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Mesoscale heterogeneous material systems are efficient and adaptive to real world environments,
owing to the non-uniform stress fields that result from the convolution of component geometries,
loading conditions, and environmental changes. With the advent of multi-material additive
manufacturing, the production of heterogeneous material systems with a pre-defined mesoscale
material distribution becomes feasible. This unlocks the design freedom at a characteristic
length scale between the macroscale geometry and microstructures, but also calls for a new
design framework to optimize the mesoscale material distribution in multi-material additive
manufacturing. Here, we propose and demonstrate such a design framework by incorporating
digital image correlation-based deformation mapping with 3D finite element modeling-based
computational optimization. The constitutive behavior of each constituent material or their
mixtures is calibrated by matching the local deformation data. The optimal mesoscale

material distribution can then be determined using global optimization algorithms and validated
experimentally.
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mechanical design, with a focus on the design and processing of emerging structural materials. Experiment, theory,
and simulation are integrated to understand the fundamental deformation, phase transformation, and structure
evolution mechanisms. With these fundamental insights, materials with the optimal mesostructure and microstructure
can be designed and processed in order to achieve extraordinary mechanical properties, such as high energy
dissipation, superelasticity, or superior fracture toughness. Dr. Yu and his students study the material structures across
multiple length scales: mesoscale material and property distribution, microscale grain and twin structures, and
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. INTRODUCTION statistically homogeneous counterparts. The mesostruc-
tures in natural materials are designed through the
evolutionary processes on a large time-scale, where
multiple design goals, such as weight reduction, mechan-
ical performance (e.g., contact resistance, damage local-
ization, and bending resistance), growth and health, etc.,
are taken into account. Similarly, engineers can design
the mesoscale distribution of materials or porosity to
¥Address all correspondence to this author. significantly improve the mechanical performance. Engi-
e-mail: hangyu@vt.edu neering applications are often associated with highly non-
DOIL: 10.1557/jmr.2017.328 uniform stress fields resulting from the convolution of

Abundant in nature, as exemplified by bones, bam-
boos, and mollusk shells,"™!! mesoscale heterogeneous
material systems are more efficient and adaptive to
thermal and mechanical environments than their
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component geometries, loading conditions, and environ-
mental changes. By introducing a mesoscale pattern of
internal material distribution, the stress fields will be
redistributed. Material properties can be allocated to areas
most in need, rendering tremendous material efficiencies as
compared to parts that are statistically homogeneous at the
macroscale.'>'* The most representative engineering mes-
ostructured system is a functionally graded material. The
graded mesoscale material distribution delays the onset of
plastic yielding and failure for a given thermomechanical
load, and reduces the driving force for crack growth along
and across an interface.'*'® A mesostructured material
system is not limited to a distribution of different constit-
uent materials or their mixtures but can also be a distribu-
tion of the same material with  different
microstructures.''® For example, metals with a gradient
in grain size or twin density can be fabricated by surface
treatment or torsion, showing high strength and high
ductility simultaneously.'**?

In spite of showing promise in engineering efficiency,
the mesostructure in engineering materials has rarely been
a pure result of computational design, but is a compromise
between the design ideal and manufacturing constraints.
Thanks to the recent progress in advanced manufacturing,
especially multi-material additive manufacturing,”> >’ mes-
ostructure control is becoming available for a wide variety
of materials, including polymers, metals, and compo-
sites.”®*? Figure 1 shows two types of mesoscale
heterogeneous material systems readily fabricated by
multi-material additive manufacturing. The left side shows
a material system with gradient properties by mixing
multiple constituent materials and controlling the volume
ratios. For polymers, such systems have been demonstrated
in inkjet 3D printing®*; for metals, such systems have been
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FIG. 1. An illustration of multi-material manufacturing of mesostruc-
tured materials: (left) a gradient of the material properties by mixing
multiple constituent materials and (right) selective deposition of
individual constituent materials.

demonstrated in directed energy deposition, especially in
laser engineered net shaping (LENS).*'* The right side
shows a second type of mesoscale heterogeneous material
systems, where each material voxel is assigned to be
a specific constituent material. Such a material system
can be fabricated by multi-nozzle extrusion,’>~ inkjet 3D
printing,>”*® or directed energy deposition.>'*

Since multi-material additive manufacturing provides
a unique pathway to implementing an arbitrary mesoscale
material distribution, Yu, Cross, and Schuh®” proposed to
use computational optimization schemes for mesostruc-
ture design. By investigating the resistance to contact
loading and bending as examples, they showed that
significant improvement in material efficiency, load
bearing capacity, and weight saving can be achieved by
properly distributing the mechanical properties across the
component. In that work, the optimal material distribu-
tion was determined not by trial and error or intuition of
the trend but by a rigorous global optimization process
using a metaheuristic optimization algorithm.***' These
discussions were only from a theoretical perspective, and
no experimental work was performed for model calibra-
tion and validation.

While many previous approaches assumed that the
mechanical response of a mesostructured system can be
simulated with mechanical properties of the individual
constituent materials measured from uniaxial tension
testing,””*® we found that this type of prediction can
severely deviate from the reality. This is primarily
because external loading results in a multi-axial stress
state in each material voxel of the heterogeneous
mesostructured system. Using uniaxial tension tests to
measure the constitutive equation is valid only when the
following criteria are met: (i) the materials exhibit
symmetric behavior in tension and compression, i.e.
the mechanical behavior is not pressure-dependent; (ii)
the materials are isotropic.*? In multi-material additive
manufacturing, neither is the case. In addition, the
thermal and thermomechanical processes in fabrication
of mesostructured systems can differ significantly from
the fabrication of a single material tensile bar,>***~%¢
which can lead to profound differences in the micro-
structure and the resultant material parameters. There-
fore, it is essential to directly calibrate the effective
material parameters during deformation of the meso-
structured material systems.

The goal of this study is to propose and demonstrate an
experiment-informed framework for mesoscale material
design in multi-material additive manufacturing. Upon
mechanical loading, the local deformation of the material
system is characterized using digital image correlation
(DIC) for the surface material voxels or digital volume
correlation (DVC) for the internal material voxels,*’ !
and is modeled using constitutive approaches
and simulated with 3D finite element modeling (FEM)
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(i.e., mesomechanical constitutive modelingsz). Calibra-
tion of the voxel-level deformation between the simula-
tion and in situ mechanical characterization determines
the effective parameters in the constitutive equations for
each constituent material in the multi-material system. The
mesoscale material distribution can then be optimized for
a given application by coupling global optimization
algorithms with the calibrated model. We demonstrate
and validate the design framework using a beam-shaped
mesostructured material system made from a hyperelastic
material and a linear elastic material, which is fabricated
using dual extrusion-based additive manufacturing.

Il. THE PROPOSED DESIGN FRAMEWORK

The proposed design framework consists of six major
components: (i) fabrication of heterogeneous material
systems with pre-defined mesostructure designs, (ii) de-
formation mapping using DIC or DVC, (iii) modeling of
the deformation behavior of the mesostructured material
systems, (iv) model calibration using voxel-level
deformation data, (v) mesostructure design and optimi-
zation for given applications, and (vi) manufacturing and
experimental validation of the optimal mesostructure.
These components and their roles in the proposed design
framework are illustrated in Fig. 2.

A. Fabrication of mesostructured systems using
multi-material additive manufacturing

A heterogeneous material system with a pre-defined
mesostructure design is readily fabricated using multi-
material additive manufacturing technologies, such as
multi-material inkjet 3D printing, multi-nozzle extrusion,
and the LENS process. The mesoscale material distribu-
tion is generated by the computer-aided design files and
implemented during the manufacturing process, in which
each voxel is assigned to a given material or a mixture of
multiple constituent materials with controlled volume
ratios. To avoid changes in material distribution by
interdiffusion, postprocessing heat treatment is generally
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not used. As a result, the local material properties
strongly depend on the processing parameters; material
parameters from conventional databases are not accurate
to use for materials fabricated by multi-material additive
manufacturing.

B. Deformation mapping using DIC or DVC

The deformation of a mesoscale heterogeneous mate-
rial system cannot be fully characterized using a single
stress—strain relationship, because two different meso-
structured material systems can have the same stress—
strain curve under axial loading. Instead, characterization
of the local deformation at the material voxel level is
necessary. In a mesoscale heterogeneous material system,
the deformation of surface material voxels can be
characterized using DIC,SO whereas the deformation of
internal material voxels can be characterized using
DVC,* e.g., through X-ray tomography. The 2D image
contrast in DIC comes from black and white speckling on
the surface of the material. The 3D image contrast in
DVC, either absorption contrast or phase contrast,53
comes from the mesoscale heterogeneity in the material
systems.

C. Modeling of the deformation behavior of the
mesostructured material systems

The success of mesostructure design and optimization
depends on the capability of accurately modeling the
deformation behavior. Once the constitutive behavior of
each material voxel is known (e.g., linear elastic, elastic—
plastic, or hyperelastic), the deformation of the material
system can be simulated using finite element analysis.
The part properties in additive manufacturing strongly
depend on processing conditions. The values of material
parameters from the conventional material databases are
not suitable as they generally do not include information
for additively manufactured parts. It is thus critical to
calibrate the effective material parameters in a mesostruc-
tured material system from experiments.

/
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FIG. 2. Flowchart of the proposed framework for mesostructure design in multi-material additive manufacturing.
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D. Model calibration using voxel-level deformation
data

In additive manufacturing, the thermomechanical
condition can differ significantly in fabrication of
a single material tensile bar or sheet, as compared to
fabrication of a mesoscale heterogeneous material sys-
tem consisting of multiple materials. Therefore, it is
inappropriate to first calibrate the parameters for each
constituent material (e.g., using uniaxial tension or
biaxial tension) and then apply the calibrated values to
model the mesostructure. Instead, we directly measure
the mesoscopic mechanical response of the heteroge-
neous material system. Through the error minimization
algorithm that accounts for thousands of data points
from in situ DIC and FEM, accurate material parameters
can be determined.

E. Mesostructure design

After model calibration, mesostructure optimization
can be performed, which involves the computation of
a deformation-related objective function with each itera-
tion adopting a different mesostructure design. While
deformation can be simulated using finite element anal-
ysis, the mutation of the mesostructure design between
neighboring iterations and the acceptance criteria of the
new design are defined using global optimization algo-
rithms. Because this process involves calling a ‘black
box-like’ FEM solver, metaheuristic global optimization
algorithms such as genetic algorithms,>® particle swarm
optimization,55 and simulated annealing”’56 are used to
identify the optimal mesostructure.

F. Validation

The last component in the proposed design framework
is to experimentally validate the optimization results, so
the figure of merit (i.e., objective function in optimiza-
tion) can be compared for the optimal and conventional
mesostructured material systems. The validation involves
fabrication of a material system with various mesostruc-
ture designs using multi-material additive manufacturing
as well as mechanical testing.

In this article, we demonstrate the proposed design
framework using a rectangular beam-shaped material
system consisting of a stiff and a compliant polymeric
material, which is fabricated using dual extrusion-
based additive manufacturing. Within the deformation
range of this work, the stiff material displays linear
elastic behavior, while the compliant material displays
hyperelastic behavior. The effective parameters in the
constitutive models are calibrated by matching the
deformation data of ~3000 surface material voxels
from in situ DIC measurement and FEM, when the
beam is subjected to three-point bending. The optimal
mesostructure for the maximum bending resistance is

then determined based on the calibrated model and
validated using experiments.

lll. EXPERIMENTAL PROCEDURES

Mesostructured beams of dimensions of 20 x 20 X
100 mm were fabricated using a Lulzbot Taz 6 3D printer
(Aleph Objects, Inc., Loveland, Colorado) with dual extru-
sion nozzles. The nozzle temperature was 225 °C and the
scanning speed was 12 mm/s for both nozzles. The two
constituent materials are the stiff Taulman Bridge Nylon
filament (Material S; taulman3D, Saint Peters, Missouri)
and the compliant polyurethane-based NinjaTek Ninja-
Flex filament (Material C; Ninjatek, Manaheim, Penn-
sylvania). Material S and Material C are proprietary
materials, and there are no available databases providing
information regarding their properties and parameters.
These specific materials were chosen for their printabil-
ity and significant difference in stiffness. Multiple
distributions of these materials were created and tested
under three-point bending using a 5969 Instron (Instron,
Norwood, Massachusetts) at a constant rate of 0.5 mm/
min. The loading contacts were located 10 mm from
each edge on the bottom and centered on the top.

During three-point bending, the deformation of surface
voxels on the beam was characterized using DIC (Dantec
Dynamics Q-400, Dantec Dynamics, Inc., Skovlunde,
Denmark). With two cameras, the displacement in all
three directions can be monitored in situ. Prior to testing,
the samples were coated with a layer of white paint and
then coated with a random speckling of black paint. This
helped to determine the local displacement by tracking
changes in the gray value pattern in small neighborhoods.
As a result, the deformation for a total of ~3000 surface
voxels was measured on the beam.

IV. DEFORMATION MAPPING OF THE
MESOSTRUCTURED BEAMS USING DIC

Finite element analysis has shown how the strain and
stress fields can be sculptured by distributing the constit-
uent materials to maximize the resistance to failure.>*-"~%!
However, this has not been characterized in situ or
confirmed experimentally. DIC enables the tracking of
deformation for surface material voxels upon loading and
allows for visualization of the interactions between the
mesoscale material domains and the resultant strain or
stress redistribution. DIC-based deformation mapping
can also be fed back into finite element models to
calibrate the effective material parameters, from which
the mesostructure can be computationally optimized for
a given application.

As examples, Fig. 3 shows the deformation distribu-
tion of three mesostructured beams ((a), (c), (e)) at the
same beam deflection of 5 mm. From in situ DIC
measurement, the magnitude (shown by color) and
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FIG. 3. Three mesostructured beams. (a), (c), and (e): the mesostructure designs; (b), (d), and (f): the maximum normal strain distribution

measured by DIC.

direction (shown by lines) of the maximum normal strain
of surface material voxels are shown in (b), (d), (f)
accordingly. The beam in (a) is made of the pure
compliant polymer (Material C) with the maximum
tensile strain occurring at the center of the bottom
surface, as shown in (b). This is expected for a homoge-
neous material under three-point bending. The beam in
(c) consists mostly of the stiff polymer (Material S) with
the small compliant domains (made of Material C)
showing high local strains, as shown in (d). The beam in
(e) has the opposite material distribution, and therefore an
opposite contrast in the strain distribution image, as shown
in (f). Comparing the maximum normal strain at the center
of the bottom surface in (b) and (f), it is interesting to note
that the high tensile strain observed in the former is
significantly reduced in the latter, owing to the presence
of a small rectangular stiff material domain in the beam
center that effectively redistributes the local strain field.
From in situ DIC measurement, these examples show and
confirm how distributing the constituent materials can
impact the local deformation of a mesostructured material
system, and why optimizing the mesostructure for desired
applications is of great importance.

V. MODEL DEVELOPMENT AND CALIBRATION

Mesostructure design requires accurate modeling of
the deformation behavior of a mesoscale heterogeneous
material system. For the current study, two questions
need to be answered:

(i) Which types of constitutive behavior best describe
Material S and Material C?

(i) What are the effective material parameters in the
constitutive equations?

Answering the first question requires a closer exami-
nation of the mechanical behavior of individual constit-
uent materials. With that answer, the second question can
be addressed by calibrating the model using the voxel-
level deformation data from in situ DIC measurement.

A. Constitutive behavior of individual constituent
materials

To understand the constitutive behavior of individual
constituent materials, we first characterize Material S and
Material C by uniaxial tension testing. Figure 4 shows
that Material S displays elastic—plastic behavior with the
linear regime up to axial strain of 6%, whereas Material C
displays typical hyperelastic behavior with a nonlinear
stress—stretch relationship. For Material S in the
linear elastic regime, the Young’s modulus is measured
as Eg = 190 MPa and the Poisson’s ratio is measured as
vg = 0.46. For Material C, the deformation can be
described using the Mooney—Rivlin model (five param-
eter)®® that gives the relationship between the strain
energy density Wg and I, I, which are the first and
second invariant of the unimodular component of the left
Cauchy—Green deformation tensor**:

Ws = Cio(I; —3) + Coi (I — 3) + Cao(I; — 3)*
+Culh =3 +Cuh =3)(L-3) , (1)

where C;; (i, j = 0, 1, 2) are the five fitting parameters.
Fitting the engineering stress versus stretch curve
in Fig. 4(b) gives the five fitting parameters:
C10 = —238, COl = 537, C20 = 0004, C02 = 069,
and C;; = —0.012 MPa.
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FIG. 4. (a) The stress—strain curve (solid) for the stiff material from
a uniaxial tension test plotted alongside the slope in the linear elastic
region (dashed). (b) The stress—stretch curve (solid) obtained through
a uniaxial tension test that demonstrates the hyperelastic nature of the
compliant material, which is plotted alongside the fitted curve (dashed)
using the Mooney—Rivlin model (five parameter).

As discussed in Sec. ILD, the values of Eg and C; (i, j =
0, 1, 2) determined from single material calibration in
Fig. 4 cannot be used as effective material parameters for
mesostructure design. In dual extrusion, the thermal and
thermomechanical processes differ in fabrication of
a single material as compared to fabrication of a beam
with two polymers. This can lead to different microstruc-
ture and material parameters between the single and
multi-material parts. In addition, the hyperelastic Material
C is pressure-dependent, so the material parameters
cannot be determined by a single uniaxial tension test.

B. Calibration using the voxel-level deformation
data from DIC

We calibrate the effective parameters for Material S
(Young’s modulus Eg and Poisson’s ratio vg) and
Material C [fitting parameters C; (i, j = 0, 1, 2)] by
matching the voxel-level deformation data from FEM to
that from in situ DIC measurement. The FEM is
conducted wusing COMSOL Multiphysics Solver
(COMSOL Inc., Stockholm, Sweden) equipped with the
nonlinear structural mechanics module. The best

calibration condition is achieved when the average
displacement difference between DIC and FEM is min-
imized for all the surface material voxels.

Using a mesostructured beam with 3/4 volume fraction
of Material S and 1/4 volume fraction of Material C as the
model system [see Fig. 5(a)], we conduct the calibration
for different loads up to P = 800 N. Under these loads,
we have confirmed that the beam deformation is re-
versible using DIC measurement so that the deformation
of Material S is within the elastic range. For a given set of
effective material parameters, we calculate the average
displacement difference, AS, and use it as the objective
function, which is to be minimized. For the current study,
each in situ DIC measurement gives the in-plane dis-
placement for N ~ 3000 surface material voxels in
a mesostructured beam. The objective function can be
written as

N 3 3
Z \/ (uPIC uFEM) (V?IC vaM)
AS = =1

= @
where u and v refer to the horizontal and vertical
displacement, respectively. The superscript DIC and
FEM refer to the data obtained from in situ DIC
measurement and from FEM, respectively.

The calibration is accomplished by searching for the
best set of effective material parameters [Es, vs, and Cj
(i, j = 0, 1, 2)] that minimizes AS. Such an optimization
process is performed by coupling the finite element solver
with metaheuristic optimization algorithms via the MAT-
LAB LiveLink software package. A simulated annealing
algorithm is used to mutate the parent set of effective
material parameters [Es, vs, and Cj; (i, j = 0, 1, 2)] in
each iteration k.5*%* If the objective function decreases,
the new set of material parameters will be accepted; if the
objective function increases, the new set of material
parameters will be accepted with a finite probability,
depending on the ratio of the change in the objective
function [AS(k 4+ 1) — AS(k)] to a temperature parameter
T (the value of T exponentially decreases in each
iteration). This algorithm allows for occasional accep-
tance of inferior values so that the search can effectively
escape from local minima and rapidly move through
valleys in the search space. We use the fitting parameters
in Fig. 4 as the starting variables; after ~100 iterations,
the objective function converges, and the effective
material parameters are calibrated as Eg = 164 MPa,
Vg — 0.4, and C10 = —1.90, C()] = 2.68, C20 = 0.008,
Co> = 035, C;; = —0.019 MPa.

Figure 5(b) compares the calibration approaches using
the voxel-level deformation data in the mesostructured
beam and using the single material data in Fig. 4. The left
side shows the distribution of vertical displacement (v) in
the DIC data under P = 500 N, whereas the right side
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FIG. 5. (a) An illustration of the mesostructured beam used for calibrating the material parameters. (b) A comparison of the vertical displacement
at P = 500 N measured by DIC to (top) FEM prediction based on single material calibration and (bottom) FEM prediction based on mesostructure

calibration.

shows the FEM prediction based on (upper) single
material calibration and (lower) mesostructure calibra-
tion. Notably, mesostructure calibration using the voxel-
level deformation data leads to a much more accurate
prediction and should be used for mesostructure design in
the optimization step. Quantitatively, the prediction error
AS decreases from ~30% of the average total displace-
ment with single material calibration to ~10% with
mesostructure calibration.

Although the calibration was performed using only one
mesostructure design, our preliminary calibration exer-
cises suggest a weak correlation between the mesostruc-
ture and calibration results. This suggests that the
influence on the optimization results is also inconsequen-
tial. If the correlation between calibration results and
mesostructure design is significant, a data-driven ap-
proach needs to be used to quantify this correlation,
and to establish a surrogate model. %% However, even
a strong correlation will not affect the structure of the
proposed framework; once the correlation is properly
determined, it can be inserted as an additional procedure
during the iterative optimization.

VI. MESOSTRUCTURE DESIGN
A. Computational optimization

With the calibrated model, we can design the meso-
structure for a given application. The goal here is to
determine the optimal distribution of Material S and
Material C for the maximum bending resistance, while

maintaining 3/4 volume fraction of Material S and 1/4
volume fraction of Material C as in the model system for
calibration. The objective function that is to be mini-
mized is defined by the beam center deflection. The
beam is then divided into 80 material domains, each
with dimensions of 5 x 5 x 20 mm. The best material
distribution is found using a simulated annealing algo-
rithm through the COMSOL-MATLAB LiveLink soft-
ware package, a similar approach to what is used for
model calibration. The simulated annealing algorithm
mutates the initial distribution for every iteration by
randomly selecting 30 domains on the left half of the
beam and assigning them the calibrated parameters of
Material S while assigning the remaining 10 domains
the calibrated parameters of Material C. These domains
are then reflected across the center line to provide
a symmetrical part for every iteration. By forcing every
predicted design to be symmetrical, the number of
iterations necessary to reach the optimal design is
significantly reduced.

Even with different initial material distributions, the
objective function converges at the same value after
1000-1500 iterations, as shown in Fig. 6(a). The best
distribution of Material S and Material C determined by
computational optimization is shown in Fig. 6(b), which
has a beam center deflection of 2.85 mm at 500 N. This
result is physically meaningful and intuitive; a heavier
distribution of the stiff polymer near the loading regions
maximizes the resistance to bending. The von Mises
stress distribution in Fig. 6(c) shows that the presence of
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FIG. 6. (a) Evolution of the objective function in simulated annealing,
with two different initial material distributions. (b) The optimized
mesostructure design to minimize the deflection during three-point
bending. (c) An illustration of the von Mises stress distribution in the
optimized structure, showing the concentration of stress in the stiff
material domains.

the stiff polymer effectively shields the compliant poly-
mer from high local stresses in the optimal mesostructure
design.

B. Experimental validation

To validate the computational optimization results,
three beams with different mesostructures but with the
same volume fractions of Material S and Material C, are
manufactured and subjected to a three-point bending test.
The first sample is the optimal design shown in Fig. 6, the
second sample is the design used for model calibration in
Sec. V, and the third sample is a layered structure.
Figure 7(a) shows the printed sample surface, with
the regions of Material C highlighted in gray. The load
versus displacement for each sample is shown in Fig. 7(b),
which confirms that the optimized structure (the first
sample) yields the least amount of deflection at 500 N.
Furthermore, the experimentally measured deflection at
the center point, 2.81 mm, is very close to the predicted
value of 2.85 mm from the calibrated model. By contrast,
the prediction using the uniaxial, single material calibra-
tion yielded a deflection of 2.41 mm, again demonstrating
the importance of mesostructure calibration. The second

(a)
600
400+
z
ko]
8200}
-
= == The First Sample
- — = The Second Sample
OF * The Third Sample
0 1 2 3 4 5 6 7
(b) Beam Deflection (mm)

FIG. 7. (a) Pictures of three manufactured beams: (from top to
bottom) the first sample with the optimized mesostructure; the second
sample with the mesostructure used for calibration; the third sample
with a layered mesostructure. The material domains of the compliant
polymer are highlighted in gray. (b) The load versus displacement
curves for the three samples, showing the minimum deflection in the
optimized beam.

sample also has high bending resistance, though still
lower than the first sample below 500 N, with the
measured beam center deflection of 2.95 mm. This result
is not surprising, because this mesostructure design also
has a high concentration of the stiff polymer near the
loading regions to resist bending. The significance of the
optimization can be more readily observed when com-
paring the optimized sample to the sample with a layered
structure, which experiences over 7 mm of deflection.

It should be noted that the load—displacement curves
for the first and second design intersect at ~600 N. From
this point on, the second design outperforms the opti-
mized design. Our optimization was performed at 500 N.
While the optimal design was the best for the particular
loading condition, it is not necessarily optimized for all
bending conditions. Even so, this demonstrates the ability
of the framework to achieve high performance for
a specific loading condition based on the intended
application.

Vil. CONCLUSION

In summary, we propose and demonstrate a framework
for mesostructure design in multi-material additive
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manufacturing. The framework consists of both experi-
mental and theoretical components including fabrication,
in situ characterization of local deformation, modeling,
model calibration, mesostructure optimization, and ex-
perimental validation. We show that DIC is an effective
tool to characterize the deformation of surface material
voxels providing sufficient data points for model calibra-
tion. Compared to single material calibration, mesostruc-
ture calibration leads to a much better prediction of the
deformation behavior. Coupling the calibrated model
with metaheuristic optimization algorithms such as sim-
ulated annealing, we can optimize the mesostructure for
specific applications. We demonstrate this design frame-
work using mesostructured beams consisting of a compli-
ant polymer and stiff polymer. We optimize the material
distribution for maximum bending resistance at a given
load and then validate the computational results using
three-point bending experiments.

Although we use a polymeric material system as the
example, this framework can be applied to other material
systems, such as gradient metals or mesostructured
composites. Different constitutive equations should be
used to characterize the specific constituent materials. For
example, strain hardening models should be applied for
high strength and high ductility metals. In addition, the
target problems are not limited to deformation, but can
include thermal expansion, energy dissipation, thermo-
mechanical coupling, or even multiphysics problems.
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