Torsion in Mordell-Weil groups of Fermat Jacobians

PAVLOS TZERMIAS

Department of Mathematics, University of California, Berkeley, CA 94720

Received 25 July 1995; accepted in final form 17 December 1995.

Abstract. We study the torsion in the Mordell-Weil group of the Jacobian of the Fermat curve of exponent p over the cyclotomic field obtained by adjoining a primitive p-th root of 1 to Q. We show that for all (except possibly one) proper subfields of this cyclotomic field, the torsion parts of the corresponding Mordell-Weil groups are elementary abelian p-groups.

Mathematics Subject Classifications (1991): 14H25, 14G05, 11D41.

Key words: Torsion, Mordell-Weil groups, Fermat Jacobians.

1. Introduction

Let Q be the field of rational numbers and let \overline{Q} be a fixed algebraic closure of Q. Also let p be a fixed prime, where $p \ge 5$ and $p \ne 7$. The Fermat curve F_p is the projective nonsingular curve (over Q) given in projective coordinates by

$$F_p = \{ (X, Y, Z) \ \epsilon \ P^2(Q) \ : X^p + Y^p + Z^p = 0 \},\$$

Let $K = Q(\zeta)$, where ζ is a fixed primitive *p*-th root of 1 in \overline{Q} . Let K^+ denote the maximal real subfield of K.

There are 3p points on F_p for which XYZ = 0, namely

$$a_{j} = (0, \epsilon \zeta^{j}, 1), \qquad b_{j} = (\epsilon \zeta^{j}, 0, 1), \qquad c_{j} = (\epsilon \zeta^{j}, 1, 0),$$

where ϵ is a primitive 2*p*th root of 1 such that $\epsilon^2 = \zeta$ and j = 0, 1, ..., p-1. These points are all *K*-rational points and will be referred to as 'points at infinity' on F_p .

Also let J_p denote the Jacobian of F_p . The well-known Mordell–Weil theorem asserts that the group $J_p(K)$ of K-rational points on J_p is a finitely generated abelian group, hence it has a free part and a torsion part. There are some known bounds for the rank of the free part (see [3], [5], [10]). In addition, it follows easily from results in the literature that the torsion subgroup is a p-group (see Proposition 2.2 below). However, little is known about the precise structure of the torsion subgroup.

In this paper, we will prove some results on the torsion part $J_p(K)_{\text{torsion}}$ of $J_p(K)$. We prove that the group $pJ_p(K)_{\text{torsion}}$ is contained in a certain group G of order p^3 , which we explicitly describe. This allows us to show that for all proper subfields L of K different than K^+ , the group $pJ_p(L)_{\text{torsion}}$ is the zero group.

2. Background

In this section, we present some of the well-known facts about J_p . We note the following automorphisms of F_p :

 $A: (X, Y, Z) \mapsto (\zeta X, Y, Z),$ $B: (X, Y, Z) \mapsto (X, \zeta Y, Z),$ $\rho: (X, Y, Z) \mapsto (Y, X, Z).$

The automorphism B induces an endomorphism of the Jacobian J_p of F_p . We will denote this endomorphism by B as well, without fear of confusion. We also consider the elements $\pi = B - 1$ and $\pi' = A - 1$ of the endomorphism ring of J_p .

Now let s be an integer, where $1 \leq s \leq p-2$. Consider the automorphism $g_s = AB^{-s}$ of F_p . We then consider the quotient of F_p by the action of the finite group generated by g_s . We obtain the curve $F_s = F_p/\langle g_s \rangle$ and call it a cyclic Fermat quotient.

Let $f_s: F_p \to F_s$ be the natural morphism.

The curve F_s has an affine equation $v^p = u^s(1-u)$ and the map f_s is given in affine coordinates by:

 $(x, y, 1) \mapsto (u, v, 1),$

where $u = x^p$ and $v = x^s y$.

The curve F_s has an endomorphism $(u, v, 1) \mapsto (u, \zeta v, 1)$, which we shall also call B. It is clear that B commutes with f_s .

Let J_s denote the Jacobian of F_s . We have the endomorphism $\pi = B - 1$ of J_s . The map f_s induces a morphism (also denoted by f_s)

 $f_s\colon J_p\to J_s$

and its dual

$$f_s^* \colon J_s \to J_p.$$

Now consider the maps

$$f = \prod_{s=1}^{p-2} f_s \colon J_p \to \prod_{s=1}^{p-2} J_s,$$
$$f^* = \sum_{s=1}^{p-2} f_s^* \colon \prod_{s=1}^{p-2} J_s \to J_p.$$

It can be proved (see [7]) that $f^*f = p$ on J_p . One simply proves that the two maps have the same effect on the differentials of the first kind on F_p . Therefore f is a Q-isogeny of J_p to a product of cyclic Fermat quotients.

The following is an immediate consequence of what has been said above:

LEMMA 2.1. For all s, the maps f_s , f_s^* , f, f^* all commute with π .

Let *l* be a prime, such that $l \neq p$. Since *K* is unramified above *l*, it follows from Coleman's work (see Proposition 10 and Corollary 13.1 in [1]) that there are no *l*-torsion points on $J_s(K)$. This fact, combined with results of Greenberg (see [4]) and Kurihara (see [6]), shows that the group $J_s(K)_{\text{torsion}}$ equals the kernel of the isogeny π^3 of J_s .

Now, since f is a Q- isogeny of J_p onto the product of the J_s 's and Ker(f) consists of points of order p, it immediately follows that:

PROPOSITION 2.2. The group $J_p(K)_{\text{torsion}}$ is a p-group.

3. Obtaining some information on $pJ_p(K)_{\text{torsion}}$

We can now prove the following:

THEOREM 3.1. The group $J_p(K)_{\text{torsion}}$ is killed by $p\pi^2$.

Proof. Let T be in $J_p(K)_{\text{torsion}}$. Then for s = 1, 2, ..., p-2, we have that $f_s(T) \in J_s[\pi^3]$. Then Lemma 2.1 implies that $f_s(\pi^2 T) \in J_s[\pi]$. But, by [5], $f_s^*(J_s[\pi]) = 0$. Therefore, for all s,

$$f_s^*(f_s(\pi^2 T)) = 0,$$

hence

$$p\pi^{2}T = \sum_{s=1}^{p-2} f_{s}^{*}(f_{s}(\pi^{2}T)) = 0,$$

which proves the theorem.

We are now able to obtain some information on $pJ_p(K)_{\text{torsion}}$. We will need an important result of Rohrlich (see Corollary 1 in [11]), which we restate here for the sake of convenience:

PROPOSITION 3.2 (Rohrlich). A divisor of degree 0 supported at the points at infinity on F_p is principal if and only if, modulo p, it is in the span of

$$\sum_{j=0}^{p-1} a_j, \qquad \sum_{j=0}^{p-1} b_j, \qquad \sum_{j=0}^{p-1} c_j,$$
$$\sum_{j=0}^{p-1} j(a_j + b_j), \qquad \sum_{j=0}^{p-1} j(b_j + c_j), \qquad \sum_{j=0}^{p-1} j(j+1)(a_j + b_j + c_j).$$

We now have:

LEMMA 3.3. The Kernel of π on J_p equals the set of divisor classes of degree 0 that can be represented by a divisor supported only on the points b_j .

Proof. Clearly any divisor class of degree 0 represented by a divisor supported only on the b_j 's is in the kernel of π . Any such divisor class is of order p. The only principal such divisors are, modulo p, in the span of $b_0 + b_1 + \cdots + b_{p-1}$, by Proposition 3.2. Therefore, the cardinality of the set of these divisor classes of degree 0 equals p^{p-2} .

On the other hand, one can show (see [4]) that $\text{Ker}(\pi^{p-1}) = \text{Ker}(p)$, therefore $\text{Ker}(\pi)$ has cardinality p^{p-2} , which proves the lemma.

Now, for a divisor D, let [D] denote the class of D. Then we have the following:

PROPOSITION 3.4. If a divisor class of degree 0 on J_p is invariant under both A and B, then it is a multiple of

$$\left[\sum_{j=0}^{p-1} j(b_j - b_0)\right] \,.$$

Proof. By Lemma 3.3, we can choose a representative D supported only on the points b_i , say

$$D = \sum_{j=1}^{p-1} x_j b_j - \left(\sum_{j=1}^{p-1} x_j\right) b_0.$$

Now since $\pi' D$ is principal, and since $Ab_j = b_{j+1}$, for $0 \leq j \leq p-2$ and $Ab_{p-1} = b_0$, we get that the divisor

$$\left(x_{p-1} + \left(\sum_{j=1}^{p-1} x_j\right)\right) b_0 - \left(x_1 + \left(\sum_{j=1}^{p-1} x_j\right)\right) b_1 + \sum_{j=2}^{p-1} (x_{j-1} - x_j) b_j$$

is also principal.

Since the only principal divisors supported on the b_j 's are, modulo p, the multiples of $b_0 + b_1 + \cdots + b_{p-1}$, there exists an integer k such that, modulo p, we have

$$x_j = x_1 + (j-1)k,$$

for $j = 2, 3, \ldots, p - 1$. Hence, modulo p, we have

$$D = \sum_{j=0}^{p-1} (x_1 + (j-1)k)b_j = \sum_{j=0}^{p-1} (x_1 - k + jk)b_j.$$

But

$$\sum_{j=0}^{p-1} (x_1 - k) b_j$$

is principal, therefore the class of D is a multiple of

$$\left[\sum_{j=0}^{p-1} j(b_j - b_0)\right],\,$$

which proves the proposition.

We can now prove:

THEOREM 3.5.

$$p\pi J_p(K)_{\text{torsion}} \subseteq \left\langle \left[\sum_{j=0}^{p-1} j(b_j - b_0) \right] \right\rangle.$$

Proof. Let $T \in J_p(K)_{\text{torsion}}$. Then, for all s, we have $\pi f_s(\pi T) \in J_s[\pi]$. Therefore, as before, we get

$$0 = f_s^*(\pi f_s(\pi T)) = \pi \sum_{j=0}^{p-1} (AB^{-s})^j(\pi T).$$

Therefore the divisor class

$$D_s = \sum_{j=0}^{p-1} (AB^{-s})^j (\pi T)$$

is invariant under B. It is evidently also invariant under AB^{-s} , therefore it is invariant under both A and B.

Therefore, by Proposition 3.4, we get

$$D_s \epsilon \left\langle \left[\sum_{j=0}^{p-1} j(b_j - b_0) \right] \right\rangle.$$

This is true for all s, therefore we obtain that

$$p\pi T = \sum_{s=1}^{p-2} f_s^*(f_s(\pi T)) = \sum_{s=1}^{p-2} D_s$$

is also also a multiple of the divisor class of Proposition 3.4, which proves the theorem.

4. Bounding $pJ_p(K)_{\text{torsion}}$ effectively

Now we will prove the following:

PROPOSITION 4.1.

$$pJ_p(K)_{\text{torsion}} \subseteq \left\langle \left[\sum_{j=0}^{p-1} j(j+1)(a_j-a_0) \right], \quad \text{Ker}(\pi) \right\rangle.$$

Proof. In view of Theorem 3.5, it suffices to show that

$$\pi\left[\sum_{j=0}^{p-1} j(j+1)(a_j-a_0)\right] \in \left\langle \left[\sum_{j=0}^{p-1} j(b_j-b_0)\right] \right\rangle.$$

We will use Proposition 3.2 again. We have the following equalities, *modulo* p :

_

$$\pi \sum_{j=0}^{p-1} j(j+1)(a_j - a_0) = \sum_{j=1}^{p-2} j(j+1)a_{j+1} - \sum_{j=1}^{p-2} j(j+1)a_j$$
$$= \sum_{j=2}^{p-1} j(j-1)a_j - \sum_{j=1}^{p-2} j(j+1)a_j$$
$$= (p-1)(p-2)a_{p-1} - 2a_1 - 2\sum_{j=2}^{p-2} ja_j$$
$$= -2\sum_{j=0}^{p-1} ja_j$$
$$= -2\sum_{j=0}^{p-1} j(a_j - a_0).$$

By Proposition 3.2, we have that the divisor

$$\sum_{j=0}^{p-1} j(a_j - a_0 + b_j - b_0)$$

is principal, which proves the proposition.

We now come to an effective bound on the cardinality of $pJ_p(K)_{\text{torsion}}$. Let

$$D_1 = \left[\sum_{j=0}^{p-1} j(j+1)(a_j - a_0)\right],$$

$$D_2 = \left[\sum_{j=0}^{p-1} j(j+1)(b_j - b_0)\right],$$
$$D_3 = \left[\sum_{j=0}^{p-1} j(b_j - b_0)\right].$$

These divisor classes are linearly independent over Z/pZ, as one can easily show using Proposition 3.2.

Consider the group $G = \langle D_1, D_2, D_3 \rangle$ generated by the above divisor classes. It has order p^3 and:

THEOREM 4.2. We have:

 $pJ_p(K)_{\text{torsion}} \subseteq G.$

Proof. Recall the automorphism ρ of J_p , as defined in Section 2. Since $pJ_p(K)_{\text{torsion}}$ is invariant under ρ , we get, by Proposition 4.1, that

$$pJ_p(K)_{\text{torsion}} \subseteq \langle D_1, \operatorname{Ker}(\pi) \rangle^{\rho} = \langle D_2, \operatorname{Ker}(\pi) \rangle.$$

So if $D \in J_p(K)_{\text{torsion}}$, then

 $pD = lD_2 + T,$

where *l* is an integer and $\pi' T = 0$.

Multiply both sides of the above equality by π to get

 $p\pi D = \pi T.$

By Theorem 3.5, we get that $\pi T \in \langle D_3 \rangle$, therefore

 $T \in \langle D_1, \operatorname{Ker}(\pi) \rangle.$

But $\pi' T = 0$, so, by proposition 3.4, we get

 $T \epsilon \langle D_1, D_3 \rangle,$

therefore

 $pD \ \epsilon \ \langle D_1, \ D_2, \ D_3 \rangle,$

which proves the theorem.

5. Mordell–Weil groups over subfields of K

Now we will compute the action of $\text{Gal}(\overline{Q}/Q)$ on the divisor classes D_1 , D_2 , D_3 to obtain some results on the Mordell–Weil groups of J_p over subfields of K.

Let σ be an automorphism of \overline{Q} over Q. Then $\sigma(\epsilon) = \epsilon^k$, for some integer k relatively prime to 2p. Let k = 2m + 1, for some integer m. Then $\sigma(\zeta) = \zeta^k$.

Then $\sigma(a_j) = a_{kj+m}$ and $\sigma(b_j) = b_{kj+m}$, for all j = 0, 1, ..., p-1. Then, modulo p, we have:

$$k^{2}\sigma\left(\sum_{j=0}^{p-1} j(j+1)(a_{j}-a_{0})\right) = \sum_{j=0}^{p-1} kj(kj+k)(a_{kj+m}-a_{m})$$
$$= \sum_{j=0}^{p-1} kj(kj+k)a_{kj+m}$$
$$= \sum_{l=0}^{p-1} (l-m)(l+m+1)a_{l}$$
$$= \sum_{l=0}^{p-1} l(l+1)a_{l} - m(m+1)\sum_{l=0}^{p-1} a_{l}.$$

Therefore, again by Proposition 3.2, we get

$$k^2\sigma(D_1) = D_1.$$

Arguing in a similar way, we obtain:

$$k^2 \sigma(D_2) = D_2,$$

$$k \sigma(D_3) = D_3.$$

These relations show immediately that D_3 is not defined over any proper subfield of K and also that D_1 and D_2 are both defined over K^+ , but none of them is defined over any proper subfield L of K, where $L \neq K^+$. Therefore, we obtain the following theorems, as applications of Theorem 4.2:

THEOREM 5.1.

$$pJ_p(K^+)_{\text{torsion}} \subseteq \langle D_1, D_2 \rangle.$$

THEOREM 5.2. Let L be any proper subfield of K, $L \neq K^+$. Then

 $pJ_p(L)_{\text{torsion}} = 0.$

A final remark. It is known that (see [8], [12]) the automorphism group of F_p is the semidirect product of S_3 and $Z/pZ \times Z/pZ$. It turns out that the group G is invariant under the whole automorphism group G_p of F_p . It follows that if we

consider the elements of the group ring $Z[G_p]$ as endomorphisms of J_p , then G is invariant under the action of $Z[G_p]$. A natural question that arises is whether there exists a K-endomorphism of J_p that does not preserve G. This would imply, in particular, that the bound on the cardinality of $pJ_p(K)_{\text{torsion}}$ (given by theorem 4.2) can be improved.

Lim (see [9]) has produced an example of a K-endomorphism of J_p that is not induced by $Z[G_p]$. To the author's disappointment, it turns out that this endomorphism annihilates G.

Acknowledgments

This paper is part of my doctoral dissertation at Berkeley. I am indebted to Robert Coleman for his constant support and guidance throughout the course of this work and to Hendrik Lenstra for motivating discussions. I also wish to thank David Rohrlich for his inspiring work on the Fermat curves, Ralph Greenberg for informing me of Kurihara's result (see [6]) and the referee for valuable suggestions regarding this paper.

References

- Coleman, R. F.: Torsion points on Abelian etale coverings of P¹ − {0, 1, ∞}, Transactions of the AMS, No. 1 (1989), 185–208.
- 2. Faddeev, D. K.: On the divisor class groups of some algebraic curves, Soviet Math. Dokl. 2 (1961), 67–69.
- 3. Faddeev, D. K.: *Invariants of divisor classes for the curves* $x^k(1-x) = y^l$ *in an l-adic cyclotomic field* (in Russian), Trudy Math. Inst. Steklov 64 (1961), 284–293.
- 4. Greenberg, R.: On the Jacobian variety of some algebraic curves, Compositio Math. 42 (1981), 345–359.
- 5. Gross, B. and Rohrlich, D.: Some results on the Mordell-Weil group of the Jacobian of the Fermat curve, Invent. Math. 44 (1978), 201–224.
- Kurihara, M.: Some remarks on conjectures about cyclotomic fields and K-groups of Z, Compositio Math. 81 (1992), 223–236.
- 7. Lang, S.: Introduction to algebraic and abelian functions, GTM 89, Springer-Verlag, New York-Heidelberg-Berlin.
- 8. Leopoldt, H. W.: Über die Automorphismengruppe des Fermatkörpers, Journal of Number Theory (to appear).
- 9. Lim, C. H.: Endomorphisms of Jacobian varieties of Fermat curves, Compositio Math. 80 (1991), 85–110.
- 10. McCallum, W. G.: The Arithmetic of Fermat curves, Math. Ann. 294 (1992), 503-511.
- 11. Rohrlich, D.: Points at infinity on the Fermat curves, Invent. Math. 39 (1977), 95-127.
- 12. Tzermias, P.: *The group of automorphisms of the Fermat curve*, Journal of Number Theory 53 (1995), 173–178.