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1. The Creation of Meteor Trains 

Small meteor particles are considered, which produce meteors with magnitudes 
between + 3 m and + 1 0 m to + 1 2 m , and for which the thermal conductivity may be 
assumed infinite. Fragmentation and air cap effects are neglected. The derivation is 
made taking into account radiation losses and temperature variation during the 
evaporation time. The temperature variation of the meteoroid is defined in this case 
by the equation: 

dr s Vpv' s o djvn 
TrMcXr-a(T

 - T o ) / J i s + s x drj ( 1 ) 

Here T is the temperature, S is the cross-section, M and C the mass and thermal 
heat capacity, V is the velocity, S' is the surface area, T0 is the initial temperature, 
a is the Stefan-Boltzmann constant, ^ is the coefficient of emissivity, p is the air 
density, and Q is the latent heat of evaporation of the meteor substance. 

The decrement of mass is: 

— = _ S' aT-i,2e-b/1 - /L - pV\ (2) 
dr p 2QP V 

The first term of Equation (2) describes the evaporation of the meteoroid and the 
second one - ablation (Levin, 1956; Kasceev et al, 1967). It was assumed A p =0-025 
(Kasceev et ai, 1967). The values a and b are characteristic of the substance. 

In this article one-component particles are considered (or particles which have 
components of almost identical physical properties). 

Equations (1) and (2) are solved together with the deceleration equation 

dV pV2 

— =-SH—. (3) 
dt M 

The set of Equations (1), (2), (3) was solved for velocities 12 km/sec to 70 km/sec 
and for values MS2 (d = the particle density) from 4-5 to 2-8 x 10 5 . The particle motion 
was considered from the heights where the particle temperatures could be assumed 
equal to that of an absolutely black sphere at a distance of one astronomical unit 
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from the Sun. The particle movement was examined from this upper part of the path 
until its temperature reached the melting point. The modified set of Equations (1), 
(2), (3) was solved in which the Equation (2) was replaced by the expression describing 
the molten mass fraction over the melting part of the path. The variable values 
corresponding to 100% melting were the initial conditions for solving the main 
problem - meteor train creation. 

The behaviour of a particle depends on the value of the expression 

where Vb0 is the vertical component of velocity. 
If A is rather small, the particle temperature reaches some maximum value Tm< Tn 

(Tn is the melting point) and then rapidly decreases due to the velocity decrease. 
The maximum temperature increases when A increases. In case Tm > Tn the temperature 
only reaches the value Tn and then does not vary till the end of the melting. If the 
particle energy is sufficiently large it will be fully melted. Then the temperature will 
increase. The evaporation, and energy expenditure for it, grow simultaneously. 
After an abrupt creation of the train the temperature increase slows down considerably. 
The particle mass rapidly decreases and at the train end the velocity decreases also. 
The heat energy acquired by the disappearing particle becomes less. The evaporation 
decreases rapidly as the train end is approached and the remainder of the particle 
decelerates and finally cools down and hardens. The value of the remaining mass 
depends greatly on the initial velocity. 

Whether the meteor particle will go through all these stages or not depends on its 
initial mass, velocity, density, and other physical characteristics. Only those particles 
which form trains will be of interest. Those which have small energy and melt only 
partially, then decelerate and harden or do not reach the melting point, are micro-
meteorites and are treated in another paper. 

The mathematical analysis of the set of Equations (1), (2), (3) and the results of the 
numerical solution have led us to the following conclusions: 

(1) The evaporation process is rather stable and depends weakly both on the value, 
and on the possible variations, of the evaporation constants due to some 'negative 
feedback'. 

(2) The meteor train length L varies only slightly with the examined range of 
masses and velocities and is from 3-47/secZ to 2-8/ /sec Z for velocities from 
12 km/sec to 20 km/sec and from 2SH secZ to 2-4H secZ for velocities greater than 
20 km/sec. Here H is the scale height. 

(3) The shape of the evaporation curve is rather stable and for velocities greater 
than 20 km/sec is well expressed by the equation (shape normalized relative to the 
maximum): 

A=Vb0(M0S2) ; 2 \ l / 3 (4) 

f{ ( J ^ ) = 0-4472(^ r i (l -e' ,dfi - 2 - 7 5 \ 2 (5) 
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(A^ [ ( ^ " - 0 - 3 9 ) ( c o s Z f H 

(1) If the ionization coefficient may be assumed 

P = PoVH, 

the variation of the electron-line density a (el/cm) along the meteor train is: 

B V" 
a = 0-6 M o c o s Z x / 3 ( ^ i ) . (9) 

Heref3(Atl)=fl(Atl)[f2(Atiy]n and fi is the average molecular weight of the par
ticle substance. 

2. Radio-Wave Scattering from Underdense Meteor Trains 

The general problem of forward scattering by underdense trains is discussed. The 
variation of the ionization along the train is taken into account: 

A = A M / ( S ) , 

Here At1=[(h — hl)/H] cosZ , where hx is the melting end height, Z is the zenith angle. 
(4) The atmosphere pressure at the maximum of evaporation (if Atx =1-70), taking 

into account H from the COSPAR International Reference Atmosphere (1965), is 
expressed by the equation : 

Pm = 1-80 x 10 4 ( l -66 x 1 0 " 2 K o + 0-87)(M O (5 2 ) 0 - 2 8 K 0 " 2 1 5 ( c o s Z ) 0 8 5 . (6) 

V0 and M 0 are the initial values of the velocity (km/sec) and mass (grams). 
A comparison with the commonly used expression 

. (M 0 <5 2 ) 1 / 3 cosZ 
P m i = l - 3 0 x l 0 4 V - ^ - ^ (7) 

leads to the conclusion that the first equation gives heights appreciably smaller than 
Equation (7) for similar values. The height difference is about 13 km for velocities 
70 km/sec and Md2=2-%x 1 0 " 5 . The reason is that the energy losses for radiation 
and particle heating during the evaporation were not taken into account in the 
derivation of (7). These effects are strong, especially for small particles. 

(5) The atmosphere pressures at the train beginning, Pu and end, P 2 , are 

P1 = Pme-1-'\ P2 = Pme105. 

(6) The deceleration is rather well expressed for a wide range of masses and 
velocities by formula: 

V=V0f2(Atl), (8) 
where 
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where 
f(S) = e-lKS(\ -e~mKS)\ (10) 

Here KS = (h-h2) (cos Z)/H, h2 is the height of the train end, /, m, n are positive 
values. Their choice allows representation of different kinds of ionization curve. 
Equation (5) is a combination of particular cases (10). If deceleration is taken into 
account, the problem becomes more complicated but its influence on the time-
amplitude characteristics of the radio echo is weak. A finite time of train formation, 
the variation of the initial radius and diffusion coefficient, the presence of the train 
ends and variable position of the reflecting point are taken into account. Possible 
resonance phenomena, train distortion due to atmospheric turbulence, and anisotropic 
diffusion are not discussed. The aerial gain is assumed to be constant over the train. 
The radio echo power and phase are derived under these assumptions. 

The finite expressions are : 
The power in the receiving point 'R': 

PR = ipRlQ2(S)-Q2(Sl)-]. ( 1 1 ) 
The echo phase 

t = \Q(S)\ sin(y s + fls)-|Q(Si)l sinfo. +0t) 

Here PR is the received power (Kazancev, 1961); S{ is the train length, S is the particle 
distance from the train end. 

2 

Q2(S) = cosAse-2k2r*2 
( 1 3 ) 

6(5' 1)«0 if it is assumed that the ionization at the beginning of the train appears 
gradually: 

K3 An2 

c o t 4 = ; K2 = 
C A sec <P 

rs is the initial radius of the train at the point situated at a distance S from its end 
(S is the coordinate of the particle producing the train), A{ are the coefficients in 
Equation (10) when raised to the #th power, Uis and Vis are special functions (Fadeeva 
and Terentev, 1954) depending on the coordinates 

/, T \ ( A S • 4 \ ahL ( As . As\ , . ~1 
*i: = ~ V i cos As U^cos y - sin - + |^cos ~- + sin ^ n f a - n 5 ) J, 

y« = Vi cos A5 j^cos ^ + sin ^ ~ ^ - ^cos y - sin -^j Jn(n0- HS)J. 
\ 2 

In its turn 

K 3 = 2 ; Cs = K{KDs + y } K2r2; ais = (im + /) K + K{DS + mKK2r2; 
L 2 
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L is the half of the main Fresnel zone (Kazancev, 1961); K1 = 16n2/(VX2 s e c 2 # ) ; 
Ds is the diffusion coefficient at the point 5 ; m is from the expression of the initial 
radius variation (Greenhow and Hall, 1960); subscript 1 corresponds to the beginning 
and 2 to the end, so: 

r\ = r2

2emKS'; 

n0 is the coordinate of the reflecting point (in units of L) from the train end and ns is 
the coordinate of the particle (in the same units); X is the wavelength; 20 is the 
scattering angle. If 

1 - tg 
L > 2 n x 2 , ( 1 4 ) 

1 + t g 

diffraction effects are practically absent. Then: 

y.s = + *(«, - « 0 ) 2 + 2 N (RT + Rr)- ( 1 5) 
L A. 

Here (ps = n/2 — As; the last term expresses the constant phase shift depending on 
the distance between the reflecting point and the transmitter and the receiver (Rr 

and RR). 
Besides, 

XgOs=°n 

j ^ A i e - ( i m + l ) K S Q i s 

0 

The expressions mentioned above have a considerably simpler form for a wavelength 
of 3 or 4 m. In the extreme 'classical' case of the uniformly ionized train they are 
transformed into usual expressions (McKinley, 1961). 

The solution of the above equations leads to an echo typical of V H F (Evans, 
1965) for the wavelength of 1 ^ 2 m (it depends on the train height and the angle 0 ) . 
The signal character changes considerably for short trains with rapidly varying 
ionization. The results of computer calculations show that the maximum amplitude 
occurs when =0-7~0-8 for wavelengths greater than 4 m and is approximated 
rather well by the formula (Peregudov, 1960): 

V ~ e~K2r°2 l ~ e 3 

d 

(where S = RlLD0), for different heights in the meteor region. It is also clear that the 
appearance of diffraction phenomena is practically impossible in the case of decay 
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t rains: the condition expressed by (14) is achieved after such a long period of time 
that the reflected signal amplitude becomes too small for the equipment sensitivity. 
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