Failure Analysis of Conformal Cooling Inserts Fabricated by Additive Manufacturing

H. Flores-Ruiz^{1,*} and R. Pérez-Bustamante²

^{1.} Centro de Tecnología Avanzada (CIATEQ), Querétaro, Qro., México

^{2.} CONACYT-Corporación Mexicana de Investigación en Materiales (COMIMSA), San Luis Potosí, SLP, México.

* Corresponding author: hiram.flores.ruiz@gmail.com

The 3D design and direct metal laser sintering (DMLS) fabrication of complex cooling circuits is rapidly gaining popularity in the injection molding industry as a powerful tool that exceeds the production capacity of conventional manufacturing with a controlled scale and cost reduction. Additive manufacturing is used to create cooling inserts known as conformal cooling inserts [1,2]. The objective of these inserts is to control and direct the solidification in a way that prevents, casting defect generation associated to shrinkages, porosities and laminations. These defects derived from solidification behavior and are linked to the lack of feeding and the natural contraction in the part. In the particular case of high pressure die casting (HPDC) it is very complex and even impossible to feed fresh material to the contraction areas [2]. Therefore, it is commonly sought to carry out a rapid and severe solidification in the problem area. An alternative solution to this problem is the implementation of conformal cooling inserts to eliminate hot spots in the feeding material (aluminum). However, the number of parts produced by the insert or shot life performance as function of manufacturing costs is critical to evaluate their permanent implementation in molds used in HPDC process.

In this work, were analyzed two different conformal cooling inserts fabricated by additive manufacturing in Maraging® steel. The inserts were provided by different suppliers and employed in a 3500 ton HPDC machine. The respective study was carried out after failure of the inserts, which occur after 4000 (insert A) and 8000 (insert B) shots respectively. Scanning electron microscopy (SEM) observations were performed on four and five zones on the fracture area of each insert respectively. Microstructural observations by optical microscopy from the fracture sections were carried out. The mechanical behavior of the samples was evaluated tensile test at room temperature and Charpy tests at three different temperatures.

Microstructural and mechanical results of insert A are presented in Fig. 1. Analyzes were carried out around the fracture of the insert. A different chemical composition is observed in each analyzed zone. An aluminum and oxygen rich-zone is presented in zone A, due to the exposition of the aluminum casted to the oxygen through the fracture. A high concentration of oxygen is also observed in zones B and D respectively, due to the corrosion of the alloying elements of the Maraging steel. On the other hand, insert B, shown in Fig. 2, present a low-concentration of oxygen is observed in the areas observed in the chemical analysis, however higher present of oxygen is observed in the areas surrounding the fracture (zones C and D), which analyses were carried out in the closer areas to the fracture.

It is observed the presence of small ruffles corresponding to each point where the laser hit the material during the additive process. An evident and considerable number of porosities generated during the additive manufacturing process is also presented. This defect can considerably affect the mechanical

properties and even generate stress concentration points. On the other hand, the porous distribution on insert B is lower that the observed in insert A and the fracture can be observed in the surrounding to the conformal cooling channel. The microstructure does not present the typical additive manufacturing mark [3.4], which suggest a subsequent heat treatment carried out in the insert B after its additive fabrication. The different in microstructures and well as the difference in the mechanical behavior of the inserts observed in Figs 1a and b, are directly related with the mechanical performance of the inserts under working conditions, allowing an increment in the life service of insert B of 4000 shots in the parts production in comparison with insert A.

				Insert A				
Insert A		Optical '	1	Element	Zone A	Zone B	Zone C	Zone D
			(ОК	38.89	19.62	1.14	20.96
	to the state of the state	micrograph		AIK	34.46	2.61	0.16	12.65
ALL AND ALL AND ALL AND			(СК	8.79	14.5	2.72	5.14
	to Vohis Viewer		1	FeK	5.75	42.98	66.21	37.24
			1	SiK	4.88	1.81	0.1	2.83
F - A				CaK	2.39	1.36	0	1.67
SEM HV: 15.0 kV WD: 15.00 mm VEGA3 TESCAN	SEM HV: 15.0 kV WD: 14.38 mm VEGA3 TESCAN		1	MgK	1.44	1.48	0	2.12
SEM MAG: 21 x Det: BSE 2 mm ENB031556P Date(m/d/y): 12/15/21 Element New Berlin	SEM MAG: 1.00 kx Det: SE 50 µm ENB031656P Date(m/d/y): 12/15/21 Element New Berlin		(CuL	1.36	0	0	0
				NiK	0.9	7.39	15.36	8.98
AL SCHOOL AND	D)		1	РК	0.46	0.8	0	0.44
			. (СоК	0.46	4.53	8.35	4.23
July Times R			(CIK	0.22	0.52	0	0
1 Bish on the	and the second second	1	1	MoL	0	1.99	3.55	2.39
· K. K Browner			1	TiK	0	0.42	1.88	0.47
				CrK	0	0	0.51	0
			(CuK	0	0	0	0.88
	SEM HV: 15.9 V WD: 15.00 mm VEGAS TESCAN SEM MAD: 15.0 kz Det: 5E 50 µm ENB331555P Date[mid/y]: 12/15/21 Element New Berlin O	· · ·······	1	Tensile test		Insert	Insert A (4000 Shots)	
SEM HV: 15.0 kV WD: 15.00 mm		2.5 mm	1	Diameter, (in)		0.252	0.252	
ENB031556P Date(m/d/y): 12/15/21 Element New Berlin			(Original area, (in²)		0.049	0.0499	
			. (Gage length, (in)			1	1
		•	Tensile strength, (psi)			2140	214000	
TELANT REJERRENT		Yield strength, 0.2% off			offset, (psi	1880	188000	
SA ST			I	Elongation, (%)		9.5	9.5	
A A A A				Reduction in area, (%)		26	26	
Selling And		A FILLER THE						
			9	Specimen No. Test to		st temperat	ure Ins	ert A (4000 Shot
the start of the		A State of the second sec			(°F	(°F)		Energy, (ft-lbf)
SEM HV: 15.0 kV WD: 15.00 mm VEGA3 TESCAN		1	and a	1	68		9	
SEM MAG: 1.00 kx Det: SE 60 µm		2.5 mm	Ser.	2	18	0	10	
ENB031556P Diate(m/d/y): 12/15/21 Element New Berlin		the second s	1000	3	30	0	11	

Figure 1. Microstructural and mechanical results of insert A

ENERGY 1550 W 500 m 2m 2	SELINY 166W M0 1.9 m fr. BEL MAY 166W M0 1.9 m fr. BEL MAY 160W M0 1.9 m fr. BEL MAY 160W M0 1.9 m fr. Bell MAO 1 100W Month of Bell Month Delegender 1 100W Delegender 1 100W	Optical micrograph	Insert B Element O K AIK C K FeK SiK CaK MgK NiK	Zone A 19.12 8.88 14.57 31.31 3.2 1.14 3.55 9.77	Zone B 29.62 8.17 33.56 11.43 4.81 3.63 3.82 2.01	Zone C 21.45 0 4.7 54.7 0.88 0.5 0 10.57	Zone D 25.65 1.16 8.67 45.2 1.24 2.4 0.38 8.81	Zone E 0.94 0.07 2.55 69.01 0 0 0 15.18	
BEIN V 15.04 BEIN V 15.04 BEIN 15.05 BEINST ENERTISSE	AND TRAVE TRAVELOR MARKAN TRAVELOR MAR	2.5 mm	P K CoK ClK MoL TiK Tensile te: Diameter, Original ai Gage leng Tensile str	0.2 4.76 0 2.45 0.43 tt (in) eea, (in ²) th, (in) ength (nsi	1.06 1.12 0.32 0 0	0 6.57 0 0.62 0 Insert E 0.251 0.0495 1	0.34 5.22 0 0.93 0	0 8.19 0 2.96 0.97 s)	
BEELEVY 18.8.1V SEELEVY 18.8.1V SEELEV	BELIAY: 18.64 WD 15.00 ml Biguing WG ASI TESCAN SEE MAG. 18.64 CC: 28 Biguing Biguing WG ASI TESCAN Stell MAG. 18.64 CC: 28 Biguing Biguing <td< th=""><th> 2.5 mm</th><td colspan="3">Specimen No. Test temperature (%) Specimen No. Test temperature (%) 1 68 2 180 3 300</td><td>292000 5 22 rre Inse Ener 7 7 7 7</td><td colspan="3">292000 5 22 Insert B (8000 Shots) Energy, (ft-lbf) 7 7 7</td></td<>	2.5 mm	Specimen No. Test temperature (%) Specimen No. Test temperature (%) 1 68 2 180 3 300			292000 5 22 rre Inse Ener 7 7 7 7	292000 5 22 Insert B (8000 Shots) Energy, (ft-lbf) 7 7 7		

[1] K. Prantheesh, et al, Mater. Today 46 (2021), p. 7907. doi.org/10.1016/j.matpr.2021.02.567

[2] Ch. Tan, et al, Mater. Des. 196 (2020), p. 109147. doi.org/10.1016/j.matdes.2020.109147

[3] F. Fiorentini, et al, Procedia Struct. Integrity 24 (2019), p. 596. doi.org/10.1016/j.prostr.2020.02.050

[4] Z. Mao, et al, Mater. Sci. Eng., A 830 (2022), p. 142334. doi.org/10.1016/j.msea.2021.142334