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LEFT CAUCHY INTEGRAL BASES IN LINEAR 
TOPOLOGICAL SPACES 

BY 

JAMES A. DYER 

1. Introduction. The purpose of this paper is to consider a representation for the 
elements of a linear topological space in the form of a <r-integral over a linearly 
ordered subset of V; this ordered subset is what will be called an L basis. The formal 
definition of an L basis is essentially an abstraction from ideas used, often tacitly, 
in proofs of many of the theorems concerning integral representations for continuous 
linear functionals on function spaces. 

The L basis constructed in this paper differs in several basic ways from the 
integral basis considered by Edwards in [5]. Since the integrals used here are of 
Hellinger type rather than Radon type one has in the approximating sums for the 
integral an immediate and natural analogue to the partial sum operators of sum
mation basis theory. Because of this one finds that the standard theorems of sum
mation basis theory such as the Bessaga-Pelcynski weak basis theorem, the Banach-
Newns-Arsove theorem and the Grynblum-Russo theorem can not only be shown 
to hold for L bases but can be proved by methods which are nearly identical to 
those used in the summation basis case. By use of an integral of Hellinger type one 
is also enabled to consider bases in nonlocally convex spaces. Another difference 
between the basis studied here and the Radon integral basis considered by Edwards 
is that the Hellinger integrals of the type used in this paper are well known to 
correspond to integration with respect to only finitely additive measures. A final 
difference between the L basis and the Radon integral basis of Edwards is that the 
theory of L bases does not include the theory of summation bases as a special case. 
The relationship between Schauder bases and L bases in separable Banach spaces 
is investigated in the final section of this paper. 

2. Preliminary results. Throughout this paper all linear vector spaces are 
assumed, unless otherwise stated, to be infinite dimensional spaces over the real or 
complex number field. If F is a linear vector space, N will denote the null vector 
for V. 

In this paper we shall be concerned with linearly ordered sets (S, < ) such that 
< is antisymmetric, and S has largest and smallest elements relative to < . We shall 
call such an ordered set a generalized interval. If S= ({x,:jej}, <) is a generalized 
interval the initial and final elements of S will be denoted by xm and xm respec
tively and the interval itself by [xm, xKf)]. The notations (xm, xm), [xm, xm), and 

Received by the editors August 7, 1969 and, in revised form, May 20, 1970. 

431 

https://doi.org/10.4153/CMB-1970-080-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1970-080-2


432 JAMES A. DYER [December 

(xm, xm] will be used in the same sense in which they are used in classical analysis. 
When topological properties of a generalized interval (S, <) are considered in this 
paper it is always assumed that (5, < ) has been topologized with the order topology. 

A subdivision of a generalized interval (5, <) is a finite subset {xy(i)}f=1 of S 
having the property that xK0)=xK1)<xK2)< • • • <*i(P>=*/</)• The collection of all 
subdivisions of a given generalized interval will be denoted by 2. If D and E are 
subdivisions of a generalized interval and 2)c E then E will be said to be a refine
ment of D. Most of the integration processes used in the remainder of this paper 
will involve an integral of the left Cauchy type over a generalized interval. 

DEFINITION 1. Suppose S is a generalized interval, (V9r) a linear Hausdorff 
space, / a function on S into the scalars for V, and G a function on S into V. If 
D={xm}?=1 is a subdivision of S let 2 D ( A / , G ) denote 2?= i L/faW) 
—/(*/«-i))]G(*i(f_i)). The statement that / e V is the left Cauchy integral of G 
with respect to/(/=(L) Js (#)(?) means that if the set, ^ , of all subdivisions of S 
is ordered by refinement then lim2D(A/, G ) = ^ i-e- the net {2D(A/, G): De2} 
r-converges to /. 

We shall also on occasion need the right Cauchy integral of/with respect to 
G((R)SsfdG) which is the limit under refinement of sums of the form 

2f-i/(^«))[G(^(i))-G(^(i-i))]. 
All of the linearity properties of the usual Cauchy integrals clearly hold here and 

will be used without further comment. Also the usual integration by parts formula 
for Cauchy integrals is valid in this setting. 

The usual definition of bounded variation is immediately applicable to functions 
on a generalized interval S into a metric space. Given such a function Fits variation 
on S will be denoted by VSF. Among the functions of bounded variation, one class 
will play a central role in this paper. This is the class of complex valued step func
tions. A step function on a generalized interval is defined in the same way as a 
step function on a number interval. There are three classes of step functions with 
which we will be primarily concerned. 

DEFINITION 2. Suppose S is a generalized interval and xk e S. Then rXk, pXk, and 
BXk are the functions defined by: 

r»M={?; *; > *; *>e s> '«<*>={J; I Vk x>e s> 
and 

If S is a generalized interval we will denote the uniform closure of the complex 
linear combinations of the rXlc functions on S by Ql. It is easily shown that Ql 
with the sup norm topology is a Banach space. If S is a real number interval 
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[a9 b] then Ql*M coincides with the class of all quasicontinuous functions on [a, b] 
which are left continuous on (a, b] and anchored at a. One property of the rXk and 
pX]c functions which will be used in the remainder of this paper is contained in 
Theorem 1 ; the proof being an immediate consequence of Definitions 1 and 2. 

THEOREM 1. Suppose S is a generalized interval and xk e S. If G is a function on 
S into a linear Hausdorjf space and xk<xj(f) then (L) Js (drX]c)G exists and is equal 
to G(xk). Iff is a complex valued function on S and xk > xm then (R) jsfdpXk exists 
and is equal to —f(xk). 

For a further discussion of integrals of the Cauchy type the reader is referred to 
Hildebrandt [6, Ch. II]. 

3. L bases in linear Hausdorff spaces. If one considers the left Cauchy integral 
as a form of generalized summation then it is rather natural to consider constructions 
such as the following. 

DEFINITION 3. Suppose F i s a linear Hausdorff space and B=({xj:jeJ}9 < ) is 
a generalized interval of distinct elements of V with xm = N. Let M denote the 
collection of all scalar valued bounded left anchored functions on B. The statement 
that B is an L basis for V means that there exists a unique scalar valued map </> 
on VxB such that if y is in F then: 

( 1 ) # * - ) e M , a n d 
(2) {ID [&<Ky, -), S]:De@}is bounded and (L) JB [d*f>(y, xj)]<f(xj)=y, where 

J is the identity operator on V. 

NOTATION. If Xj e B, the linear functional on V9 </>(—, xj) will be referred to as 
the Xj-th coordinate functional. 

It should be noted that the order on B is not assumed to have any relation to 
any given structure in V and that the order topology on B need have no relation 
to the given topology on V. 

It is obvious from Definitions 3 and 1 that if B is an L basis for V then B'=B 
—{*/(/>} is fundamental in V. It follows from Theorem 1 that if xkeB' then 
^te> — ) = Txk- Since {TX]C: xk e B'} is a linearly independent set and since the left 
Cauchy integral is linear in the integrator position it follows from the uniqueness 
of <j> that B' is also linearly independent in V. 

It is easily shown from Theorem 1 that if Fis a finite dimensional inner product 
space and {XHW is a basis for V then B={xi}fssl{J {xp + 1=N} is an L basis for 
V if < is taken to be the order induced by the indexing set. In this case </> will be 
given by <t>(y,xj) = If=1(y9xi}TXi(xj). A more interesting example however is 
given by: 

EXAMPLE 1. In I1 let B'={8n:ne co} be the usual Schauder basis and let < be 
any generalized interval order for B=B'\J {N} such that N is the last element of 
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B. If z is in I1 and p and q are positive integers then 2n=p +1 z(n)Tôn is of bounded 
variation on (B, < ), being a finite linear combination of step functions, and 

VB( i <n)r6\< i |z(«)|. 
\n=p+l I n=p+l 

It follows therefore that 2^=iz(w)T<5n *s a function of bounded variation and 
lim^oo VB[^=1z(n)Tôn-^=1z(n)rôn] is 0. Denote this function by <£(z, - ) . 
Theorem 15.1 [6, p. 69] can be shown to hold for the integral of Definition 1, and 
from this theorem and Theorem 1 it follows that 

z = (L)£[^ (z ,x ; ) ] , / (x , ) . 

Theorem 1 together with integration by parts implies that the integral representa
tion just obtained is unique, and B is an L basis for I1. 

An example of an L basis in a nonseparable space is suggested by the arguments 
used by Kaltenborn [7], to obtain a representation for the continuous linear func
tional on the quasicontinuous functions on a number interval. 

EXAMPLE 2. Suppose [a, b] is a closed number interval and let V denote Q[a'b} 

with the sup norm topology. Let B={rt: a<t<b} be ordered by the relation < , 
defined by rr < rs if and only if r < s. Then (B, < ) is a generalized interval in V with 
rb = N. Finally, define <f> by 

<Kf,TÙ=M, V / e F , û < t<b. 

Suppose that D = {rm}f=0 is a subdivision of B and / i s in V. By a straightforward 
algebraic manipulation it can be shown that 

2 ( W , -V) = i/(rO[r«o-T««-i,]. 
D i=l 

It then follows by the same argument as that given in [7, pp. 704-705], that the 
net {2D(A<£(/, — ), J): De@} converges uniformly t o / , and this net is clearly 
bounded. The evaluation functional are continuous linear functional on Ql£tbl. 
If t is in (0, b] then the restriction of the Mh evaluation functional to B is pt. It 
therefore follows in the same way as in Example 1 that </> satisfies the uniqueness 
requirement of Definition 3. 

It is easily seen that the L basis constructed in Example 2 has the property that 
B'={rt: a<t<b} is topologically free in g[

L
a,b]. B' is not, however, a generalized 

basis as defined by Arsove and Edwards in [2], since one can show that the func
tional biorthogonal to B' annihilate the continuous functions on [a, b]. 

It would also seem reasonable to ask whether it is necessarily true that if B is 
an L basis with continuous coordinate functional then B' is topologically free. 
For a Schauder basis this question is trivial, but that is not the case for an L basis. 
One does however have the following result: 
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THEOREM 2. Suppose V is a linear Hamdorff space, and B is an L basis for V with 
continuous coordinate functionals. If Vhas the property that every barrel is a neighbor
hood of N then B' is topologically free. 

Proof. Let C be the linear space whose elements are all of the functions on B 
of the form (f>(y, —), for y in V9 and suppose that C has the sup norm topology. 
Let ZT denote the one-to-one map on V onto C defined by ^y=</>(y, —). By 
hypothesis each element of £={</>( — , x,): x5 e B} is a continuous linear functional 
on V, and S is pointwise bounded, and it then follows that 3~ is a continuous map. 
The image under ZT of each element in the linear manifold spanned by B is a left 
continuous left anchored step function on B, and since B is fundamental in V it 
follows that C is contained in gf. It follows from Theorem 15.1 [6, p. 69], that 
every right anchored scalar valued function/ which is of bounded variation on B 
may be extended to a continuous functional $f on C. Then ^ o J is a continuous 
functional on V, and for each y in V9 

(<A/° )̂j = (i)£[#(>',^)]/(^). 

Hence if x5 e B\ 0Xj generates a continuous functional on V and so B' is topo
logically free. 

In several important respects the theory of L bases is rather similar to the theory 
of Schauder bases. For example Theorem 2 [1], holds also for L bases. A similar 
theorem has been given in [5] for the Radon integral basis. 

THEOREM 3. Suppose V is a complete linear metric space and B is an L basis for 
V. Then the coordinate functionals for B are continuous. 

Proof. For each subdivision D of B let &~D be the linear operator on V defined 
by 

D 

For each y in V, {^Dy' D G ^} is bounded, hence a new paranorm, ! !', may be 
defined on V by the relation 

(1) lyV = sup \3TDy\, V y e K 

Clearly \y\ < lyV, Vy e V, and if each of D and E is a subdivision of B then 

(2) \^Dy-^Ey\ <2\yV, VyeV. 

If {yn}n=i is a Cauchy sequence in F relative to !!', it follows from equations (1), 
(2), and consideration of ^Do and ^Dki where D0={xm, x;-(/)}, and Dk 

={xm, xk, x,(/)}, that {<f>(yn, ~)}^°=i is a pointwise Cauchy sequence on B. Let 0 
denote the scalar valued function on B which is the limit of this sequence. It can 
now be shown by the same type of argument as that given in the proof of Theorem 
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1 [12, p. 207], that (L) JB [dO{x^\J{x^) exists, that {yn}n=i converges to the value of 
this integral in the !'/-topology, and that </>(—, xk) is continuous for all xk in B. 

There are also analogues for L bases to the weak basis theorems of Dieudonné 
[4, Proposition 5], and Bessaga and Pelczynski [3, Theorem 4], for Schauder bases. 

THEOREM 4. Suppose (V, r) is a barrelled space and B is a o(V, F*)L basis for V 
such that the coordinate functionals are continuous. Then B is an L basis for V with 
the T topology. 

Proof. By hypothesis, if D is a subdivision of B, ^D is a continuous linear opera
tor on V. From Definition 3, {^Dy: D e@} is a a(V9 V*) bounded and hence T 
bounded set for each y in V. Hence {^D\ D e QJ) is a r equicontinuous collection. 
The span of B is r dense in F since it is o(V, V*) dense. It then follows by the same 
argument used in the proof of Lemma 1 [8, p. 72], that {FDy: De Q)} r-converges 
to y for every y in V. 

THEOREM 5. Suppose (V, r) is a Fréchet space and B is a a(V9 F*)L basis for V. 
Then B is an L basis for V with the r topology. 

The proof of this theorem follows in essentially the same manner as in Lemma 
2 [8]. The differences in the proof here are essentially the same as the differences 
between the proofs of Theorem 3 and Theorem 1 [12, p. 207]. 

Finally, one has a theorem analogous to Theorem 3.1 [9]. 

THEOREM 6. Suppose V is a linear Hausdorjf space and B is a generalized interval 
of distinct elements of V with xm = N. A sufficient condition that B be an L basis 
with continuous coordinate functionals for its closed linear span is that for each 
neighborhood U of N there exists a neighborhood Wv of N such that if D={xm}f=0 

is a subdivision of B, E={xKk)}^=0 is a refinement of D, and 2&=o tkxjik), xKk) eE, is 
in Wv then 

p - i 

(3) 2 ( 2 M * ; « ) e ^ > xmeD, 
i = 0 \kesi J 

where 

Si = {k: xm < XjQc) < x,-(i + i)> xm and x^i + 1) e D, xjik) G E}. 

If spB is barrelled or has the t-property this condition is also necessary. 

Proof. The necessity of this condition is an immediate consequence of Definition 
3 and the continuity of the coordinate functionals. 

Conversely, suppose U is a neighborhood of N. If y is in spB n Wv there exists 
a subdivision D={xm}fio of B such that }> = 2f=o U^m- Since D is a refinement 
of D0 it follows that 

(4) (ji t^xKQ) e U. 
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If xk is an arbitrary element of (xm, xm) it may be assumed that xk is in D. 
Therefore D refines Dk and it follows that 

(5) ( 2 '*)(*fc - *>«») - ( 2 u)** e #. 

Relations (4) and (5) imply that B—{xj(n} is linearly independent, and consequently 

that pXju) and pXk may be extended to continuous linear functional *//XJify and ipXk 

on spJ5. Let <f> be the function TXK0)i/jxr Then for each subdivision D, ^"D is con

tinuous on spi?. Since the collection {^D: De Si} is equicontinuous on spi? by 

the hypothesis of the theorem it follows that {^D : D e Qi) is equicontinuous on 

spj5. It follows as in Theorem 4 that B is an L basis for spi?. 

4. Relations between L bases and Schauder bases. We have seen in the discussion 
of Example 2 that an L basis need not be a generalized basis. This can occur even 
in a separable Banach space as can be seen by considering Q*, where R denotes 
the rational numbers in [0, 1] with the usual ordering. The construction of Example 
2 goes through without change for Ql, and since there exist nontrivial continuous 
functions in QL the resulting L basis B has the property that B' is not a Schauder 
basis for gf. 

There do exist, however, L bases which are Schauder bases. We have seen in 
Example 1 that B={Sn}n=o u {N} is an L basis for I1 with any generalized interval 
order on B. In particular this is true for what will be called the natural order on B, 
namely the order defined by 8P< Sq if and only if p<q and SP<N for all p. This 
observation leads to a theorem. 

THEOREM 7. Suppose {bi}?L0 is a bounded sequence in a linear Hausdorff space V 
having the property that every ban ell is a neighborhood of N. If{bi}iL0 U {N} with 
the natural order is an L basis with continuous coordinate functionals for V then 
{bi}iLo is a Schauder basis for V. 

Proof. Let lt denote [<£(-, éi + 1 ) - ^ ( - , èf)] for each nonnegative integer i. 
Then {(bi9 li)}iL0 is a biorthogonal collection. For each nonnegative integer;? let 
Tp be the linear operator defined by Tpy = 2f=o h(y)K TP c a n a l s o be written in 
the form 

Tpy = rDp+lyHtty,bp+1)-<Ky,N)Y>p+1, VJG v, 

where Dp + 1 is the subdivision {b0, bl9...9bp + 1, N}. It follows from the proof of 
Theorem 2 that lim^oo </>(y, bp) is c/>(y, N). Therefore, since {64}iL0 is bounded, the 
sequence {Tpy}p==0 converges to y for each y in V. 

Conversely, there exist linear topological spaces which admit a Schauder basis 
B' such that B' u {N} cannot be ordered to form an L basis. Since the coordinate 
functionals for an L basis B in a complete linear metric space V are continuous it 
follows that there exists a continuous linear functional on V, namely </>(—, xm), 
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which takes on the value one at each element of B'. The existence of such a con
tinuous linear functional is then a necessary condition for a Schauder basis B' in 
a complete linear metric space to have the property that B' u {N} can be ordered 
to form an L basis. A bounded Schauder basis in a Banach space having the 
property that there exists a continuous linear functional which is one at each ele
ment of the basis has been called a basis of type P* by Singer [11, Proposition 3]. 
This notation will be used here for bases in any linear Hausdorff space. As a con
sequence of the preceding argument and Theorem 4.1 [10], it may be concluded 
that if Fis a reflexive Fréchet space no bounded Schauder basis in F generates an 
L basis. 

Now suppose that F i s a barrelled space and B'={b^i>
=0 is a Schauder basis of 

type P* for V. Denote the zth coordinate functional for B' by /*. Let B=B' u {N} 
be given the natural order. Let </> be the function on VxB defined by 

<Ky> x,) 

fO, Xj = b0 

2 h(y\ x, = bi9 Vy G V, 

2 40) , Xj = N. 

It is easily shown that if {^~D : D e &} is pointwise bounded on V then B is an L 
basis for V. One condition which guarantees this is for <j>{y, — ) to be of bounded 
variation for each y. This condition however implies that 2i°io \h(y)\ converges 
for each y. A second condition which guarantees the pointwise boundedness of 
{^"DJ- D E &} is: if 0 is a continuous linear functional on V then {0(&i)}r= o is a 
sequence of bounded variation. Since the collection {Dn}n=o is cofinal in 3f this 
condition implies that ifj/B is of bounded variation and the weak pointwise bounded
ness of {^D: D e@} follows. It might be noted that the net {^Dn}n=o ,which is 
cofinal in {^~D: D e &}, is always pointwise bounded if B' is of type P*. 

We conclude with an example which illustrates the material of this section. 
Let co* denote the set consisting of the nonnegative integers and oo, and suppose 
co* is ordered with the usual order. Let V denote Q™* with the sup norm topology. 
By the same arguments as in Example 2, or by Theorem 6, it can be shown that 
B={rt: teco*} is an L basis for V. The order on B induced by co* is the natural 
order on B so that by Theorem 7 B'={rt}tL0 is a Schauder basis for g£*. Howrever, 
it can also be easily shown by a direct application of Theorem 5 [12, p. 211], that 
B' is a Schauder basis for Q°l*. It can also be shown by the same type of argument 
used in [7] that if «/f is a continuous linear functional on V then I/J/B is of bounded 
variation, and since B' is bounded this implies that {ifj(Tt)}?L 0 is a sequence of boun
ded variation. It is also easily shown that B' is a basis of type P* and so satisfies 
the conditions discussed in the previous paragraph. This again shows that B is an 
L basis for V. 
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