BULL. AUSTRAL. MATH. SOC. VOL. 17 (1977), 317-319.

A computer aided classification of certain groups of prime power order: Corrigendum

Judith A. Ascione, George Havas, and C.R. Leedham-Green

The first four paragraphs of [1, p. 258] are a mildly erroneous over simplification of the situation. A more accurate description follows.

The analysis of two-generator 3-groups of second maximal class goes along the following lines. We first define a class of group whose structure is particularly amenable to theoretical analysis.

Let \underline{P} be a group of order p^n and class m-1 (for any prime p) and $s \leq r$ be positive integers such that

(i) $\underline{P}/\gamma_2(\underline{P}) \cong C_p \times C_p$ and $[\gamma_i(\underline{P}) : \gamma_{i+1}(\underline{P})] = p$ for $2 \le i \le m-1$, so that n = m + r - 1.

(ii) Put $\underline{\underline{M}}_{2} = C_{\underline{\underline{P}}} \left(\gamma_{2}(\underline{\underline{p}}) / \gamma_{\underline{\underline{l}}}(\underline{\underline{p}}) \right)$. We require $\underline{\underline{\underline{M}}}_{\underline{\underline{p}}} / \gamma_{2}(\underline{\underline{p}}) \cong C_{\underline{p}} - 1 \times C_{p}$.

Let a_1 be a fixed element of $\underline{\underline{M}}_2$ not lying in the Frattini subgroup of $\underline{\underline{P}}$ with $a_1^p \in \gamma_2(\underline{\underline{P}})$, and let $\gamma_1(\underline{\underline{P}})$ denote $\langle \gamma_2(\underline{\underline{P}}), a_1 \rangle$.

- (iii) For all $i, j \ge 1$, $[\gamma_i(\underline{P}), \gamma_j(\underline{P})] \subseteq \gamma_{i+j+p} s^{-1}(\underline{P})$.
- (iv) For all $i \ge 1$, $\gamma_i(\underline{\underline{P}})^p = \gamma_{i+p}^{s-1}(\underline{\underline{P}})$.

(v) $m \ge p^{s-1}+3$.

Then \underline{P} will be said to be a *Blackburn group* of type (r, s). It Received 25 August 1977. 318 Judith A. Ascione, George Havas, and C.R. Leedham-Green

can be shown that conditions (iii) and (iv) are independent of the choice of a_1 (see [4]).

Here we are concerned with the cases r = 1 or 2. If r = 1, so that s = 1, \underline{P} is just a *p*-group of maximal class and positive degree of commutativity as defined in [2].

Examples are easily produced. Let 0 denote the ring of integers in the p^s th cyclotomic number field, so that 0 is of rank $p^{s-1}(p-1)$ as an abelian group, and let θ be a primitive p^s th root of unity. Let A be the ideal in 0 generated by $\theta - 1$, so that A^i is of index p^i in 0 for all i > 0. Then the split extension of $0/A^{m-1}$ by the cyclic group of order p^r acting via multiplication by θ is a Blackburn group of type (r, s) with $0/A^{m-1}$ as a possible choice for $\gamma_1(\underline{P})$ provided $m \ge p^{s-1}+3$.

The groups of second maximal class with $\underline{\mathbb{P}}/\gamma_2(\underline{\mathbb{P}}) \cong C_9 \times C_3$ and of order 3^n , where $n \leq 8$, are analysed in [1, §7]. Those in [1, Table 6] have $\left[\gamma_i(\underline{\mathbb{P}}) : \gamma_i(\underline{\mathbb{P}})^3\right] \leq 9$ for all $i \geq 2$; such a group we define to be of maximal type. See [1, §4] for a general explanation of the tables. All groups descended from group A contain a subgroup of maximal class and index 9. Those descended from groups G and H are Blackburn groups of type (2, 1). The groups in [1, Table 7] are of non-maximal type; that is $\left[\gamma_i(\underline{\mathbb{P}}) : \gamma_i(\underline{\mathbb{P}})^3\right] > 9$ if $i \geq 2$ and $|\gamma_i(\underline{\mathbb{P}})| > 9$. This table, when continued indefinitely, will contain all Blackburn 3-groups of type (2, 2). It will also contain infinitely many groups with a subgroup of index at most 27 which is of this type, and will contain only a finite number of other groups.

The groups of second maximal class with $\underline{\mathbb{P}}/\gamma_2(\underline{\mathbb{P}}) \cong C_3 \times C_3$ of order p^n , where $n \leq 10$, are analysed in [1, §6]. Those in [1, Table 2] have $\left[\gamma_i(\underline{\mathbb{P}}) : \gamma_i(\underline{\mathbb{P}})^3\right] \leq 9$ for all $i \geq 4$; such groups will also be said to be of maximal type. Those descended from groups B, O, and Q contain a subgroup of maximal class and index 9. Those descended from groups S

and U contain a Blackburn group of type (2, 1) and index 3.

The groups in [1, Tables 4, 5] are descended from groups *H* and *I* and are of *non-maximal type*; that is, $\left[\gamma_i(\underline{P}) : \gamma_i(\underline{P})^{\overline{3}}\right] > 9$ if $i \ge 4$ and $|\gamma_i(\underline{P})| > 9$. It can be shown (see [3]) that all descendants of *H* and *I* contain a subgroup \underline{Q} of index 3 such that \underline{Q} has second maximal class, $\underline{Q}/\gamma_2(\underline{Q}) \cong C_9 \times C_3$, and $\gamma_i(\underline{Q}) = \gamma_{i+1}(\underline{P})$ for all $i \ge 3$. Thus \underline{Q} is also of non-maximal type, as in [1, Table 7].

References

- Judith A. Ascione, George Havas, and C.R. Leedham-Green, "A computer aided classification of certain groups of prime power order", *Bull. Austral. Math. Soc.* 17 (1977), 257-274; Microfiche supplement, 320.
- [2] N. Blackburn, "On a special class of p-groups", Acta Math. 100 (1958), 45-92.
- [3] C.R. Leedham-Green, "Three-groups of second maximal class", in preparation.
- [4] C.R. Leedham-Green, "On p-groups of large class", in preparation.

Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT; Department of Pure Mathematics, Queen Mary College, University of London, London, England.