A computer aided classification of certain groups of prime power order: Corrigendum

Judith A. Ascione, George Havas, and C.R. Leedham-Green

The first four paragraphs of [1, p. 258] are a mildly erroneous over simplification of the situation. A more accurate description follows.

The analysis of two-generator 3-groups of second maximal class goes along the following lines. We first define a class of group whose structure is particularly amenable to theoretical analysis.

Let $\underline{\underline{\mathrm{P}}}$ be a group of order p^{n} and class $m-1$ (for any prime p) and $s \leq r$ be positive integers such that
(i) $\stackrel{P}{\underline{P}} / \gamma_{2}(\underline{\underline{P}}) \cong C_{p} r^{\times} C_{p}$ and $\left[\gamma_{i}(\underline{\underline{P}}): \gamma_{i+1}(\underline{\underline{P}})\right]=p$ for $2 \leq i \leq m-1$, so that $n=m+r-1$.
(ii) Put $\underline{M}_{2}=C_{\underline{P}}\left(\gamma_{2}(\underline{\underline{P}}) / \gamma_{4}(\underline{\underline{P}})\right)$. We require $\underline{M}_{-2} / \gamma_{2}(\underline{P}) \cong C_{p}{ }_{p-1} \times C_{p}$.

Let a_{1} be a fixed element of M_{2} not lying in the Frattini subgroup of $\underline{\underline{P}}$ with $a_{1}^{p} \in \gamma_{2}(\underline{P})$, and let $\gamma_{1}(\underline{P})$ denote $\left\langle\gamma_{2}(\underline{\underline{P}}), a_{1}\right\rangle$.
(iii) For all $i, j \geq 1, \quad\left[\gamma_{i}(\underline{P}), \gamma_{j}(\underline{\underline{P}})\right] \subseteq \gamma_{i+j+p} s-1(\underline{P})$.
(iv) For all $i \geq 1, \gamma_{i}(\underline{\underline{p}})^{p}=\gamma_{i+p^{s-1}(p-1)}(\underline{\underline{P}})$.
(v) $m \geq p^{s-1}+3$.

Then $\underset{=}{P}$ will be said to be a Blackburn group of type (r, s). It
Received 25 August 2977.
can be shown that conditions (iii) and (iv) are independent of the choice of a_{1} (see [4]).

Here we are concerned with the cases $r=1$ or 2 . If $r=1$, so that $s=1, \underline{P}$ is just a p-group of maximal class and positive degree of commutativity as defined in [2].

Examples are easily produced. Let O denote the ring of integers in the p^{s} th cyclotomic number field, so that 0 is of rank $p^{s-1}(p-1)$ as an abelian group, and let θ be a primitive p^{s} th root of unity. Let A be the ideal in 0 generated by $\theta-1$, so that A^{i} is of index p^{i} in 0 for all $i>0$. Then the split extension of $0 / A^{m-1}$ by the cyclic group of order p^{r} acting via multiplication by θ is a Blackburn group of type (r, s) with O / A^{m-1} as a possible choice for $\gamma_{1}(\underline{P})$ provided $m \geq p^{s-1}+3$. The groups of second maximal class with $\underset{=}{P} / \gamma_{2}(\underline{P}) \cong C_{9} \times C_{3}$ and of order 3^{n}, where $n \leq 8$, are analysed in [1, §7]. Those in [1, Table 6] have $\left[\gamma_{i}(\underline{\underline{P}}): \gamma_{i}\left(\underline{\underline{P}}{ }^{3}\right] \leq 9\right.$ for all $i \geq 2 ;$ such a group we define to be of maximal type. See [1, §4] for a general explanation of the tables. All groups descended from group A contain a subgroup of maximal class and index 9 . Those descended from groups G and H are Blackburn groups of type (2, 1). The groups in [1, Table 7] are of non-maximal type; that is $\left[\gamma_{i}(\underline{\underline{P}}): \gamma_{i}(\underline{\underline{P}})^{3}\right]>9$ if $i \geq 2$ and $\left|\gamma_{i}(\underline{\underline{P}})\right|>9$. This table, when continued indefinitely, will contain all Blackburn 3-groups of type $(2,2)$. It will also contain infinitely many groups with a subgroup of index at most 27 which is of this type, and will contain only a finite number of other groups.
 p^{n}, where $n \leq 10$, are analysed in [1, §6]. Those in [1, Table 2] have $\left[\gamma_{i}(\mathrm{P}): \gamma_{i}(\mathrm{P})^{3}\right] \leq 9$ for all $i \geq 4$; such groups will also be said to be of maximal type. Those descended from groups B, O, and Q contain a subgroup of maximal class and index 9 . Those descended from groups S
and U contain a Blackburn group of type $(2,1)$ and index 3 .
The groups in [1, Tables 4, 5] are descended from groups H and I and are of non-maximal type; that is, $\left[\gamma_{i}(\underline{\underline{P}}): \gamma_{i}(\underline{\underline{P}})^{3}\right]>9$ if $i \geq 4$ and $\left|\gamma_{i}(\underset{\sim}{P})\right|>9$. It can be shown (see [3]) that all descendents of H and I contain a subgroup Q of index 3 such that Q has second maximal class, $\underline{Q} / \gamma_{2}(\underline{Q}) \cong C_{9} \times C_{3}$, and $\gamma_{i}(\underline{Q})=\gamma_{i+1}(\underline{\underline{P}})$ for all $i \geq 3$. Thus \underline{Q} is also of non-maximal type, as in [1, Table 7].

References

[1] Judith A. Ascione, George Havas, and C.R. Leedham-Green, "A computer aided classification of certain groups of prime power order", Bull. Austral. Math. Soc. 17 (1977), 257-274; Microfiche supplement, 320.
[2] N. Blackburn, "On a special class of p-groups", Acta Math. 100 (1958), 45-92.
[3] C.R. Leedham-Green, "Three-groups of second maxir al class", in preparation.
[4] C.R. Leedham-Green, "On p-groups of large class", in preparation.

Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT;

Department of Pure Mathematics, Queen Mary College, University of London, London, England.

