
JFP 25, e11, 30 pages, 2015. c© Cambridge University Press 2015

doi:10.1017/S0956796815000179

1

Understanding beginners’ mistakes with Haskell

VILLE TIRRONEN, SAMUEL UUSI -MÄKELÄ and

VILLE ISOMÖTTÖNEN

Department of Mathematical Information Technology, University of Jyväskylä,

P.O. Box 35 (Agora), 40014, Jyväskylä, Finland

(e-mail: ville.tirronen@jyu.fi,samuel.h.uusi-makela@student.jyu.fi,
ville.isomottonen@jyu.fi)

Abstract

This article presents an overview of student difficulties in an introductory functional program-

ming (FP) course taught in Haskell. The motivation for this study stems from our belief that

many student difficulties can be alleviated by understanding the underlying causes of errors

and by modifying the educational approach and, possibly, the teaching language accordingly.

We analyze students’ exercise submissions and categorize student errors according to compiler

error messages and then manually according to the observed underlying cause. Our study

complements earlier studies on the topic by applying computer and manual analysis while

focusing on providing descriptive statistics of difficulties specific to FP languages. We conclude

that the majority of student errors, regardless of cause, are reported by three different compiler

error messages that are not well understood by students. In addition, syntactic features, such as

precedence, the syntax of function application, and deeply nested statements, cause difficulties

throughout the course.

1 Introduction

Beginners’ difficulties in programming have been extensively reported in the litera-

ture. Reports on imperative languages point to difficulties with abstract concepts and

program construction (Lahtinen et al., 2005), problem solving, testing, debugging,

and documentation (Ulloa, 1980), as well as problem analysis (Someren, 1990) and

the interpretation of error messages (Marceau et al., 2011b). More specifically, one

problem seems to be that students attempt to apply naive or natural language-like

solutions that are not appropriate for use with programming languages (Someren,

1990; Pane et al., 2001). Some studies suggest that difficulties in programming courses

may be rooted in personal and social issues (Tinto, 1997; Kinnunen & Malmi, 2006),

while, at the other end of the research spectrum, beginners’ difficulties have been

addressed by identifying non-viable mental models that cause misconceptions and

difficulties (Ma et al., 2011).

FP languages are a strong choice for teaching introductory programming (Felleisen

et al., 2001; Findler et al., 2002; Felleisen et al., 2004), and they have been extensively

studied in the context of the Lisp-family of languages (Felleisen et al., 2004; Bieniusa

et al., 2008; Morazán, 2011; Morazán, 2012). In the present article, we are concerned

with difficulties in the learning FP, specifically in the context of statically typed

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

2 V. Tirronen et al.

ML-like languages. The literature provides several examples of the use of such

functional languages as the main teaching tool (Joosten et al., 1993; Keravnou,

1995; Thompson & Hill, 1995; Blanco et al., 2009), while this flavor of FP has been

found to be difficult for students (Chakravarty & Keller, 2004). Studies indicate that

students struggle with modern type systems (Clack & Myers, 1995), recursion (Segal,

1994), and the ML-style syntax (Joosten et al., 1993). One known challenge is caused

by the transition from imperative languages to a functional language (Joosten et al.,

1993; Clack & Myers, 1995).

The principal motivation for our educational study comes from the indication that

learners’ errors in functional languages can be different from those in mainstream

languages due to different programming constructs. Many FP languages, especially

those of the ML family, have not been deeply studied from the viewpoint of learning

them for the first time. Instead, arguments for, and especially against, the use of FP

languages are often personal opinions and imagined difficulties (Vujoševic-Janicic,

Milena and Tošic, Dušan, 2008) instead of data. However, since teachers’ opinions

on learners’ difficulties are not always completely in line with reality, even in

mainstream languages (Brown & Altadmri, 2014) it seems important to study the

actual difficulties encountered by learners. Understanding the actual mistakes allows

for their mitigation and informs us how to teach the topic.

In this paper, our research interest is to develop an overview of the mistakes

made by students who are learning Haskell as their first FP language and to

document how these mistakes are presented as error messages. We use student

exercise answers as the research data, and by inspecting compiler error messages,

we divide the answers into specific categories that characterize different kinds of

mistakes. The error categories are then subjected to a detailed manual analysis and

classified into subcategories that further characterize student mistakes. Finally, in

the discussion section, we draw conclusions for educators regarding how to improve

teaching FP and briefly discuss the implications of our findings for programming

language designers who intend to support novices. The results of this study can

be compared with similar studies on imperative languages (e.g., Jadud, 2005) and

functional languages (e.g., Heeren et al., 2003; Hage & Keeken, 2006).

2 Related work

This article’s field of study concerns the programming errors that beginner pro-

grammers tend to make and the reasons why such errors occur. This field has

been extensively studied for more than 30 years, both in the context of expert and

beginner programmers. An early example is the pioneering work by the Cognition

and Programming Group at Yale University, led by Soloway et al. (1982), Soloway

& Ehrlich (1984), and Someren (1990). These scholars formulate programming

activities as a goal/plan process, where programmers attempt to achieve their

goals through mental plans (tacit knowledge) that manifest as program code. In

this theory, programming errors arise from the breakdown of the plans, such as

applying inappropriate plans drawn from “preprogramming knowledge” (Bonar &

Soloway, 1985). The still-timely findings of the Yale group posit that misconceptions

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

Understanding beginners’ mistakes with Haskell 3

about language constructs are not the main cause for programming errors (Spohrer

& Soloway, 1986). Instead, Spohrer and Soloway suggest that other errors, such

as boundary problems (e.g., off-by-one error), problems in composing plans (e.g.,

misplaced program code, statements outside conditionals, etc.), misusing logical

operators (confusing logical and with logical or), and interpretation problems

(misinterpreting how the computations are performed), are the main causes of

errors.

Regarding the present study, we note that many of the technical difficulties

documented by the Yale group are highly dependent on the studied programming

paradigm. For example, to have an off-by-one error, the program must include a

numerically indexed container. In a similar vein, having a more complex model of

the language will necessarily result in more difficulties in interpreting the programs.

Another model for programming errors from that period was put forth by Perkins

& Martin (1986), who observed that beginners often suffer from “fragile knowledge,”

that is, knowledge that is either incomplete or missing entirely, inert so that student

cannot recall it when required, misplaced in that it gets applied in the wrong

situations, or conglomerated so that the student attempts to use disparate elements

together. To relate the concepts of fragile knowledge to the present study, we suggest

that various types of fragile knowledge can be more prevalent depending on the

programming language used; for example, highly abstract concepts are harder to

apply in specific situations, leading to increased inert knowledge. Similarly, if the

syntax of the language is homogeneous, it is reasonable to assume that the constructs

of the language would have a higher tendency to conglomerate (cf. (Felleisen et al.,

2004)).

Another contemporary explanation for the prevalence of beginners’ programming

errors was given by Pea (1986). In an attempt to identify language-independent

beginner programmer errors, Pea documented three classes of conceptual mistakes:

parallelism, intentionality, and egocentrism mistakes. Pea suggested that these

classes are different facets of the so-called superbug–the idea that the computer is

capable of intelligently interpreting the programmer’s intent. Like his contemporaries

introduced above, Pea studied the languages of the imperative paradigm. Although

his main theme is certainly relevant for other paradigms, his specifics must be

adjusted. For example, Pea noted that the “parallelism” misconception, evident in

the novice programmer who thinks that executed statements somehow remain active

for the duration of the program, is a correct mental model in some paradigms, such

as logic programming.

The effects of different programming paradigms on programming errors are

gradually being accounted for or even specifically studied. For example, concurrent

programming errors have been categorized by Farchi et al. (2003), and Lu et al.

(2008). The FP paradigm is similarly receiving increased attention. For example,

Chambers et al. (2012) conducted an observational study of the errors made

by novice functional programmers during a programming project. The authors

presented several specific error categories, the most prevalent of which were “signa-

ture” errors, which we understand to refer mainly to type errors. Signature errors

comprised 46% of all errors. The next most prevalent category consisted of run-time

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

4 V. Tirronen et al.

errors and wrong program output, which amounted to 21% of the errors. Finally,

16% were parse errors, and 14% were due to referring to undeclared functions.

Heeren et al. (2003) and Hage & Keeken (2006) collected a large set of student

programs over several iterations of their first-year FP course, and documented

statistics such as error frequencies. The authors note that, at 30%, type errors were

the most common compile time failure, followed in frequency by various syntactic

errors, which were found in 20% of the student attempts. The remaining static

errors, which occurred in 10% of the compilation attempts, were mostly made by

referring to undefined variables.

There are many different ways to study beginner programmer difficulties. The

various ways include studying videotaped “think-aloud” sessions (Soloway et al.,

1982), analyzing students’ process journals (Lewandowski, 2003), and studying a

record of the compilation errors generated by beginner programs. In this article,

we apply the latter method of study. A good example of such a study is that by

Jadud (2005), who documented the kinds of compilation errors that arise when

students learn the Java language. Jadud’s results indicate that syntactical errors,

such as missing semicolons or misspellings of variable names, are the most common

type of beginners’ Java errors. This study was repeated by Fenwick et al. (2009),

who obtained similar results. Fenwick et al. also presented higher-level patterns of

student behavior, confirming, for example, the benefits of starting projects early and

working incrementally.

Denny et al. (2012) presented a study that focused on compile time errors in

Java1. The authors noted that compile time errors consume much of students’ time

and, contrary to common belief, the most common errors are equally difficult for

both lower- and higher-ability students. The most common errors identified in this

article were scoping errors (24%) and type errors (18%).

A more subtle approach to studying novice programmer errors is to observe how

programmers respond to error messages arising from their mistakes. Such a study has

been undertaken by Marceau et al. (2011a; 2011b) in the context of the FP language

Scheme, concluding that error messages often fail to convey information regarding

the cause of the error to the novice programmer. Further, the authors proposed a

rubric for evaluating student responses to error messages. Our experience as teachers

agrees with the somber conclusion of Marceau et al. in that error messages are often

of little use to students. Our focus differs from Marceau et al. in that we wish to

understand which kinds of errors students are likely to make and how these errors

arise from the structure of the language. We use error messages only as the initial

classification for the errors.

The closest reference to the present study is the one by Chambers et al. (2012),

where student errors were collected using an observational method. Our study

complements Chambers’ study as we apply a computer-based analysis as the first

step, similar to the studies by Jadud (2005), Fenwick et al. (2009), and Denny et al.

1 The authors use the term syntax error to refer to scoping and type errors.

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

Understanding beginners’ mistakes with Haskell 5

(2012). Moreover, our method complements the work of Jadud, Fenwick, and Denny

by incorporating a manual analysis step.

3 The course

The present study took place during an elective, eight-week course. The studied

course initially had 88 registered students, and 55 students completed the first

programming exercises. The majority of the participants, second- to fourth-year

students, had already completed the early programming courses. During this course,

we taught the basics of FP using Haskell, covering topics ranging from common

FP constructs, such as recursion and folds (Hutton, 1999), to the use of a Hindley–

Milner-like type system (Damas & Milner, 1982). The latter part of the course

covers more advanced topics, such as type classes (Hall et al., 1996) and applicative

functors (McBride & Paterson, 2008).

Our course emphasizes self-direction on the students’ part, following the contem-

porary trends of blended learning (Garrison & Kanuka, 2004) and online education.

The course material and exercises are online, but we support learning by having 6–8

hours of weekly, non-mandatory, contact teaching. Further, we allow students to

work at their own pace through the provided material, within the general boundaries

of the course schedule. This means that students can opt to spend more time on

earlier topics and complete the course with partial credit, even if they cannot

complete the later parts. The increased reliance on student self-regulation requires

supporting students’ self-directed learning (Isomöttönen & Tirronen, 2013). As part

of this support, we provided students with an exercise assessment system that gives

immediate automated feedback on the students’ programs.

The automated feedback is provided through a web-based IDE consisting of

a basic code editor and a Haskell interpreter. The system produces a report

documenting the compilation errors, the results of the tests defined in the exercises,

and the results of simple static analyses of program structure. The student answers

are stored for grading purposes. The stored answers form an extensive database that

can be used to analyze student performance.

4 Analysis procedure

When students submit their exercises for assessment, the system stores the submitted

programs, the automated evaluation report, and a time stamp for later perusal. After

the course, we took all the submitted exercises and compiled them, making a record

of the compilation errors. We used the Glasgow Haskell Compiler (GHC), version

7.6.2, which was the most commonly used contemporary Haskell compiler at the

time of the data collection. We also tested each answer that could be compiled for

run-time errors. In total, we collected 4,843 student answers and the related errors.

There were 509 exact duplicates among the answers, which were removed from the

set. The duplicates are most likely due to the students resubmitting their answers

again either accidentally or to ensure that they were observing the latest assessment

results.

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

6 V. Tirronen et al.

Table 1. Frequency of error messages during the course

Name Sessions Attempts Messages Students Exercises Kind

Total 327 1,453 2,265 55 18 various

CouldntMatch 178 590 1,151 53 16 type

ParseError 138 326 326 51 16 syntax

NotInScope 109 217 384 46 16 syntax

NoInstance 23 51 75 15 8 type

NonExhaustive 22 63 63 15 7 run-time

TemplHaskell 17 31 31 16 9 syntax

OutOfRange 11 39 41 9 2 run-time

CantDeduce 7 17 17 7 1 type

InfiniteType 7 16 22 5 6 type

LacksBinding 7 11 11 7 7 syntax

NegativeExp 5 24 34 3 1 run-time

ConflicDef 5 15 17 5 3 syntax

ViewPatterns 5 7 7 5 3 syntax

HeadEmpty 5 7 7 4 3 run-time

StackOverflow 4 13 13 4 2 run-time

ScopedTypeVars 3 3 3 3 3 syntax

ArgsNum 3 3 3 2 2 syntax

TypeOperators 2 3 3 2 2 syntax

UndefinedArrayElem 1 11 11 1 1 run-time

NegativeIndex 1 6 6 1 1 run-time

RegexFail 1 5 5 1 1 syntax

LastEmpty 1 5 5 1 1 run-time

AmbiguousOcc 1 3 24 1 1 syntax

TooManyTypeArgs 1 2 2 1 1 syntax

CommentBracketMiss 1 1 1 1 1 syntax

IllegalDataDecl 1 1 1 1 1 syntax

TailEmpty 1 1 1 1 1 run-time

DuplicateSignatures 1 1 1 1 1 syntax

Answers that were returned anonymously were also removed, as we had observed

that the students often used anonymous logins to the exercise system as a quick way

of trying out unrelated programs. We then grouped the student answers into sessions,

each of which represented a continuous slice of a single students’ work, with no

more than 40 minutes of idle time between the submissions. There were 890 sessions

in total for the course. During these sessions, the students encountered 65 different

types of errors, 26 of which originated from the compiler or the run-time system

and 39 of which were related to failing to pass the tests included in the exercises.

The frequencies of errors emitted by the compiler and the run-time system are

listed in Table 1. The first column in the table shows the labels given to different error

messages (later referred to as the main error categories and detailed in Sections 6.1–

6.3), the second column of the table gives the number of student sessions in which

the error occurred, the third column lists the number of times a student submitted

an exercise with the error for evaluation, and the fourth column gives the total

number of error messages over all attempts, each of which can produce multiple

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

Understanding beginners’ mistakes with Haskell 7

errors. The next two columns give the number of students who encountered the

error and the number of exercises in which the error was emitted. The final column

classifies the error types between type-, run-time, and syntax-errors depending on

their usual cause. Thus, reading the NoInstance line, we can see that during the

course there were 23 student sessions in which the NoInstance error appeared and

a total of 51 answer submissions (attempts) in which the error was thrown at least

once. The error was thrown 75 times and 15 students encountered this error, which

appeared in eight different exercises. Lastly, the error was related to the type system.

We focus on errors that were encountered by more than one student during the

course (the upper part of Table 1). The rest of the errors are accounted for the

following sections when they, in combination, add significantly to the results. For

each main error category, we manually studied all student sessions where the error

occurred. During the investigation, we attempted to identify meaningful phenomena

inside and across error case instances, and generated descriptive labels (codes). After

the first round of coding, we picked the most relevant codes and coded the student

answers again using the generated codes. In this phase, similarities between many

codes became apparent and, we were able to reduce the number of codes while

covering the relevant aspects in the data. The coding of the data was performed by

the course instructor and one teaching assistant using a simple tool (see Figure 1)

developed for viewing student practice sessions. Because the timestamps and earlier

attempts are visible when using of this tool, this method of analyzing the submissions

gives us a more comprehensive view of the students’ thought processes compared to

analyzing answers individually.

5 Limitations

Our study is based on data collected during a single course instance. There are some

important limitations on the interpretations that can be drawn from it. Primarily,

when looking at the student answers, we cannot be completely certain about the

goal toward which the student was working. For example, we observed cases where

a student had successfully completed an exercise and returned to tinker with it. We

also found that students often submitted incomplete exercises, apparently just to

see what would happen. In other cases, students might have had outside help either

from the course supervisors or other students, which could have reduced the effort

taken to complete the exercise.

Further, our means for data collection do not completely support all the analyses

we wish to perform. For example, we did not track total student activity with the

web-based exercises, and when measuring the time it took the students to complete a

particular exercise, we could measure only the time interval between the first recorded

attempt of submitting an exercise and the first successful attempt. This discounts the

time used before the first submission and creates a difficulty in interpreting when

the first attempt arrived on Monday morning and the exercise was completed late at

Friday. For lack of a better measure, we divided sessions apart when there was an

idle period lasting longer than 40 minutes and thus discounted all idle time longer

than half an 40 minutes from the time data.

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

8
V
.
T
irro

n
en

et
a
l.

answer.4125 - mavaoksa - 2013-09-30T20:47:18.832Z -
/exercises/gui/ProductExercise -

module Exercise where
import Prelude hiding (product)

product :: [Integer] -> Integerproduct [x] = [x]
product (x:xs) = x * product xs

* ScopedTypeVars <unknown>.hs: 4:
44=ScopedTypeVariables is not enabled

Tags:
baseCase

answer.4123 - mavaoksa - 2013-09-30T20:45:41.732Z -
/exercises/gui/ProductExercise -

module Exercise where
import Prelude hiding (product)

product :: [Integer] -> Integer
product [] = []
product (x:xs) = x * product xs

* CouldntMatch Compilation error: input:5:14:
Warning: Couldn't match expected type `Integer'
with actual type `[a0]' In the expression: [] In an
equation for `product': product [] = []

answer.4124 - mavaoksa - 2013-09-30T20:47:04.456Z -
/exercises/gui/ProductExercise - ["baseCase"]

module Exercise where
import Prelude hiding (product)

product :: [Integer] -> Integer
product [x] = [x]
product (x:xs) = x * product xs

* CouldntMatch Compilation error: input:5:15:
Warning: Couldn't match expected type `Integer'
with actual type `[Integer]' In the expression: [x]
In an equation for `product': product [x] = [x]

(c) (d)

(b)

(a)

Fig. 1. The analysis tool for open coding. The view shows a single session, divided into three stacks. Each paper in a stack represents a single answer

submission, showing when the answer was submitted, the answer itself, and the error messages associated with it. The stack in the middle (a) has the

submission under analysis along with the related error messages, and the left (c) and right (d) stacks contain answers before and after the middle one,

respectively. The box at the top (b) is for viewing and editing codes associated with the current submission. Users can navigate between submissions

and sessions using the arrow keys.

https://doi.org/10.1017/S0956796815000179 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0956796815000179

Understanding beginners’ mistakes with Haskell 9

We must also note that the trends observed in this article are, by necessity,

influenced by the set of exercises given to the students. For instance, we had an

exercise that was specifically designed to challenge the students with the Haskell

type system, and when we report that 69% of type errors were related to confusion

between types, we must also note that 33% of such errors occurred with this specific

exercise. Similarly, all errors where students indexed an array out of its bounds

happened in the single exercise where arrays were introduced.

Similarly, failures to follow the exercise specifications are an interesting source of

beginner difficulties, but they are harder to analyze without limiting the discussion

to the context of a specific set of exercises. We have thus limited our data to errors

arising from the compiler and the run-time system. This means that we do not

explicitly inspect code that fails to follow our exercise specifications. Regardless, all

such code has been part of the analysis process due to the inevitable compilation

errors in such exercise submissions.

Finally, we must reiterate that the initial classification of the error types was done

according to the types of error messages emitted by the GHC, version 7.6.2, and it

is more than likely that various errors are reported differently with other compilers.

This should not affect the manual analysis of the errors other than the structure in

which the errors are presented in this article.

6 Results

An overview of the frequencies of the student errors is given in Figure 2. This table

summarizes the number of student sessions within the main error categories arising

from classifying compiler and run-time error messages. The main error category

labels in the figure are detailed in Sections 6.1–6.3 and refer to specific kinds of

errors emitted by the compiler and the run-time system. In the figure, the common

error categories are annotated with the most common sources of the error and their

ratio. These are indicated by a label and divider on the bar. In the figure, we use the

code Type to refer to difficulties with the type system, Syntax to refer to conceptual

difficulties with the Haskell syntax, and Typo to refer to errors resulting from simple

mistakes such as misspelling a variable name. The codes Constant and WrongNum

refer to mistakes with the Haskell numeric types, while the code MissingCase refers

to missing cases in recursive functions.

The error distribution in Figure 2 is exponential: the majority of errors are

captured by three main error message categories, and there is a long tail of less

frequent errors, which only a few of the students encountered during the course.

Leading this distribution are mistakes with types (CouldntMatch, NoInstance) and

difficulties with syntax (ParseError, NotInScope). These errors are followed by run-

time errors (NonExhaustive, OutOfRange) and a long tail of rare error types that arise

from students triggering the more peculiar features of the compiler with obscure

syntactic difficulties.

A closer inspection of the student answers reveals that difficulties with syntax are

present in almost all main error categories. This observation holds even when simple

mistakes, such as typographical errors (e.g., misspelled words, omitted symbols;

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

10 V. Tirronen et al.

0 20 40 60 80 100 120 140 160 180

TypeOperators
ArgsNum

ScopedTypeVars
StackOverflow

HeadEmpty
ViewPatterns

ConflicDef

NegativeExp
LacksBinding

InfiniteType
CantDeduce

OutOfRange
TemplHaskell

NonExhaustive
NoInstance

NotInScope
ParseError

CouldntMatch Type

Syntax

Typo

∗ ∗) Mistakes with numerical types (Constant,WrongNum)
∗∗ ∗∗) Omitted cases (MissingCase)

Syntactic difficulties

2
3
3
4
5
5
5
5
7
7
7

11
17

22
23

109
138

178

Number of sessions

M
ai

n
er

ro
r

ca
te

go
ri

es

Fig. 2. Number of student work sessions where a given error occurred. See Sections 6.1–6.3

for explanations of the labels.

coded as Typo), are removed from the data, suggesting that the syntax of the

language was poorly understood by the students. In accordance with the literature

(Marceau et al., 2011a), we observed that when encountering an error message,

students often reacted inappropriately by either attempting to fix wrong parts of

the program or by changing the program blindly without regard to the actual error.

In our data, this problem is present in most of the error categories displayed in

Figure 2, and particularly in the CouldntMatch category.

In the following sections, we present the results of the manual analysis of the error

categories in Figure 2. For each category, we attempt to recategorize the different

errors according to their observed root cause by manual inspection. We present

the results grouped according to similarity between the categories, beginning with

the error categories that relate to types, continuing with the ones relating to the

syntax, and concluding with the run-time-related error categories. The subcategories

obtained through the manual analysis overlap, meaning that a single student session

can fall into several of the subcategories.

6.1 Error categories related to types

In this section, we analyze the error categories generally related to types: Couldnt-

Match, NoInstance, CantDeduce, and InfiniteType. The code CouldntMatch represents

errors where an operation expecting a specific type was given an incompatible type;

NoInstance refers to errors where a function with a type class constraint is given argu-

ments that do not satisfy the constraint; and CantDeduce refers to cases where the ex-

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

Understanding beginners’ mistakes with Haskell 11

Syntax

Precedence

Type

37

54

123

Constraint

WrongNum

Constant

3

6

14

Other 7

0 20 40 60 80 100 120
ListVsElem 7

CouldntMatch

NoInstance

InfiniteType

CantDeduce

Fig. 3. Breakdown of the different causes of the type errors. The x -axis represents the

number of student sessions.

pression might be well typed, but the compiler cannot infer the proper type automat-

ically. Finally, InfiniteType labels situations where the inferred type of a term would

be infinite, such as in let x = (’x’,x) in x :: (Char,(Char,(Char....

The frequencies of these error categories are depicted in Figure 2, and they make up

roughly 40% of all errors. They are present in 22% of all student exercise sessions.

6.1.1 CouldntMatch

When analyzing student sessions with the code CouldntMatch, we identified three

main causes for this error message category: (1) actual type errors (Type), (2)

errors caused by difficulties with precedence (Precedence), and (3) issues with

syntax (Syntax). The number of student sessions where the difficulties fell into

these subcategories is depicted in Figure 3.

In 69% of the sessions with CouldntMatch errors, the student passed an argument

of the wrong type to a function or exhibited a lack of understanding of the type

system. One-third of such sessions were concerned with an exercise specifically aimed

to engage students with the type system, as depicted in Figure 4. Of the remaining

sessions where the types did not match the most common error was mistaking an

element inside a container, such as a list, with the bare element. Sessions where types

were confused are labeled with the code Type in Figure 3.

Difficulties with precedence and the use of parentheses, labeled with the code

Precedence in Figure 3, contributed to roughly 30% of the difficulties resulting in

the CouldntMatch category of errors. The main cause for the high prevalence of

errors related to precedence seems to be the ML-style function application syntax,

where the function application is written as a juxtaposition without parentheses or

punctuation. This causes student errors such as writing

fSort xs = concat sortBy comparing length group sort xs

in place of

fSort xs = concat (sortBy (comparing length) (group (sort xs))).

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

12 V. Tirronen et al.

ex1 :: (a,b) -> a
ex1 = undefined
ex2 :: (a -> b) -> (b -> c) -> (a -> c)
ex2 = undefined
ex3 :: (a -> b) -> (c,a) -> b
ex3 = undefined
ex4 :: [a] -> [a] -> [a]
ex4 = undefined
ex5 :: (a, b) -> (a -> b -> c) -> (a,c)
ex5 = undefined

Fig. 4. The exercise designed to engage students with the type system. The student’s goal

was to give any well typed expression of the above types. This exercise appeared in context

of other, more semantically meaningful, exercises on types and was intended to verify the

essential understanding of types. This exercise was the leading cause of type errors during

our course.

This issue is further exacerbated by the introduction of the function composition-

(.) and the explicit application- ($) operators that are common in Haskell programs.

These operators allow the programmer to write any of following definitions with the

same effect as the previous definition:

fSort xs = concat . sortBy (comparing length) . group . sort
xs
fSort xs = (concat . sortBy (comparing length) . group . sort) xs
fSort = concat . sortBy (comparing length) . group . sort

These operators seem to cause difficulties for many students, and we observed that

blind testing was the dominant strategy employed in solving problems arising from

these constructs. In addition, our subjective teaching experience was that a large

number of students did not internalize the use of these operators during the entire

course.

Finally, we observed that 20% of student sessions with the CouldntMatch errors

were influenced by difficulties with other parts of the Haskell syntax (marked with

the code Syntax in Figure 3). For example, errors that would be syntactic errors in

many other languages are admitted as valid Haskell expressions due to Haskell’s

flexible syntax, but are rejected by its type checker. As a pathological example, one

student repeatedly wrote

product (x:xs) = x (*) product xs,

which seems to be a misunderstanding of the syntax. However, this expression is

parsed as a function application, where function x is passed three arguments (the

(*), the product, and the xs), causing a relatively involved type error to be

presented to the student.

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

Understanding beginners’ mistakes with Haskell 13

6.1.2 NoInstance

The NoInstance errors occur when an ad hoc polymorphic function is used with

values of type for which the function is not defined. The primary cause of this error

in our experiment is Haskell’s overloading of numerical constants. In 61% of these

errors, a numerical constant was written in place of a term with a non-numerical

type, such as a list or a function (see Figure 3, code Constant). In 26% of these

error cases, the student had confused two numerical types or attempted to use an

operator that works on a different numerical type (e.g., using division with integers;

see Figure 3, code WrongNum). Almost all other NoInstance errors were due to the

use of an ad hoc polymorphic function inside the student’s own function definition

without an appropriate type class constraint (see Figure 3, code Constraint), as

demonstrated by the following function definition

group :: [a] -> [[a]]
group [] = []
group (x : y) = (x : z) : group w

where (z, w) = span (x ==) y

The operator == is used without constraining the type a to be comparable

(Equation).

6.1.3 InfiniteType and CantDeduce

The InfiniteType error is thrown when the student’s definition is inferred to have an

infinite type by the compiler. There were various reasons for these errors, including

confusing a container, such as a tuple, with one of its elements. However, since the

number of such errors was small and their causes varied, we could not discern a clear

pattern, leading us to label their cause with the code Other in Figure 3. Similarly,

the CantDeduce error messages are emitted when the compiler cannot automatically

deduce the type for a given variable. In our data, this error is reported only when a

student has confused lists (i.e., [Int]) with their elements (i.e., Int) in definitions

that involve type class constraints, which makes this code a special case of the more

common CouldntMatch type of errors (ListVsElem in Figure 3).

6.2 Error categories related to the syntax

This section reviews the error categories related to the syntax. The codes in question

are the code ParseError, labeling situations where student program could not be

parsed; NotInScope labeling cases where the compiler has encountered an undefined

symbol; and the code TemplHaskell is given to errors that accidentally invoke

the GHC metaprogramming system, which in our course are uniformly caused by

writing expression outside of a definition. Finally, the LacksBinding errors are due

to writing a type signature without the accompanying function definition, and the

code ConflicDef arises when multiple definitions are given to the same variable.

Finally, the code ArgsNum labels errors caused by defining a function by writing

out different cases for it, but placing a different number of arguments for the cases.

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

14 V. Tirronen et al.

The remainder of error codes refer to accidentally triggering GHC extensions with

the same name and are uniformly caused by difficulties with syntax.

The codes ParseError and NotInScope make up for one-quarter of all error

messages, and a closer inspection reveals that the error codes TemplHaskell, Lacks-

Binding, ConflicDef, ViewPatterns, ScopedTypeVariables, ArgsNum, TypeOperators,

RegexFail, and TooManyTypeArgs are also caused by difficulties with syntax, while

the code CommentBracketMiss is caused by omitting the closing brace of the

comment block. We find that the majority of syntactic errors are caused by simple

mistakes such as typos or missing parentheses. However, a significant part of these

errors seem to be related to the misunderstanding of the semantics of Haskell.

Altogether, similar to the studies by Jadud (2005) and Fenwick et al. (2009), we

found that various syntax errors were also frequent in our data.

6.2.1 ParseError

The most common code related to syntactic errors in our data was labeled with

the code ParseError. Such errors arise when the compiler is unable to parse the

students’ programs due to mismatched brackets, faulty indentation, misplaced

=-operators, or a similar grammatical mistake. During the manual examination

of the student sessions with this code, three distinct categories of errors surfaced: (1)

faulty understanding of the syntax (Syntax), (2) missing or misplaced parentheses

(Parentheses), and (3) typographical errors (Typo). The number of student sessions

with these difficulties is depicted in Figure 5.

In this categorization, we distinguished typos and other small mistakes from

apparent misunderstandings by examining the student sessions sequentially (see

Figure 1 showing the analysis tool for explanation). If, for example, a student had

written == instead of =, but corrected it mere seconds later, it is reasonable to

assume that the error was not caused by a lack of knowledge. On the other hand,

if an error was repeated in multiple parts of the program and it carried on to

subsequent revisions of the same exercise without a clear indication that student

was focused on correcting some other error, we assume that the student did not

understand the syntax or the given error message.

A faulty understanding of the syntax (the code Syntax) seems to have affected

roughly half of the student sessions labeled with parse errors. The gaps in student

understanding include misusing the = -operator in the function definition, omitting

commas from tuples, and using lambda-expression syntax incorrectly. The frequency

of these errors exhibited a slight tendency to diminish toward the end of the course.

Missing parentheses, both “()” and “[]”, appeared in one-quarter of the

parse error messages (see Figure 5, code Parentheses). One cause could be the

rather deep nesting of expressions common to Haskell and functional languages in

general. A noticeable subset of these errors consists of omitting parentheses when

pattern matching function arguments, e.g., by writing f x:xs = ... instead of

f (x:xs) = The cause seems similar to the mistakes related to the issues

of precedence and function application observed in Section 6.1; the students had

general difficulties in recognizing operator and function application precedence.

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

Understanding beginners’ mistakes with Haskell 15

Typo

Parentheses

Syntax

12

42

66

Scope
TypeVsValue

Syntax
Typo

8
11

41
53

Syntax
Mistakes

7
10

MissingFun 7

SameParam 5

Syntax 5

Syntax 3

Syntax 3

Syntax 2

Syntax 1

Syntax 1

Typo 1

ParseError

NotInScope

TemplHaskell

LacksBinding

ConflicDef

ViewPatterns

ScopedTypeVariables

ArgsNum

TypeOperators

RegexFail

TooManyTypeArgs

CommentBracketMiss

Fig. 5. Breakdown of the different causes of the syntax errors. The x -axis represents the

number of student sessions.

When investigating the student answers with various typos, we did not discover

any pattern that could be interpreted as specific to Haskell or FP in general (see

Figure 5, code Parentheses). Similar to other languages, typos cause not only parse

errors but also errors indicating undefined variables or mismatched types.

6.2.2 NotInScope

Errors labeled with the code NotInScope refer to situations where the compiler has

encountered an undefined symbol. When reading through the student answers in

sessions with this code, we discovered four distinct causes for these errors: (1) typos

and other small mistakes (Typo), (2) faulty understanding of the syntax (Syntax),

(3) confusing type-level variables with value-level variables (TypeVsValue), and (4)

mistakes with the scoping rules of the language (Scope).

The number of student sessions influenced by these types of errors are shown in

Figure 5. As expected, 49% of these errors can be explained by mistakes that imply

no misconceptions on the part of the students and are usually quickly corrected.

However, 38% of student sessions with NotInScope errors were influenced by

difficulties with the basics of the Haskell syntax. The most common difficulties

were relatively minor issues, such as forgetting to capitalize the symbols True or

False or using Java-style operator names such as != in place of their Haskell

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

16 V. Tirronen et al.

equivalents (i.e., /=), but there were a few more serious cases where the students

exhibited a weak understanding of the structure of the language in general. For

example, omitting the definition of function parameters was common, occurring

in 22 student sessions. In some cases, this seemed due to students confusing the

usual variable naming conventions with the actual syntax for passing arguments

to the function. Some students seem to have assumed that the names x and xs
automatically refer to the head and the tail of the argument or that variables a
and b refer to the first and second arguments of the function. Examples of this

error include product = x * product xs and or = a || b. In contrast to

the cases of missing arguments that occurred for more experienced students, these

errors persisted for many attempts and often include a host of other syntactic

difficulties. The issues are labeled with Syntax in Figure 5.

Confusing type- and value-level variables is another relatively common mistake

that causes NotInScope errors; these are labeled with the code TypeVsValue in

Figure 5. In exercises where type variables were prominent, many students referred

to the names of the type variables representing the type of the function parameter

instead of the actual function parameter.

We also observed some difficulties where the error was actually due to the scoping

rules of the language (see Figure 5, the code Scope). In isolated cases, students

attempted to refer to names across function definitions. More commonly, however,

the difficulties with the scoping rules were caused by the list comprehension syntax,

where the variable introduction order is significant, in contrast to the rest of the

language where it is not2. In some cases, students seemed to have assumed that the

list comprehensions had constraint solving properties. For example, while generating

a list of triples, a student specified two of the numbers and a condition that must

hold for the third, with the apparent assumption that the program itself would figure

out the proper value for the conditioned variable:

pythagoreanTriples :: Integer -> [(Integer,Integer,Integer)]
pythagoreanTriples n = [(a,b,c) | b <- [1..n], a <- [1..n]

,aˆ2 + bˆ2 == cˆ2]

6.2.3 Other syntax-related error categories

The more infrequent errors in our data were also ultimately due to syntactic

difficulties. For example, the code TemplHaskell is caused by naked top-level expres-

sions. The error message for this mistake comes from the GHC’s metaprogramming

language extension, which, unfortunately, overrides the sensible default error message

in our online exercises. About half of these errors are simple mistakes (see Figure 5,

code Mistakes), such as forgetting to properly indent program code, while the

remaining errors are due to difficulties with the Haskell syntax in general (see

Figure 5, code Syntax).

2 Discounting the do notation to which little attention was paid during the course.

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

Understanding beginners’ mistakes with Haskell 17

The errors with code ConflicDef arise from giving multiple contradictory defini-

tions for the same variable (see Figure 5, code SameParam). In our data, this error

is invariably exhibited by giving the same name to several parameters of the same

function. In most cases, this seems to arise from blind testing, but in some cases, it

seems that students assumed that Haskell patterns can be non-linear. For example,

in an exercise requiring student to write program to remove consecutive duplicates,

we saw the following attempt,

destutter [] = []
destutter (x:xs) = x : destutter’ xs x
destutter’ (x:ls) x = destutter’ ls x
destutter’ (y:ls) _ = y : destutter’ ls y

which only makes sense under non-linear pattern matching.

The remaining codes are all due to syntactic difficulties with Haskell. The

LacksBinding error is due to a type signature without the accompanying function

definition. This typically occurs when the function name is misspelled, or when the

definition is accidentally commented out. Similarly, the ArgsNum error occurs when

the student mistakenly places a different number of arguments in different cases

of the same function. The codes ScopedTypeVariables, ViewPatterns, TypeOperators,

and RegexFail refer to the inappropriate use of language extensions, but in practice

are caused by difficulties with syntax, most often exhibiting some confusion between

type- and value-level expressions. Finally, the code TooManyTypeArgs signifies giving

too many arguments for a type constructor, which occurred due misunderstanding

the syntax, and the code CommentBracketMiss indicates the omission of closing

comment brace. These errors are labeled with the codes Syntax and Typo in Figure 5.

6.3 Error categories related to run-time

The codes NonExhaustive and OutOfRange (see Figure 2) represent the run-time

errors that were caught by the GHC run-time system during the testing of the student

programs by our exercise system. The code OutOfRange indicates errors stemming

from indexing outside the bounds of a container such as an array. Similarly, the

code NonExhaustive indicates a run-time error caused by pattern matching with a

non-exhaustive set of patterns, none of which match the incoming data. Accessing

containers outside of their bounds was relatively rare, occurring only in student

sessions 13 during the course, whereas lacking an essential pattern in definitions was

more common.

6.3.1 NonExhaustive, HeadEmpty, StackOverflow, and TailEmpty

The run-time errors NonExhaustive, HeadEmpty, StackOverflow, TailEmpty arise from

similar mistakes. Non-exhaustive pattern matches make up the fourth most common

code, NonExhaustive, which is a run-time error that is caused by partial functions.

In our data, this error occurs most commonly when the student has forgotten to

include a base case for a recursive function (see Figure 6, code MissingCase). In

our data, missing base cases often arise from cases where there is more than one

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

18 V. Tirronen et al.

Typos
PartialFunc

Syntax
MissingCase

2
5

9
17

Logic

Example

EmptyArray

1

2

10

Logic 5

PartialFunc 5

CaseOrder

MissingCase

Logic

2

2

2

OffByOne 1

OffByOne 1

PartialFunc 1

PartialFunc 1

NonExhaustive

OutOfRange

NegativeExp

HeadEmpty

StackOverflow

UndefinedArrayElem

NegativeIndex

LastEmpty

TailEmpty

Fig. 6. Breakdown of the different causes of run-time errors. The x -axis represents the

number of student sessions.

base case. For example, the pattern [x] is left out when cases [] and x:y:xs
are included. This can either happen directly, or by first correctly matching x:xs
and [] and then using a partial function, such as head on the remainder xs. In

other words, the student does not know, or does not want to use, the nested pattern

x:y:xs, making it harder to notice the missing base case.

Likewise, StackOverflow errors are sometimes relate to omitting the base case.

Unlike NonExhaustive errors which terminate the program, some missing cases cause

the program to enter infinite recursion, consuming all available resources before

terminating. Furthermore, some run-time errors under the code StackOverflow result

from the wrong order of an otherwise complete set of patterns. Haskell matches

patterns from the top down, and sometimes students had an all capturing general

case pattern that shadowed the necessary base cases. Although this pattern occurs

in conjunction with the code StackOverflow in our data, it is a viable cause for other

run-time errors as well.

Another common difficulty, restricted to a limited number of students, was to

completely omit the base case. A mundane explanation for this is that the students

started from the recursive case and, being absorbed by the work, simply forgot to

complete the assignment. Overall, missing cases make up 53% of NonExhaustive

errors, while the rest are difficulties with syntax.

Missing base cases have been studied in the CS1 literature (Kahney, 1983; Segal,

1994; Haberman & Averbuch, 2002) where they are often attributed to faulty

mental models or misconceptions caused by analogies used in teaching. In our case,

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

Understanding beginners’ mistakes with Haskell 19

we did not detect any general misconceived mental model explaining the difficulties;

instead, we saw difficulties in generalizing the language constructs and noticing the

less obvious base cases.

The use of partial functions, coded with as PartialFunc and also reported under

codes HeadEmpty, NonExhaustive, and TailEmpty, causes errors outside of recursive

definitions. In these cases, students failed to account for edge cases when using

partial functions from Haskell standard libraries.

Syntactic difficulties (see Figure 6, code Syntax) were also a prominent cause of

run-time errors. For example, 19% of the NonExhaustive error cases were caused

by pattern matching a list into the head and tail without a real need to do so. Our

course has more examples where lists are pattern matched than those where they are

used as is. This suggests that the cause of the spurious pattern match is that most

examples concerning lists use pattern matching and the students simply follow the

convention without considering why. This can be linked to the misplaced knowledge

concept described by Perkins & Martin (1986). In addition, we saw an example

in which a student had refactored code by moving the base case of a function to

a locally defined auxiliary function, leaving the program with a spurious pattern

match.

Many other kinds of syntactic mistakes led to executable programs that failed

with a run-time error (Figure 6, code Syntax). For example, one student wrote

destutter :: Eq a => [a] -> [a]
destutter [] = []
destrutter (x:xs)

| x == head xs = destrutter xs
| otherwise = x:(destrutter xs)

where the misspelling of destutter led to two, very partial, function definitions.

6.3.2 OutOfRange, UndefinedArrayElem, and NegativeIndex

Errors that occur when an array is indexed outside its bounds are labeled with the

code OutOfRange, while the codes UndefinedArrayElem and NegativeIndex are special

cases of this error. These errors were relatively common in the array processing

exercise in the course, where students were required to check whether a given

array contained a palindrome. The most common cause of OutOfRange errors was

failing to check whether the array was empty (see Figure 6, code EmptyArray).

We conjecture that the failure to recognize empty arrays was compounded by the

convention of reporting the array bounds instead of the array length in the array

library we used (Data.Array). Students might have mistaken the upper bound

with the length. Other causes of this error were arithmetic mistakes (Figure 6,

code Logic) and writing the program so that it worked only for the example case

presented in the exercise assignment (see Figure 6, code Example). Finally, the code

UndefinedArrayElem was caused by off-by-one errors (OffByOne) while constructing

an array while the NegativeIndex error was caused by array underflows in other

situations (OffByOne).

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

20 V. Tirronen et al.

6.3.3 NegativeExp

Last, we saw many errors reporting the computation of negative exponents for

integral types. All instances of this error arose from an exercise where the students

were asked to convert a list of bits to an integer and vice versa. In all cases,

these errors were due to mistakes in program logic, most commonly occurring

when decrementing the exponent with each recursive step instead of incrementing it.

Although this exercise would have been easy to complete by following the intended

binary representation of least significant bit first, many students wrote the recursion

in order of most significant bit first, requiring them to carry the exponent as auxiliary

value throughout the computation. This order results in recursive structure that is

different from that of the structural recursion exercises along with which this exercise

appeared with, which can have had an effect on the student difficulties at this point.

6.4 Difficulty of the errors

The impact of the various errors on student productivity is depicted in Table 2.

This table shows an approximation of how long it took the students to excise

certain kinds of errors from their programs and was derived by measuring from

the time when the student first submitted an answer with a given type of error

message to the time when a submission without this type of error was received.

This measuring scheme implies that if a student had multiple consecutive errors of

the same type, their time span is summed. More critically, the measurement does

not contain information about the persistence of individual errors, only about the

main categories of errors in the program. As explained by Marceau et al. (2011a),

deducing whether a programming error was fixed is not possible simply by observing

that the particular error message is no longer present. The table can only estimate

the difficulty of problems that are characterized by the appearance of certain types

of errors.

The effect of the different exercises must also be taken into account when

inspecting the table. For example, ViewPatterns errors occurred mostly in exercises

dealing with type system, which was observed to be a difficult topic for our students.

Similarly, the NegativeExp occurred solely in a recursive exercise requiring students to

convert natural numbers between binary and decimal representations. This exercise

was also observed as difficult for the students.

The table hints that, in total, type errors consumed most of the students’ time,

followed by syntax errors. Run-time errors, although individually difficult to solve,

occurred less frequently and thus took up less time in total.

The reasons for the abundance of type errors are likely manyfold: the flexible

syntax of Haskell results in many different mistakes to be reported as type errors,

the difficulties in understanding the Hindley–Milner style type system result in more

type-related misconceptions, and the way the type errors are reported may cause

them to be more difficult to interpret.

In total, syntax errors consumed much of the students’ time, but seemed indi-

vidually fast to correct. The obvious exceptions are ViewPatterns, ArgsNum, and

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

Understanding beginners’ mistakes with Haskell 21

Table 2. Error survival rates. The first four columns specify the percentage of errors solved

in given amount of time. The fifth column states how many times the error (re)appeared, and

the last two columns present the total time the error remained in student’s code and the average

time for the errors to disappear

Total Average

1 min 5 min 15 min 30 min Total Time Time

CouldntMatch 40% 77% 94% 99% 228 15h 17m 4m

CantDeduce 73% 82% 91% 100% 11 41m 4m

InfiniteType 60% 80% 100% 100% 5 13m 3mty
p
e

NoInstance 37% 85% 100% 100% 27 1h 1m 2m

LastEmpty 0% 0% 0% 0% 1 40m 40m

NegativeExp 20% 40% 80% 80% 5 48m 10m

UndefinedArrayElem 50% 50% 100% 100% 2 12m 6m

StackOverflow 25% 25% 100% 100% 4 19m 5m

OutOfRange 33% 67% 94% 100% 18 1h 21m 5m

IndexTooLarge 0% 50% 100% 100% 2 8m 4m

NonExhaustive 27% 77% 92% 100% 26 1h 42m 4m

HeadEmpty 50% 100% 100% 100% 4 5m 1m

NegativeIndex 75% 100% 100% 100% 4 4m 1m

ru
n
ti
m

e

TailEmpty 100% 100% 100% 100% 1 1m 1m

ViewPatterns 17% 50% 67% 100% 6 53m 9m

ArgsNum 67% 67% 67% 100% 3 19m 6m

RegexFail 0% 50% 100% 100% 2 11m 6m

ParseError 60% 86% 98% 100% 173 6h 21m 2m

LacksBinding 62% 88% 100% 100% 8 17m 2m

NotInScope 67% 91% 98% 100% 127 3h 52m 2m

ConflicDef 75% 88% 100% 100% 8 14m 2m

ScopedTypeVars 0% 100% 100% 100% 2 3m 2m

TemplHaskell 64% 100% 100% 100% 14 17m 1m

DuplicateSignatures 0% 100% 100% 100% 1 1m 1m

TypeOperators 100% 100% 100% 100% 2 1m 0m

AmbiguousOcc 100% 100% 100% 100% 3 1m 0m

IllegalDataDecl 100% 100% 100% 100% 1 0m 0m

sy
n
ta

x

CommentBracketMiss 100% 100% 100% 100% 1 0m 0m

RegexFail, which rank among the most time-consuming error messages. All these

errors are relatively uncommon and likely to occur in cases where the student’s code

is in disarray. For example, the code ViewPatterns occurs most readily when student

confuses type- and value-level expressions.

Run-time errors consumed the least total time, but there are some common run-

time errors, such as OutOfRange, StackOverflow, and NegativeExp, that consume

significantly more time than other common errors even though they are caught by

the tests in our web exercise system as quickly as compile time errors are. In the case

of the code NonExhaustive, this difficulty might be due to difficulties in understanding

the concepts of recursion and pattern matching rather than difficulties in identifying

the cause of the run-time error. The code OutOfRange occurs only in exercises

related to array processing. Arrays are often regarded as a difficult topic by CS

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

22 V. Tirronen et al.

0 0.1 0.2 0.3 0.4 0.5 0.6

3

2

1

CouldntMatch

CouldntMatch

CouldntMatch

ParseError

ParseError

ParseError

NotInScope

NotInScope

NotInScope

0.44

0.55

0.53

0.4

0.32

0.27

0.15

0.14

0.2

C
ou

rs
e

pr
og

re
ss

(c
re

di
ts

1-
3)

Fig. 7. Evolution of error frequencies respective to course progress during the first three fifths

of the course. The unit of the x -axis is the ratio of the specific error messages respective to

all error messages.

educators, and this domain difficulty might explain the relatively long time it took

students to resolve these errors.

6.5 Frequencies of errors over time

Figure 7 displays the relative error frequencies during the first three sections of

the course (the last two sections are omitted as only a few students completed

them on time). This figure shows that the the three main categories of errors are

approximately constant over the course. We observe a slight decrease in NotInScope

errors after the first section of the course and a significant increase in the ParseError

category. Syntactic structures are gradually introduced, and each section of the

course contains more syntax and more involved exercises than the preceding one,

which makes the increase of syntactic difficulties natural. In the case of NotInScope

errors, all structures that relate to variable scope are given in the first section with

the exception of the list comprehensions that appear in the third part of the course.

We can conclude that measuring the evolution of error frequencies over time

during an ordinary programming course does not seem to offer an easy way to

observe which error categories are more persistent than others. The course topics

and the expected student difficulties change during the course. To investigate this

effect, the studied course would need to incorporate a plateau period during which

no new topics or new type of exercises would be introduced and during which the

measurement could take place.

7 Discussion

In this paper, we studied student exercise answers and applied both computer and

manual analyses to them. We identified several common, low-level mistakes that

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

Understanding beginners’ mistakes with Haskell 23

students make. Several of the mistakes seem to be directly induced by the Haskell

language, whereas others are more indicative of difficulties in teaching.

7.1 Language design issues

Of the specific issues we observed, the difficulties with interplay of precedence,

associativity, and juxtaposition as function application syntax seem surprisingly

serious. As a specific example of a syntactic problem arising from the Haskell

base library, the function composition (.) and explicit application ($) operators

were common causes for syntactic difficulties. Therefore, although composition and

application operators offer advanced programmers useful flexibility, their usefulness

should be questioned at the beginner level. Furthermore, when designing a beginner

friendly language, we suggest careful consideration whether to adopt juxtaposition

as the syntax of function application in the first place.

In some cases, syntactic problems seem to obscure otherwise clear concepts. For

example, Chakravarty & Keller (2004) advise against teaching partial application in

early courses due to the mathematical proficiency required. Based on our data, we

agree with this advice, but with a different rationale. We did not observe difficulties

with the concept of partial application in our data nor in our teaching. However, we

observed many difficulties with the syntax it gives rise to in Haskell. We posit that

including the partial application in languages intended for teaching beginners does

not inherently have a high cost, but doing so would benefit from a different syntax.

In addition to syntax, we also found that the Haskell standard library (Prelude)

was responsible for several student errors, such as inducing run-time errors due to

use of partial functions such as head or tail. In our course, nearly all cases where

these functions were used could have been rewritten to use pattern matching, the

completeness of which can be checked by the compiler. We suggests reducing the

number of partial functions in default libraries in favor of pattern matching. Based

on the observed errors, this change could be helpful in directing beginner students

toward better habits. We further posit that expert programmers are also likely to

benefit from making partiality explicit: the exercises in our course are low level and

prone to use of partial functions. On the other hand, “real-world” program code,

which makes use of higher-level functions, has perhaps fewer places where functions

such as head or tail can be used effectively. Unlike in the course exercises, which

include rigorous testing, catching run-time errors in real-world code can be much

harder and costlier, giving expert programmers one more reason to avoid them.

Issues related to the misuse of pattern matching seem to be due to either difficulties

in nesting the patterns or accidentally omitting essential cases. Unfortunately, the

compiler option to warn about missing cases is not switched on by default in GHC,

and our data suggest that missing cases are time-consuming for the students. From

the point of view of a teaching language, we see no downside to enabling the related

compiler warning message or even promoting it to an error. Furthermore, it seems

that the related run-time error messages could be easily improved by indicating

which datum was the one that was not matched.

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

24 V. Tirronen et al.

Three common error message types cover the vast majority of errors encountered

by beginners. We doubt that there is much that can be done to improve syntax

errors or how the compiler refers to misspelled variables, but there are things that

should be done regarding type errors. The structure of Haskell is very flexible, and

the majority of programmer errors are reported as type errors claiming some type

to be incompatible with some other type. Type errors arise when the student has

mistaken an Int for a String or forgotten to pass one argument to a function.

As such, the largest bin of compiler error messages contains wildly different student

errors, all which are reported uniformly. We suggest that differentiating the largest

classes of error messages further would be helpful for beginners as well as expert

programmers. There is a large body of work on improving type error messages in

the ML family of languages (Heeren, 2005; Hage & Heeren, 2007; Lerner et al.,

2007), as well as improving error messages in general (Marceau et al., 2011b). This

advice and research seems often to be neglected in practice.

Before undertaking this study, we heard various claims of what is difficult for

beginners. Several of these claims failed to be supported in our data. For example,

the difficulties with recursion proposed by Segal (1994), such as mistaking base case

for a stopping condition, were not observed.

Similarly, lazy evaluation is sometimes perceived as a difficult topic for beginners.

Regardless, our experience was that laziness did not cause significant difficulties in

the early part of the course. On the contrary, the non-strict semantics of Haskell

made it easier for us to teach concepts by demonstrating the steps of the computation.

Contrasting this to the early literature, Anderson et al. (1988) claim that evaluating

recursion mentally is very hard. As an example, Anderson claims that arithmetic

expressions such as 4 * (3 - 2) * (5 + 7) are not evaluated by progressing

recursively from top-down according to the syntactic structure of the formula.

Instead, the authors claim that it is natural for the human mind to progress

(iteratively) by computing the simplest subexpressions first. Contrary to claim by

Anderson et al., changing the evaluation order does not make the computation

iterative; any such order of computations is permissible with non-strict semantics

and the evaluation of such expressions can proceed in any order perceived as natural.

Our teaching experiences agree with Anderson that the “simplest-first” order can be

much easier for students as it enables us to demonstrate the evaluation of programs

in a natural way (Tirronen & Isomöttönen, In Press). We also found non-strictness

to be helpful when demonstrating more complex recursive functions by writing

out their computation. Regardless of the early benefits of non-strict semantics,

building explicitly lazy functions seemed to cause difficulties for the students later

on. Moreover, discussions of the efficiency of basic functions such as foldl require

discussion of normal forms and evaluation order, which we assume to be difficult

for beginners.

Even though programming folklore often rates array out of bounds style errors

in the top three most common errors (Leblanc & Fischer, 1982), we observed rather

few cases of this during our course. Haskell, and modern languages in general,

seems to present an improvement over many mainstream languages on this front

since numerically indexed containers are rarely needed and because most containers

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

Understanding beginners’ mistakes with Haskell 25

are usually either accessed by functions, such as map or sum, which do not permit

such errors.

7.2 Issues in teaching functional programming

Our study focused on the low-level mistakes that occur during the process of solving

programming exercises, which seems to leave out difficulties in areas such as problem

solving. Our data (Figure 7) show that issues with syntax tend to persist through the

course and our subjective teacher experience was that syntactic issues increased the

cognitive burden of students by impairing their problem-solving skills. Our findings

differ from those of the earlier work by Soloway & Ehrlich (1984) who claim that

misconceptions about language constructs, such as loops and conditionals, are not

the main cause of difficulties. Instead, similar to Denny et al. (2012), we find that

there are persistent low-level errors that consume much of the students’ energy. This

is possibly due to the simpler language used in the study done by Soloway et al.

Due to the surprising amount of difficulties with function application syntax, we

urge instructors who make use of ML-like languages to experiment with the use

of a single parameter function with tuple arguments in place of multiparameter

functions, i.e., by writing

sortBy(comparing(length), group(xs))

in place of the more Haskell-like

sortBy (comparing length) (group xs).

This approach could make the distinction between functions and their arguments

more apparent and could eliminate many of the errors that arise from precedence,

parentheses, and misusing the operators (.) and ($), which were common causes

of syntactic difficulties. Therefore, although the use of composition and application

operators can provide useful flexibility to advanced programmers, we recommend

that instructors of beginner students avoid them entirely until the students have

achieved sufficient proficiency with the language.

Further, to state the obvious, errors with precedence can be reduced by avoiding

nested expressions in favor of naming the subexpressions; the problematic definition

fSort xs = concat (sortBy (comparing length) (group (sort xs)))

can be written, with some loss of conciseness and elegance, as

fSort xs = let
sorted = sort xs
grouped = group sorted
resorted = sortBy comp grouped
comp = comparing length
in concat resorted

where there is no possibility of making a mistake with parentheses. It can, however,

be contested whether naming subexpressions gives rise to a different kind of cognitive

load.

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

26 V. Tirronen et al.

Other causes of syntactic difficulties seemed to have had a smaller impact in our

course, and we theorize that, for the most part, they are caused by misplaced and

conglomerated knowledge of Haskell syntax and usage patterns. This suggests that

teaching efforts should be spent to illustrating when each language construct should,

or should not, be used. For example, the majority of our list processing examples

included pattern matching, which led some students to apply pattern matching in

situations where there were lists but no need to destruct them in any way.

Similarly to the literature (Clack & Myers, 1995; Heeren et al., 2003; Hage

& Keeken, 2006), the Haskell type system was found to cause difficulties, and

it is clear to us that the teaching of types requires a more effective strategy than

presenting examples and hoping that the students “catch on” (Ruehr, 2008; Tirronen

& Isomöttönen, In Press). Many of the issues with types are linked to issues

with syntax, since understanding Haskell type expressions depends on a proper

understanding of associativity and precedence, similar to findings by Joosten et al.

(1993).

We also conjecture that number of run-time errors could be reduced with didactic

techniques. Even though our web-based exercises report run-time errors with the

same mechanism as any other error, they still consumed a significant amount of

student time. The involved error messages might be improved by enabling explicit

warnings about non-exhaustive patterns, and similar to Felleisen et al. (2001), it

might be beneficial to mandate students to follow a design recipe in which different

cases of input data are explicitly specified before writing code.

Student difficulties often manifest themselves through error messages, and much

work has been done to make Haskell error messages more novice-friendly (Heeren,

2005). Based on our observations, the three most common error messages cover the

vast majority of the errors the students faced during the course. Naturally, the most

advisable solution would be to improve the compiler itself to emit better messages,

but this is challenging enough to be out of reach for most instructors. In cases

such as ours, where many early exercises are completed using a custom (web-based)

system, it is feasible to customize the error messages displayed to the students, more

specifically by attempting to differentiate the various causes of the three dominant

error types.

Another possible approach in lessening the contemporary difficulties with error

messages could be to introduce the students to different causes for the common

error messages early on. In contrast to modifying the error messages for the needs

of a specific course, this approach has the benefit of allowing the students to work

with the original compiler messages, which is what the students will inevitably face

when working outside of the course tool support while still alleviating the difficulties

during the course.

8 Conclusions

The goal of this study was to understand the low-level errors made by beginner

Haskell programmers and to study how student errors are reported in compiler error

messages. Methodologically, we found that it is not possible to form a comprehensive

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

Understanding beginners’ mistakes with Haskell 27

view of the various problems in students’ mindsets simply by inspecting the ratios

of error messages. For example, a faulty operator usage might have caused a type

error, but the cause of that error might be a misunderstanding of the syntax, an

error with brackets or precedence, or some other cause. A student might also be

blindly throwing operators around and hoping that some attempt will work. By

viewing the errors in the context of the session where they appeared, we were able

to get an extensive view of the issues behind the errors. A sequential examination

of student submissions revealed how the student handled the error, in some cases

how the error first appeared, and in some cases how the error persisted in different

forms across attempts.

Our study revealed several causes of student errors that stem from the language

design. These issues include adopting a too flexible syntax, which causes difficulties

with precedence, function application, and deeply nested statements. Regardless of

being “just syntax”, these difficulties persist throughout the course. Another language

design issue regarding beginner students is that the standard libraries make using

partial functions too attractive choice for the students, causing run-time errors.

Finally, as documented by Chambers et al. (2012), type errors were very common.

One important finding is that majority of student errors are reported with three

different compiler error messages, which are not well understood by students. These

error messages conglomerate errors from many different causes, further reducing

their usefulness for the beginner student.

We also concluded that many difficulties were due to instruction. Starting directly

from a functional mindset and presenting deeply nested expressions is not a fruitful

approach to teaching FP. Furthermore, we believe that the Haskell type system must

be taught both carefully and explicitly early on: most beginner errors manifest as

type errors in Haskell.

We posit that contrary to popular opinion, syntax does matter and point the

reader toward studies such as the one by Stefik & Siebert (2013), which presents

convincing results that different choices of syntax, even within a single language

paradigm, can have a major effect on the success of beginner programmers.

References

Anderson, J. R., Pirolli, P. & Farrell, R. (1988) Learning to program recursive functions. In

The Nature of Expertise, Robert, G., Chi, M. T. H. & Farr, M. J. (eds), Hillsdale: Psychology

Press; ISBN-13: 978-0805804041, pp. 153–184.

Bieniusa, A., Degen, M., Heidegger, P., Thiemann, P., Wehr, S., Gasbichler, M., Crestani,

M., Klaeren, H., Knauel, E. & Sperber, M. (2008) HtDP and DMdA in the battlefield.

Functional and Declarative Programming in Education. Victoria, BC, Canada.

Blanco, J., Losano, L., Aguirre, N., Novaira, M. M., Permigiani, S. & Scilingo, G. (2009)

An introductory course on programming based on formal specification and program

calculation. ACM SIGCSE Bull. 41(2), 31–37.

Bonar, J. & Soloway, E. (1985) Preprogramming knowledge: A major source of misconceptions

in novice programmers. Human–Comput. Interact. 1(2), 133–161.

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

28 V. Tirronen et al.

Brown, N. C. C. & Altadmri, A. (2014) Investigating novice programming mistakes: Educator

beliefs versus student data. In Proceedings of the 10th annual conference on International

Computing Education Research. University of Glasgow, Glasgow, Scotland: ACM.

Chakravarty, M. M. T. & Keller, G. (2004) The risks and benefits of teaching purely functional

programming in first year. J. Funct.Program. 14(1), 113–123.

Chambers, C., Chen, S., Le, D. & Scaffidi, C. (2012) The function, and dysfunction, of

information sources in learning functional programming. J. Comput. Sci. Colleges 28(1),

220–226.

Clack, C. & Myers, C. (1995) The Dys-functional student. In Functional Programming

Languages in Education, P. Hartel & R. Plasmeijer (eds), Lecture Notes in Computer

Science, vol. 1022. Berlin/Heidelberg: Springer, pp. 289–309.

Damas, L. & Milner, R. (1982) Principal type-schemes for functional programs. In Proceedings

of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

Albuquerque, New Mexico, USA: ACM Press, ISBN 0-89791-065-6, pp. 207–212.

Denny, P., Luxton-Reilly, A. & Tempero, E. (2012) All syntax errors are not equal. In

Proceedings of the 17th ACM Annual Conference on Innovation and Technology in

Computer Science Education. Haifa, Israel: ACM, pp. 75–80.

Farchi, E., Nir, Y. & Ur, S. (2003) Concurrent bug patterns and how to test them. In

Proceedings of Parallel and Distributed Processing Symposium, International, Nice, France,

2003. IEEE, p. 7.

Felleisen, M., Findler, R. B., Flatt, M. & Krishnamurthi, S. (2001) How to Design Programs.

Cambridge: MIT Press.

Felleisen, M., Findler, R. B., Flatt, M. & Krishnamurthi, S. (2004) The structure and

interpretation of the computer science curriculum. J. Funct. Program. 14(4), 365–378.

Fenwick Jr, J. B., Norris, C., Barry, F. E., Rountree, J., Spicer, C. J. & Cheek, S. D. (2009)

Another look at the behaviors of novice programmers. ACM SIGCSE Bull. 41(1), 296–300.

Findler, R. B., Clements, J., Flanagan, C., Flatt, M., Krishnamurthi, S., Steckler, P. & Felleisen,

M. (2002) Drscheme: A programming environment for scheme. J. Funct. Program. 12(02),

159–182.

Garrison, D. R. & Kanuka, H. (2004) Blended learning: Uncovering its transformative

potential in higher education. Internet Higher Educ. 7(2), 95–105.

Haberman, B. & Averbuch, H. (2002) The case of base cases: Why are they so difficult to

recognize? student difficulties with recursion. In ACM SIGCSE Bulletin, vol. 34. ACM,

pp. 84–88.

Hage, J. & Keeken, P. (2006) Mining for Helium. Technical report UU-CS.

Hage, J. & Heeren, B. (2007) Heuristics for type error discovery and recovery. In

Implementation and Application of Functional Languages, Springer, pp. 199–216.

Hall, C. V., Hammond, K., Peyton Jones, S. & Wadler, P. (1996) Type classes in Haskell. ACM

Trans. Program. Lang. Syst. (TOPLAS) 18(2), 109–138.

Heeren, B. J. (2005) Top Quality Type Error Messages, 2005/9/20, IPA Dissertation Series,

Utrecht University.

Heeren, B., Leijen, D. & van IJzendoorn, A. (2003) Helium, for learning Haskell. In

Proceedings of the 2003 ACM SIGPLAN Workshop on Haskell. Uppsala, Sweden: ACM,

pp. 62–71.

Hutton, G. (1999) A tutorial on the universality and expressiveness of fold. J. Funct. Program.

9(4), 355–372.

Isomöttönen, V. & Tirronen, V. (2013) Teaching programming by emphasizing self-direction:

How did students react to active role required of them? Trans.Comput. Educ. 13(2), 6:1–6:21.

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

Understanding beginners’ mistakes with Haskell 29

Jadud, M. C. (2005) A first look at novice compilation behaviour using BlueJ. Comput. Sci.

Educ. 15(1), 25–40.

Joosten, S., Berg, K. & Hoeven, G. V. D. (1993) Teaching functional programming to first-year

students. J. Funct. Program. 3(1), 49–65.

Kahney, H. (1983) What do novice programmers know about recursion. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems. Boston, MA, USA:

ACM, pp. 235–239.

Keravnou, E. (1995) Introducing computer science undergraduates to principles of

programming through a functional language. In Proceedings of the 1st International

Symposium on Functional Programming Languages in Education. (FPLE ’95), LNCS

1022, Nijmegen, The Netherlands: Springer-Verlag, ISBN-13: 978-3540606758, pp. 15–34.

Kinnunen, P. & Malmi, L. (2006) Why students drop out CS1 course? In Proceedings of

the 2nd International Workshop on Computing Education Research. University of Kent,

Canterbury, UK. ICER ’06. New York, USA: ACM, pp. 97–108.

Lahtinen, E., Ala-Mutka, K. & Järvinen, H. M. (2005) A study of the difficulties of novice

programmers. SIGCSE Bull. 37(3), 14–18.

Leblanc, R. J. & Fischer, C. N. (1982) A case study of run-time errors in Pascal programs.

Softw.: Pract. Exper. 12(9), 825–834.

Lerner, B. S., Flower, M., Grossman, D. & Chambers, C. (2007) Searching for type-error

messages. In ACM SIGPLAN Notices, vol. 42. ACM, pp. 425–434.

Lewandowski, G. (2003) Using process journals to gain qualitative understanding of beginning

programmers. J. Comput. Sci. Colleges 19(1), 299–310.

Lu, S., Park, S., Seo, E. & Zhou, Y. (2008) Learning from mistakes: A comprehensive study

on real world concurrency bug characteristics. In ACM SIGPLAN Notices, vol. 43. ACM,

pp. 329–339.

Ma, L., Ferguson, J., Roper, M. & Wood, M. (2011) Investigating and improving the models

of programming concepts held by novice programmers. Comput. Sci. Educ. 21(1), 57–80.

Marceau, G., Fisler, K. & Krishnamurthi, S. (2011a) Measuring the effectiveness of error

messages designed for novice programmers. In Proceedings of the 42nd ACM Technical

Symposium on Computer Science Education. ACM, pp. 499–504.

Marceau, G., Fisler, K. & Krishnamurthi, S. (2011b) Mind your language: On novices’

interactions with error messages. In Proceedings of the 10th SIGPLAN. Tallinn, Estonia

September 26–28, 2005, Symposium on New Ideas, New Paradigms, and Reflections on

Programming and Software. ACM, pp. 3–18.

McBride, C. & Paterson, R. (2008) Functional pearl: Applicative programming with effects.

J. Funct. Program. 18(1), 1–13.

Morazán, M. T. (2011) Functional video games in the CS1 classroom. In Trends in Functional

Programming, May 16–18, 2011, Madrid, Spain: Springer, pp. 166–183.

Morazán, M. T. (2012) Functional video games in CS1 II. In Trends in Functional Programming,

Springer, University of St Andrews, Scotland, UK, pp. 146–162.

Pane, J. F., Ratanamahatana, C. A. & Myers, B. A. (2001) Studying the language and

structure in non-programmers’ solutions to programming problems. Int. J. Human-Comput.

Stud. 54(2), 237–264.

Pea, R. D. (1986) Language-independent conceptual “bugs” in novice programming. J. Educ.

Comput. Res. 2(1), 25–36.

Perkins, D. N. & Martin, F. (1986) Fragile knowledge and neglected strategies in novice

programmers. In Proceedings of 1st Workshop on Empirical Studies of Programmers on

Empirical Studies of Programmers, Washington, DC, USA, pp. 213–229.

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

30 V. Tirronen et al.

Ruehr, F. (2008) Tips on teaching types and functions. In Proceedings of the 2008 International

Workshop on Functional and Declarative Programming in Education, September 21, 2008,

Victoria, British Columbia, Canada: ACM, pp. 79–90.

Segal, J. (1994) Empirical studies of functional programming learners evaluating recursive

functions. Instr. Sci. 22(5), 385–411.

Soloway, E. & Ehrlich, K. (1984) Empirical studies of programming knowledge. IEEE Trans.

Softw. Eng. 595–609.

Soloway, E., Ehrlich, K. & Bonar, J. (1982) Tapping into tacit programming knowledge.

Proceedings of the 1982 Conference on Human Factors in Computing Systems.

Gaithersburg, USA: ACM, pp. 52–57.

Someren, M. W. (1990) What’s wrong? Understanding beginners’ problems with Prolog. Instr.

Sci. 19(4), 257–282. 10.1007/BF00116441.

Spohrer, J. G. & Soloway, E. (1986) Analyzing the high frequency bugs in novice programs. In

Papers Presented at the 1st Workshop on Empirical Studies of Programmers on Empirical

Studies of Programmers. Washington, DC, USA: Norwood, NJ, USA: Ablex Publishing

Corp, pp. 230–251.

Stefik, A. & Siebert, S. (2013) An empirical investigation into programming language syntax.

ACM Trans. Comput. Educ. (TOCE) 13(4), 19.

Thompson, S. & Hill, S. (1995) Functional programming through the curriculum. In Functional

Programming Languages in Education, FPLE LNCS 1022, Hartel, P. H. & Plasmeijer, M. J.

(eds), Nijmegen, The Netherlands: Springer-Verlag, pp. 85–102.

Tinto, V. (1997) Classrooms as communities: Exploring the educational character of student

persistence. J. Higher Educ. 68(6), 599–623.

Tirronen, V. & Isomöttönen, V. (In Press) Teaching types with a cognitively effective worked

example format. J. Funct. Program.

Ulloa, M. (1980) Teaching and learning computer programming: A survey of student

problems, teaching methods, and automated instructional tools. SIGCSE Bull. 12(2), 48–64.

Vujoševic-Janicic, M. & Tošic, D. (2008) The role of programming paradigms in the first

programming courses. Teach. Math. XI(2), 63–83.

https://doi.org/10.1017/S0956796815000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000179

