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Abstract. Let C denote the space of continuous functions mapping [0,1] into itself
and endowed with the sup metric. It has been shown that C2 = {f°f:fe C} is an
analytic but non-Borel subset of C. This implies that there is no simple geometric
characterization for a function being a square. In this paper we consider the problem
of characterizing those functions which can be approximated by squares. In the first
section we prove that any continuous function mapping a closed proper subset of
[0,1] into [0,1] can be extended to a square. In particular this shows that C2 is Lp

dense in C. On the other hand, C2 does not contain a ball when C is endowed with
the sup metric. In the second section we prove that no strictly decreasing function
can be uniformly approximated by squares, although the distance between the class
of strictly decreasing functions and C2 is zero. In the last section we investigate the
function /(x) = 1 —x and show that | | g 2 - / | | >\ for every geC and that ^ cannot
be improved.

1. Elementary observations
First we prove the aforementioned result [1] concerning extending a given function
to a square.

THEOREM 1. Let F be a closed proper subset of[0,1] andletf:F->[0,1] be continuous.
Then there is a geC such that f=g2\F.

Proof. Let [c, d]<= [0,1]\F and let g be a homeomorphism of F into [c, d]. Define
g(x) =f(g~\x)) whenever x e g(F). Then this extended function is continuous on
F u g ( F ) and hence, can be extended to a continuous function, also denoted by g,
in C. It is easy to check that g21F =f. •

COROLLARY 2. For each p, C2 is U dense in C.

Proof. I f / e C , then f\[e, I] = g2|[e, 1] for some geeC by Theorem 1. Clearly,
lim^o gl =f in L". •

t Partially supported by the Fulbright Foundation and Hungarian Ministry of Education.

https://doi.org/10.1017/S0143385700005599 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005599


362 P. D. Humke and M. Laczkovich

In the remainder of the paper we will consider C to have the sup metric exclusively.
We denote the closure of a set A c C by A.

THEOREM 3. Iffe C with/(0) = 0 orf(l) = 1, then fe C2.

Proof. Suppose fe C with /(0) = 0, and let e > 0 be given. Then there is a 0< S < e
such that |/(x)| < e whenever \x\ < 8. First we choose a n / , e C such that fix) = x
in [0, 5], f(x) > 5 in [8,1], and | | / - / , | | < e. Now define

for x e [0,5]

1 -5
(1-x) for xe [5,1].

As /i(5) = 5 it is easy to check that geC. If xe[0, 5], then g(x)>5 because
1 - [(1 - 5)/S]x > 5 and fix) > 5 for x e [8,1]. Hence, g2(x) < 5 whenever x e [0, 5]
so that \g\x)-fix)\<e in this interval. If xe[8,1], then g2(x)=/,(x) and hence
|g2(*)~/(*)l < B everywhere. The case in which /(I) = 1 is handled similarly; this
completes the proof. •

We denote the range of a function / b y /?(/).

THEOREM 4. Letfe C and suppose f\ [a, b~\ = c where (a, b) n /?(/) # 0 and fie) •£ c.
Iff= g2 then there is an interval I and a d ¥" c such that f\ I = d.

Proof. If g is constant on [a,b] we let d be this constant and set J = g~'((a, b)).
Since J?(/)<= Rig), J is open and nonempty. Obviously,

As/2 = g, we must have g(d) = c. If c = d, then c = g(c) = g2(c) which is impossible.
Hence d # c and this proves our assertion in this case. Suppose instead that

b~}) = I is an interval. We put d = gic). Then

As c is not a fixed point of/ it follows that d ^ c and the theorem is proved. •

COROLLARY 5. C2 does not contain a ball.

Proof. We use Theorem 4 to show that every given ball contains a function which
is not a square. Let B c C b e a ball and let g £ B be nonconstant. Suppose (a, b) <=
Rig). It is easy to see that B contains a function / such that / is constant on a
subinterval of (a, b) which meets /?(/), this constant is not a fixed point of/ and
/ is not constant on any other interval. It is a consequence of Theorem 4 that such
a function is not a square. •

2
In this section we prove that C2 is not everywhere dense in C. I f / e C, we denote
the max{/(x): 0 < x < l } by M(/ ) and the min{/(x): 0 < x < l } by rn(/). It is easy
to see that both M( / ) and m(/) are continuous functions of/ as maps from C
into [0,1]. We show that the strictly decreasing functions are in the interior of
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C\C2. To establish this result, we first introduce a subclass, M, of C as follows.
We putfeM i f / e C and there exist 0 < p < ^ < r < K K « s l such that
1. f(p) = M(f) and f(y)<M{f) {ory>p.

f(u) = m(f) and f(y) > m(f) for y < u.
2. m(f)<q and M{f)>t.
3. r = min {x: f(x) = x} and s = max {x: f(x) = x}.
4. /(x) > 5 for x e [0, q], and

/(x)<rforxe[f, 1].
5./([m(/

LEMMA 6. M is open and MnC2 = 0.

Proof. Let feJl be fixed and suppose p, q, r, s, t, u, m(f) and M(f) are as above.
Since M(g) and m(g) are continuous functions of ge C, if | | g - / | | is sufficiently
small then m(g)<q, M(g)> t, and g([m(g), M(g)])£g([q, t]). Also, it follows
from condition 1 (above) that if | | g - / | | is small enough then

<7, and

u' = min {x: g(x) = m(g)} > t.

As r is the first fixed point of/ it follows that /(x) > x for x < r. This implies that
if ll£~/ll ' s sufficiently small, then

r' = min{x: g(x) = x}> q, and

s' = max {x: g(x) = x} < t.

That is, if | | g - / | | is small enough, then g satisfies conditions 1 through 5 for the
sextuple p', q, r', s', t, u', and hence M is open.

Now suppose i n C 2 ^ and let f=g2eM where geC. As fe M, it satisfies
conditions 1 through 5 for, say, p, q, r, s, t, and M. AS every fixed point of g is also
a fixed point of/ all the fixed points of g are in the interval, [r, s] so that g(x) > x
for x< r and g(x)<x for x> s. If we let g(w) = w, then w<u.

Suppose w>t. Then g{w) = f(u) = m(f)^ r and g(u) = w>t>s. Therefore
[r, s]c[g(w), g(w)]<= g([w, u]). Let x0 be a fixed point of g. Then xoe [r, s] and,
as a consequence, there is a j e [w, w] with g(j) = x0. However,

and this contradicts condition 4.
Next suppose w<q. Then g(w)=f(u) = m(f)<q<r by condition 2, and

(w)) =/(w)> s by condition 4. Hence,

As before, there is a fixed point, x0, of g in [r, s] and hence, there is a y e [w, g(w)]
with g(_y) = x0. But then,

which again contradicts condition 4.
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We have proved that w = g(u) e [q, t] and by symmetry we also have that g(p) e
[q, i]. Thus, setting m(f) = m and M( / ) = M, we obtain

M =/(/>) = g2(p)eg([q,t]), and

m=f(u) = g2(u)eg([q,t]).

Hence [m, M] c g([g, *]) and g([m, M]) <=/([9) /]). However,

Mm, M]) = g(g([m, M])) <= g(/([g, <])) c g([m, M]) c/([g, r]).

This contradiction to condition 5 completes the proof. •

THEOREM 7. Iffe C is strictly decreasing, then fit C2.

Proof. Let /e C be strictly decreasing. By Lemma 6 it is enough to show that/e M.
We take p = 0, u = 1, and let r = s be the only fixed point of/ It is easy to see that
if q e (/(I), r) and t e (s,/(0)), then / satisfies conditions 1 through 5. •

THEOREM 8. Let 38 = {feC:f is strictly decreasing, /(0) = 1, am//(l) = 0}. Then
3inC2 = 0 and dist(S8, C2) = 0.

Proof. First we show that &<^M and hence 8 n C 2 = 0 , Indeed, let fe $, then/
is decreasing. Let p = max {x: f(x) = 1}, « = min{x:/(x) = 0}, and let r = s be the
unique fixed point o f / It is easy to see that if p<q<min {x:f(x) = r} and
max {x: /(x) = 5} < t < u then / satisfies conditions 1 through 5.

Next we show dist (38, C2) = 0. Let 0< e < | be fixed and define/ as follows. Set
/(0) = l -2e , / ( l ) = 2e, /(«?) = i = / ( l - e ) , and define / linearly in the intervening
intervals. Then/is locally constant at each point of its range and hence by Theorem
17 of [1], fe C2. Obviously, dist (38,/) = 2e and this observation completes the
proof. •

3
In this section we investigate the best possible square approximation to the function
<f>(x) = 1 —x. In specific we find that the distance between <f>(x) and C2 is % and that
this distance is not realized by any particular square. We begin with an example.

THEOREM 9. For every 0<e<\ there exists an f'e C2 such that \\f-<t>\\ =\+e.

Proof. Let 0< e <\ be fixed. We define /(0) = | , / ( I ) = \, f{\-e) = {=f{\ + e), and
/ to be linear on the intervening intervals. It follows from theorem 17, [1], that
/ e C 2 and as it is easy to see that \\f-<t>\\ = \f{\-e)-4>{\-e)\ = e+\ the result
follows. •

THEOREM 10. / / | | / - 0 | | < | then ft C2.

Proof. Suppose ||/-<£|| <?, geC, and f=g2. Let g(l) = a and g(0) = b. We prove
a series of five properties of g which lead to the contradiction found in statement six.

Statement 1. 56 £([£,!]).
If \& g ( [ i I]), then as g is continuous, either g([j, $])<=& 1] or g([\, |]) c [0, |).

For definiteness we suppose the former. Suppose a < i Then as g(|)>5 we obtain

2 < g(h) e g (K g(l)]) <= *(«([!, 1]) =/([!, 1]).
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This contradicts the fact that/([!, l ] )c [0,|]. I f |< a < | , then g(a)e {\, 1]. However,
= g2(l) = g ( a ) a n d / ( l ) < i Finally, if a > | , then

so that

g([3,3])<=g2([3,i])=/(t3,i])<=[<U],

which is untenable. The case when g([4,4])c [0, |) is similar.
Statement 2. g ( l ) < | and g(0)>| .

Suppose a = g(l) > | . Then

g([3, I]) = g([g(a), a]) e g(g([a, 1])) =/([a, 1]) cz [0, ±),

contradicting Statement 1. The case when g(0)>^ is dispatched similarly.

Statement 3. g(l)<g(0).
Suppose a = g(l) > g(0) = b. It is easy to see that a ^ b so that we can assume

a>b. As a < | it follows that ae[b , | ] . As b>5 and g(b)= / (0 )> | we conclude
that [b, i] c g([0, b]). Consequently,

g(a)€ g([b,|])c g2([0, b]) =/([0, fc]).

Since g(a)<5 a n d / ( x ) > | - x for every x it follows that fe>5 and hence be\_\, a].
Therefore,

g(6) e g«5, a ] ) c g2([a, 1]) =/([«, 1] ) c [0,1-a] .
Hence, | < | - a o r a < 5 . From this it follows that a = b = \ which is a contradiction.
Statement 4. g ( l ) s j .

Suppose a = g(l)<5. If \<a<\ then/(I) = g(a)< a, and

[i, I ] c g([a, * ] ) c g([g(a), g(0)]) <= g
2([0, a]) =/([0, a]).

But,/([0, a])<= [ |-a, 1] and hence | - a < | . This implies n > j which is a contra-
diction.

Therefore we have a<\. By Statement 2, b>^.
Suppose that a<^< b < | . If there is an xe (5,1] such that g(x) = b, then/(x) =

g2(x) = g(b) s I and this is impossible. Also, g(l) = a < b so we obtain that g((|, 1]) c
[0, b). Then

*([i, 6 ] ) c g(g([0, a])) = g2([0, a]) =/([0, a]) «= [ |-a, 1]c (i, 1].

In particular, g(l)e(\, 1]. Consequently,

/(D = g2(4)e[0,b)c:[0,i),

which is a contradiction.
Next suppose that a<\ and 5< b <\. Then we have

[ I I] = g([a, b]) cz g([g(l), g(b)]) c g
2([b, 1])

=/([&,!]) <=[<>,!-A].
In particular, | < | - b or b<\, which is impossible.

Finally, suppose that a<\ and b > | . Then

[i, 3])c g([g(«), * ] ) c g2([0, a]) =/([0, a]).
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However,

and from this it follows that gCti.t])^ (5,1] thus contradicting Statement 1.
This final contradiction completes the proof.

Statement 5. g(0)<l.
The proof is analogous to that of the previous Statement. As Statements 3, 4, and

5 are contradictory, this finishes the proof of the theorem. •
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