
$$

These divisor classes are linearly independent over $Z / p Z$, as one can easily show using Proposition 3.2.

Consider the group $G=\left\langle D_{1}, D_{2}, D_{3}\right\rangle$ generated by the above divisor classes. It has order p^{3} and:

THEOREM 4.2. We have:

$$
p J_{p}(K)_{\text {torsion }} \subseteq G .
$$

Proof. Recall the automorphism ρ of J_{p}, as defined in Section 2. Since $p J_{p}(K)_{\text {torsion }}$ is invariant under ρ, we get, by Proposition 4.1, that

$$
p J_{p}(K)_{\text {torsion }} \subseteq\left\langle D_{1}, \operatorname{Ker}(\pi)\right\rangle^{\rho}=\left\langle D_{2}, \operatorname{Ker}\left(\pi^{\prime}\right)\right\rangle .
$$

So if $D \in J_{p}(K)_{\text {torsion }}$, then

$$
p D=l D_{2}+T,
$$

where l is an integer and $\pi^{\prime} T=0$.
Multiply both sides of the above equality by π to get

$$
p \pi D=\pi T
$$

By Theorem 3.5, we get that $\pi T \epsilon\left\langle D_{3}\right\rangle$, therefore

$$
T \epsilon\left\langle D_{1}, \operatorname{Ker}(\pi)\right\rangle .
$$

But $\pi^{\prime} T=0$, so, by proposition 3.4, we get

$$
T \epsilon\left\langle D_{1}, D_{3}\right\rangle
$$

therefore

$$
p D \epsilon\left\langle D_{1}, D_{2}, D_{3}\right\rangle,
$$

which proves the theorem.

5. Mordell-Weil groups over subfields of K

Now we will compute the action of $\operatorname{Gal}(\bar{Q} / Q)$ on the divisor classes D_{1}, D_{2}, D_{3} to obtain some results on the Mordell-Weil groups of J_{p} over subfields of K.

Let σ be an automorphism of \bar{Q} over Q. Then $\sigma(\epsilon)=\epsilon^{k}$, for some integer k relatively prime to $2 p$. Let $k=2 m+1$, for some integer m. Then $\sigma(\zeta)=\zeta^{k}$.

Then $\sigma\left(a_{j}\right)=a_{k j+m}$ and $\sigma\left(b_{j}\right)=b_{k j+m}$, for all $j=0,1, \ldots, p-1$.
Then, modulo p, we have:

$$
\begin{aligned}
k^{2} \sigma\left(\sum_{j=0}^{p-1} j(j+1)\left(a_{j}-a_{0}\right)\right) & =\sum_{j=0}^{p-1} k j(k j+k)\left(a_{k j+m}-a_{m}\right) \\
& =\sum_{j=0}^{p-1} k j(k j+k) a_{k j+m} \\
& =\sum_{l=0}^{p-1}(l-m)(l+m+1) a_{l} \\
& =\sum_{l=0}^{p-1} l(l+1) a_{l}-m(m+1) \sum_{l=0}^{p-1} a_{l}
\end{aligned}
$$

Therefore, again by Proposition 3.2, we get

$$
k^{2} \sigma\left(D_{1}\right)=D_{1}
$$

Arguing in a similar way, we obtain:

$$
\begin{aligned}
& k^{2} \sigma\left(D_{2}\right)=D_{2} \\
& k \sigma\left(D_{3}\right)=D_{3}
\end{aligned}
$$

These relations show immediately that D_{3} is not defined over any proper subfield of K and also that D_{1} and D_{2} are both defined over K^{+}, but none of them is defined over any proper subfield L of K, where $L \neq K^{+}$. Therefore, we obtain the following theorems, as applications of Theorem 4.2:
THEOREM 5.1.

$$
p J_{p}\left(K^{+}\right)_{\text {torsion }} \subseteq\left\langle D_{1}, D_{2}\right\rangle
$$

THEOREM 5.2. Let L be any proper subfield of $K, L \neq K^{+}$. Then

$$
p J_{p}(L)_{\text {torsion }}=0
$$

A final remark. It is known that (see [8], [12]) the automorphism group of F_{p} is the semidirect product of S_{3} and $Z / p Z \times Z / p Z$. It turns out that the group G is invariant under the whole automorphism group G_{p} of F_{p}. It follows that if we
consider the elements of the group ring $Z\left[G_{p}\right]$ as endomorphisms of J_{p}, then G is invariant under the action of $Z\left[G_{p}\right]$. A natural question that arises is whether there exists a K-endomorphism of J_{p} that does not preserve G. This would imply, in particular, that the bound on the cardinality of $p J_{p}(K)_{\text {torsion }}$ (given by theorem 4.2) can be improved.

Lim (see [9]) has produced an example of a K-endomorphism of J_{p} that is not induced by $Z\left[G_{p}\right]$. To the author's disappointment, it turns out that this endomorphism annihilates G.

Acknowledgments

This paper is part of my doctoral dissertation at Berkeley. I am indebted to Robert Coleman for his constant support and guidance throughout the course of this work and to Hendrik Lenstra for motivating discussions. I also wish to thank David Rohrlich for his inspiring work on the Fermat curves, Ralph Greenberg for informing me of Kurihara's result (see [6]) and the referee for valuable suggestions regarding this paper.

References

1. Coleman, R. F.: Torsion points on Abelian etale coverings of $P^{1}-\{0,1, \infty\}$, Transactions of the AMS, No. 1 (1989), 185-208.
2. Faddeev, D. K.: On the divisor class groups of some algebraic curves, Soviet Math. Dokl. 2 (1961), 67-69.
3. Faddeev, D. K.: Invariants of divisor classes for the curves $x^{k}(1-x)=y^{l}$ in an l-adic cyclotomic field (in Russian), Trudy Math. Inst. Steklov 64 (1961), 284-293.
4. Greenberg, R.: On the Jacobian variety of some algebraic curves, Compositio Math. 42 (1981), 345-359.
5. Gross, B. and Rohrlich, D.: Some results on the Mordell-Weil group of the Jacobian of the Fermat curve, Invent. Math. 44 (1978), 201-224.
6. Kurihara, M.: Some remarks on conjectures about cyclotomic fields and K-groups of Z, Compositio Math. 81 (1992), 223-236.
7. Lang, S.: Introduction to algebraic and abelian functions, GTM 89, Springer-Verlag, New York-Heidelberg-Berlin.
8. Leopoldt, H. W.: Über die Automorphismengruppe des Fermatkörpers, Journal of Number Theory (to appear).
9. Lim, C. H.: Endomorphisms of Jacobian varieties of Fermat curves, Compositio Math. 80 (1991), 85-110.
10. McCallum, W. G.: The Arithmetic of Fermat curves, Math. Ann. 294 (1992), 503-511.
11. Rohrlich, D.: Points at infinity on the Fermat curves, Invent. Math. 39 (1977), 95-127.
12. Tzermias, P.: The group of automorphisms of the Fermat curve, Journal of Number Theory 53 (1995), 173-178.
