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CONSERVED QUANTITIES FOR AXISYMMETRIC
CAVITIES NEAR BOUNDARIES

R. PAULL AND J.R. BLAKE

In axisymmetric irrotational flows of a perfect fluid under gravity there are three
basic conserved quantities; axial momentum, energy and a circulation based, radial
moment of momentum. This paper adapts these conservation principles to describe
cavity collapse adjacent to a rigid boundary in a semi-infinite perfect fluid. They
afford a global model accounting for volume change, migration and jet formation;
physically the most significant features of bubble collapse close to a rigid boundary.

1. INTRODUCTION

In recent papers Longuet-Higgins [7, 8], Benjamin [2] and Benjamin and Olver [3]
have presented conserved scalar quantities applicable to perfect, irrotational flows under
gravity in two and three dimensions. In axisymmetric flow these principles concern
conservation of mass, mean axial position, axial momentum (Kelvin impulse), energy
and a circulation based, radial moment of momentum (virial). Although the latter is
relatively unfamiliar, its existence is of importance when developing global models since
it provides a further clamp on flow characteristics. This is nowhere more apparent than
in the problem of cavity collapse adjacent to a rigid boundary, as this paper aims to
demonstrate.

A cavity, under constant internal pressure, collapsing adjacent to an infinite plane
boundary in an otherwise semi-infinite irrotational perfect fluid is considered. Imple-
mentation of the conservation principles in this problem relies on generalising their
definitions to integral expressions over the bubble surface. As a result of the boundary
conditions, the time rates of change of the conserved quantities appear as simple sur-
face integrals involving the velocity and velocity potential. These identities incorporate
the constant internal cavity pressure and the boundary condition of the plane surface.
Cavity geometries during collapse, however, are known to exhibit an inner jet region
and an outer, almost spherical, Rayleigh region. A minimum global description would
thus hope to determine radius and centre of the outer region, jet width, length and
fullness. The five conservation principles would thus provide just sufficient conditions
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to determine a simple global model for cavitation. A more detailed discussion on the
conservation of linear momentum (the Kelvin impulse) may also be found in the review
paper by Blake [4], while an approximate method to model the growth and collapse of
cavitation bubbles near a rigid boundary have recently been developed by Kucera and
Blake [6].

2. CONSERVATION QUANTITIES

The geometry of the problem considered appears in cross-section as in Figure 1.

Bubble

Rigid Boundary

\

Contra' Surface

Figure 1. Geometry used in theory

Here the surface of the cavity is 5 with (x,r) being cylindrical polar coordinates.
The axis of symmetry aligns with the x axis and is perpendicular to the boundary E&.
The control surface in the fluid will be denoted by E and all surface normals n will be
directed out of the fluid.

Only perfect irrotational flows in a uniform gravitational field aligned with the axis
of symmetry are to be considered. The equations governing such flows in terms of the
velocity potential <j> are

(2.1)

and

(2.2) = o,
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where p is the pressure, p is the fluid density, g is the gravitational acceleration in the

negative x direction and

(2.3) u = V<f>

is the velocity. In (2.1) the velocity potential has been normalised so as to vanish at
infinity in line with the absence of an external convection field;

(2.4) <t> = 0 f^\ as R -» oo (R2 = x2 + r2) .

The remaining boundary conditions are that

(2.5) p = pc (a constant)

on S, the bubble surface. The cavity pressure pc is normally equated to the saturated
vapour pressure for 'cold' liquids. Other equations of state may be used for the gas or
vapour phase depending on physical circumstances. There is no flow through the rigid
plane boundary

(2.6) u • n = 0 on x = 0.

The work of Benjamin and Olver [2] now indicates that in general three dimen-
sional flow the complete set of conserved quantities consists of mass, mean position (3
components), momentum (3 components), angular moment of momentum (3 compo-
nents), circulation based radial moment of momentum (1 component) and energy. The
condition of axisymmetry applicable here reduces several of these to trivial statements.
In terms of a closed material surface S* (outward normal n) surrounding a volume
V of fluid consisting of the inner boundary S of the cavity and an exterior boundary
Ejl/E, the following integral formulations provide useful information:
Mass M*,

(2.7) M* =p ( dV = p i \* • ndS;
Jv Js' 3

Mean Axial Position x~*,

(2.8) Mx* =p [ xdV = p i -x2ex • ndS;
Jv Js' 2

Axial Momentum 7*,

(2.9) r =
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Circulation, based, radial moment of momentum B*,

(2.10) B'=PJ (j*.u + t)dV = pf 4±x. ndS;

Energy E*,

(2.11) E* = p Jv(^
2 + 9*) dV = p j ^ fiv^2 + |z2e J • ndS.

Here x is the position vector of a point relative to a chosen origin. The rela-
tions between the volume and surface integrals are easily obtained from the divergence
theorem.

In the problem to be considered here it is not possible to apply the conservation
principles of Benjamin and Olver [3] directly to a semi-infinite fluid since divergent
integrals for most of the above quantities result as a consequence of <f> = 0(1/R) as
R —> oo. It should be noted, however, that each of the conserved quantities possesses a
surface integral representation which allows them to be defined for any material surface
surrounding a finite volume V. Since the surface of the cavity 5 is one of material
surfaces enclosing the fluid volume V, we may instead define the 'conserved quantities'
to be over S alone and thence relate the integrals to the outer boundaries by using
(2.7) to (2.11). This will provide specialised information about the cavity dynamics.

3. MATERIAL SURFACE INTEGRAL PROPERTIES

Often properties based on an integral over the surface of the bubble are physically
meaningful quantities (for example, bubble centroid, Kelvin impulse). Thus in this
section we consider integrals over the surface of the bubble which may be exploited
further by taking advantage of the conservation quantities discussed in the previous
section.

The conservation principles of Benjamin and Olver [3] alter slightly with these new
definitions since, for example, the cavity volume is no longer constant and for quantities
to be positive a sign change may be necessary. To derive the new conservation results
expressions are required for the time rate of change of the material surface integrals
(2.7) to (2.11). The transport identity for an incompressible fluid,

(3.1) j t (rufS) = ndS • [(V • u) I - (Vuf]

(3.2) = -ndS.VV<f>

is useful in this regard (see also Batchelor [1]). After some manipulation it follows that

(3.3) -
= —p I u • ndS,

Js
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(that is, the rate of change of displaced mass in the bubble V is equal to the mass flow
across the bubble surface 5 ) . From the boundary condition in (2.6), it also follows
that,

(3.4) ^r = pl undS>

leading to the obvious statement of incompressibility,

The rate of change of the 'centre of mass' leads to the foUowing relations,

(3.6) *
— —p I xu- ndS,

Js

The rate of change of axial momentum (Kelvin Impulse) yields ([5])

Likewise the rate of change of the circulation based radial moment of momentum yields

If E is first decomposed as

(3.9) E = T + Mcgx

where the expression for the kinetic energy of the fluid reduces to a surface integral over
the bubble, because the integrals over both Ylb an{^ S a r e z e r ° ,

(3.10) T = p f i W • ndS = ( \Pu2dV,
Js & j v i

then dE/dt is given by the sum of the multiple of g and (3.6) and
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In (3.3) to (3.11) suppression of solenoidal terms follows from single valuedness of
operands over the cavity surface. As a consequence of cavity contractions, it should be
noted that

which contrast with equalities in Benjamin and Olver [3]. The two conservation princi-

ples (3.3) and (3.4) provide kinematic conditions on the cavity collapse. The dynamics

of collapse are included by manipulating further (3.5) using (2.1), (2.2) and the bound-

ary conditions.

For axial momentum, it follows from (3.7) that

(3.12) ^ = p J [ 1 (V^)2 ex - ^ • VV<f> - gxe^ • ndS

as a consequence of the definition of the substantial derivative, the Bernoulli pressure
condition and a constant pressure difference between cavity and infinity. In line with
Blake and Cerone [5], the identity

(3.13) V x (<£V<£ x I) =

then yields, in view of (2.2), that

(3.14) ^ =

provided the potential <f> is a single valued function over the cavity surface. (If the
cavity were to become multi-connected, (3.12) would require modification.) The surface
integral in (3.15) may be replaced by an integral over the plane boundary yielding [5],

IT /• / 1 \ t°°
(3.15) — =-p ex • ( u u - - u ! l -ndS + gM = -np / rv2dr + gM,

<& JY^b V / Jo

where v is the velocity parallel to the plane boundary. This results from the identity

(3.16) V • ( uu - 2 u 2 / ) = (V.u)u + (V x u) x u = 0

within the fluid, leading to the change in sign in (3.15)..

The dynamics of the motion (2.1) allow (3.8) to be rewritten similarly

= ( l ^ M- \Mgx + p-j [(i(V*)2I-*VV^ -x + W ] -ndS.
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The identity (3.16) then indicates

(3.17)

If we note that Mc = pVc, where Vc is the volume of the cavity then (3.17) becomes

(3.18) ^ = (Poo - Pc)Vc - 3PgxVc + ^E,

a type of energy integral. A result similar to this has recently been derived by [8],
Equation (2.1) also indicates that, from (3.11),

J/TTI f

-TT = - V.[u(p + pgx)]dV
(3.19) * *

= - ndS.u(p + pgx) - I ndS.u(p + pgx),
Js Js

since u • n = 0 on the plane boundary. On the surface J3 w e have the following,

p + pgx = poo - — - - u z = poo + <

so that the only contribution from the integral over ^ *n (3-19) comes from the po

term. Thus (3.19) becomes

( ,20) V J r ^ ^

whence

(32l) dE [Pc-Poo\dM
{i } dt - \ ~P ; ~dj-

On integration this leads to the well known expression for the energy of,

(3.22) E0 = E + (Poo-pc)V

where Eg is constant throughout the lifetime of the bubble.
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4. CONCLUSIONS

These global conservation quantities are of considerable value in modelling cavita-
tion phenomena. Firstly they may be used as global checks on large scale numerical
calculations on bubbles near rigid boundaries. As an alternative they may be exploited
in developing approximate cavitation bubble models instead of using much larger nu-
merical simulation programs based on the boundary integral method. In addition these
global quantities give a valuable insight into the response of cavitation bubbles near
boundaries. In the case of the Kelvin impulse this may be used to predict the direction
of migration [4].
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