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INJECTIVE HULLS OF SEMILATTICES 
BY 

G. BRUNS AND H. LAKSER 

A (meet-) semilattice is an algebra with one binary operation A, which is associa
tive, commutative and idempotent. Throughout this paper we are working in the 
category of semilattices. All categorical or general algebraic notions are to be 
understood in this category. In every semilattice S the relation 

a<b ifandonlyif at\b—a 

defines a partial ordering of S. The symbol "V " denotes least upper bounds under 
this partial ordering. If it is not clear from the context in which partially ordered 
set a least upper bound is taken, we add this set as an index to the symbol; for 
example, V ^ denotes the least upper bound of X in the partially ordered set A. 

In this paper we characterize injective semilattices (Theorem 1) and essential 
extensions of semilattices (Theorem 2) and we explicitly construct the injective hull 
of any semilattice (Corollary 2). 

1. Injective Semilattices. We recall that in any category K of algebras an 
algebra C is said to be injective if and only if every homormorphism q> from a 
subalgebra A of an algebra B into C has an extension to all of B. An algebra A is 
said to be a retract of an extension B if and only if there exists a homomorphism <p : 
B^>A which maps A identically. A homomorphism <p with this property is 
called a retraction. 

LEMMA 1. Every complete lattice C satisfying the identity 

(1) a A \/M= W A x\xeM) 

for all ae C, Mç C, is an injective semilattice. 

Proof. Let A be a subsemilattice of a semilattice B and let <p be a homomorphism 
of A into C. Define y : B -> C by y(b) = \/(<p(a) \a<b,aeA). Clearly 9 extends <p. 
We show that <p is a homomorphism. Let bl9 b2 e B. Then 

?(*i) A 9(i2) = Vfofci) I «1 ^ bl9 ax e A) A VOpfe) I a2 < b29 a2 e A) 
— VW^i A a2) I a1 < bl9 a2 < b29 al9 a2 e A) 
= VOpfa) \ a < bx A b29 aeA) 
= 9(61 A b2). 

LEMMA 2. ifrery retract of a complete lattice C satisfying (1) is complete and 
satisfies (1). 
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Proof. Let A be a subsemilattice of C and let 9: C -> A be a retraction. It is well 
known that 4̂ is also a complete lattice. We show that A satisfies (1). Let a e A, 
M^A. Clearly a A \/AM is an upper bound in A of {a A x \ x e M}. If u e A is an 
arbitrary upper bound of this set then 

u = <p(u) > <pCVc(a A x\xeM)) = <p(a A VcM) 
= <p(a) A <p(\/cM) > a A yAM. 

This means that a A V 4M is the least upper bound in A of {a A x \ x e M}, proving 

(i). 

THEOREM 1. A semilattice S is injective if an only if it is a complete lattice and 
satisfies (1). 

Proof. By Lemma 1 our conditions are sufficient for injectivity. Assume, con
versely, that the semilattice S is injective. The mapping that assigns to each aeS 
the principal ideal (a] generated by a is an embedding of S into C, the power set 
lattice of S. Clearly, C satisfies the conditions of our theorem. Since S is injective 
it is a retract of each extension. Thus, by Lemma 2, S is a complete lattice satisfying 
(1). 

2. Injective Hulls. We recall that an extension C of an algebra A is said to be an 
essential extension if and only if, for every algebra B, any homomorphism q>: C-+B, 
whose restriction to A is one-to-one, is itself one-to-one. Clearly each essential 
extension of A can be embedded over A in any injective extension of A. (That is, 
the embedding restricted to A coincides with the embedding of A in the injective 
extension). An injective hull of an algebra A is an essential, injective extension of A. 
Since, as we have seen, any semilattice can be embedded in an injective one, it 
follows from general considerations (by a proof similar to [1], Proposition VII 2.8, 
page 261) that every semilattice has an injective hull. We give, however, an explicit 
description of injective hulls of semilattices. 

We call a subset M of a semilattice S admissible if and only if the following two 
conditions hold: 

(a) \/M exists, 
(b) for each a e S, \/(aAx \ xeM) exists and \/(aAx \ x e M)=aA \/M. 
A subset A of a semilattice S is said to be a D-ideal if and only if it satisfies the 

following two conditions: 
(c) if x e A and y<x then ye A, 
(d) if M^A and M is admissible then \/MeA. 
The set ID(S) of all Z>-ideals of S is clearly a complete lattice under set inclusion, 

and arbitrary meets coincide with set-theoretical intersections. Moreover, the 
mapping that assigns to each a in S the principal ideal (a] is an embedding of S 
into ID(JS)9 so that ID(S) can be considered to be an extension of S. We describe 
least upper bounds in ID(S). 

https://doi.org/10.4153/CMB-1970-023-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1970-023-6


1970] ÏNJECTIVE HULLS OF SEMILATTICES 117 

LEMMA 3. For each family (At \ iel) in ID(S), 

V ( 4 I « e / ) = {\/M \Afc\J(At\ie I), M admissible} 

Proof. Let A={\/M \ M^\J(A \ tel), M admissible}. Clearly, \J(At | / e / ) g 
A^\f(Ai | / G / ) . Hence it suffices to show that A is a D-ideal. Assume ye A and 
x<y; thus y = \/M for some admissible M^\J{A{ I iel). Then X=XA\/M= 

\/(XAZ \ zeM)e A, since { x A z | z e M } is also admissible. Assume next that 
N^A, Nadmissible. Then for each xeN there is an admissible set Mx^LMt I 
iel) with x=\/Mx. Put M=\J(MX\ x e N). Clearly V ^ = V ^ and M ç 
U ( 4 | / e I). For w e S w e have 

u A V ^ = w A \ / ( W * | * e A 0 = V(w A V ^ * | * e J V ) 
= V(w A y)\yeMX9xeN) = \/{u A y \ y e M ) , 

which shows that M is admissible. It follows that \/Ne A, and hence that A is a 
D-ideal. 

As a consequence of Lemma 3 we obtain: 

COROLLARY 1. ID(S) satisfies (1) and, hence, is an injective extension of S. 

An extension E of a semilattice S is said to be join-dense if and only if each 
element a e E is the join of elements in S. The extension E is said to preserve 
distributive joins if and only if, for each admissible subset M of S, \/EM exists and 
\/EM= \/SM holds. Clearly, the extension ID(S) of S has both of these properties. 
We now characterize essential extensions. 

THEOREM 2. An extension E of a semilattice S is essential if and only if it is join-
dense and preserves distributive joins. 

Proof. If E is an essential extension then it can be embedded over S into ID(S), 
since ID(S) is injective. But ID(S) satisfies the conditions of our theorem; it follows 
that E satisfies these conditions. 

Assume, conversely, that E is a join-dense extension of S preserving distributive 
joins. We show that E is an essential extension. Let ç> be a homomorphism of E 
into a semilattice B, and assume that q> \ S is one-to-one. Assume further that q> is 
not one-to-one. Then there exist elements a,beE,a<b, with q>(a) — cp{b). Since E 
is a join-dense extension there exists u e S satisfying u<b and w$a. It follows that 

<p(a A u) = <p(a) A <p(u) = (p(b) A y(u) = <p(b A u) = cp(u). 

We claim that for each ce S 

(2) u A c = Vs(c A w A x | x < a, x e S). 

Clearly, wAc is an upper bound of {cAuAx \ x<a9 xe S}. If it were not the 
least upper bound in S there would exist an upper bound ve S such that v<uAc. 
Since is is a join-dense extension, a A u A c=Vsfc A u A x \ x < a, x e S). It would thus 
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follow that q>(a AuAc) = ?>( V E ( C AuAx\x<a, xeS)< <p(v) < <p(w A c), contradicting 
y{aAu) = cp{u). Hence (2) holds. But (2) implies that M—{uAx \ x<a, x e S} is an 
admissible subset of S and that \/sM=u. Since E preserves distributive joins it 
follows that u= \/sM= \/EM< a, a contradiction. Thus Eis an essential extension 
of S. 

Since any two injective hulls of an algebra A are isomorphic over A it follows 
that we have the following Corollary: 

COROLLARY 2. The following properties of an extension E of a semilattice S are 
equivalent: 

(i) E is an injective hull of S, 
(ii) E is isomorphic over S to ID(S), 
(iii) E is a complete, join-dense extension of S preserving distributive joins and 

satisfying the distributive law (1). 
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