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ABSTRACT. We describe how remote sensing problems can be reformulated 
within the framework of optimization theory. This reformulation allows 
any prior knowledge about the solution to be naturally incorporated into 
the solution process. The inversion problem then reduces to a search for 
the global extremum in the possible presence of local extrema. Two algo-
rithms are presented that can be used to solve this global optimization 
problem, and their application to the helioseismology inverse problem is 
detailed. 

1. INVERSION OF REMOTE SENSING DATA 

The problem of using helioseismology data to constrain the interior struct 
ture of the Sun can be approached either directly by constructing trial 
solar models and then solving the "forward" problem ( i . e . , predicting 
the form of the global oscillation spectrum, and comparing i t to the data) , 
or indirectly by solving the "inverse" problem ( i . e . , using the data to 
invert the convolution of the solar structure and the oscillation re-
sponse kernel to obtain the structure information) . Each of these ap-
proaches has its particular strengths, but we shall not discuss these 
here; rather we focus on the latter approach, and discuss our solution to 
the difficulties one faces in solving the inverse problem. 

The fundamental difficulty of the inverse problem is that i t is i l l -
posed. That i s , the solution, if one exists, may be non-unique as well 
as unstable to small perturbations in the data. Better data will not cir-
cumvent these problems; they are inherent in the mathematics of the prob-
lem itself. To demonstrate this, consider the following typical inver-
sion problem: 

0 ( y ) = fbK(x,y)F(x)dz 
Ja 

where the observations O(y) are related to the quantity of physical in-
terest, F(x), through an integral transform with K(x,y) being a known 
kernel. This may, for example, represent an image deconvolution problem 
where K(x,y) is the point spread response function, F(x) is the actual 
image, and 0(y) is the smeared image. In effect, K(x,y) defines an in-
complete basis set for the problem. The non-uniqueness of the solution 
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is a consequence of the fact that this basis is not necessarily complete, 
so that any function not spanned by the basis may be added to the solu-
tion without affecting the observables. Hence given just the observ-
ables O(y). we cannot uniquely specify F ( x ) . Similarly, the sensitivity 
to noise in the data is a consequence of the fact that the natural basis 
defined by K(x,y) is not necessarily an orthogonal set; in fact, the more 
ill-posed the problem, the more linearly-dependent are the basis func-
tions in this set. In such a case, a small perturbation in the data can 
lead to very large changes in the coefficients of the expansion of F(x) 
in the basis set. 

The first systematic study of this problem dates back to Tikhonov 
(1963) , who attempted a solution through regularization of the problem. 
Most current solution techniques can be reduced to some type of regu-
larizing, including Backus-Gilbert (1970), Phillips-Twomey (1977), and 
the Maximum Entropy Methods (see Jaynes 1957 and Frieden 1972) . Each of 
these techniques makes explicit use of additional information (e.g., 
smoothness) to generate a unique solution. Since additional constraints 
are imposed on the solution, i t is important to note that each of these 
techniques solve a different problem from that originally posed. All one 
can then hope for is that the solution to the new problem will suffi-
ciently approximate the actual solution. For example, the Maximum En-
tropy methods will find a solution that agrees with the observations 
as well as possible subject to maximizing the entropy of the solution. 
There are no assurances, however, that the Sun knows anything about its 
Mconf igurational entropy". 

2. INCORPORATING ALL AVAILABLE INFORMATION 

A more natural approach, yet s t i l l in the spirit of regularization, is to 
incorporate al l the known or assumed facts about the solution directly 
into an objective function which one then seeks to minimize. This ap-
proach avoids incorporating constraints into the solution which may 
have no basis in reality (unlike traditional approaches that al l apply 
smoothness constraints which the user has l i t t le or no control over) . 

The difficulty in solving the inversion problem is then converted 
from the ill-posed nature of the initial problem to the global minimiza-
tion of a function in the possible presence of multiple local minima. 
This conversion is an improvement because in many instances, the con-
straints can be written in such a way as to make the objective function 
convex; that is , i t has only one minimum: the global minimum. If this 
is the case, then the problem is easily solved: Any descent algorithm, 
no matter how naive, can be used to find the unique solution. Consider 
for example the problem of determining the solar interior differential 
rotation rate from the observed frequency splittings of the 5-minute os-
cillations. We may have the following information: 

Observations Αν : [—~^~~] 2> where Au* = J Kil*drd© 

Surface Rotation Ω ( Γ = Α,Θ) : [ Ω * ( Γ = iE, Θ) - Ω ( Γ = Α,Θ)] 2 

Mean Rotation : [ Ω * - Ω ] 2 
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Smoothness (e.g., entropy) : — ^Ω*1ηΩ* 

where Ω is the actual rotation curve, Ω* is the trial solution, and the 
overbars on Ω and Ω* represent a mean (with depth) rotation curve (which 
may only be available as an inequality from solar oblateness measure-
ments) . This l i s t is not exhaustive of convex constraints that may be of 
value to the helioseismologist. For this example, however, we would gen-
erate the following objective function: 

Ε = [Α'/~^1/*)2 + φ1[(1*(τ = R, Θ) - Ω(Γ = R, Θ)]2 + ^2[Ω* - Ω]2 - φ3 £ Ω*1ηΩ* 

where the φ*s are Lagrange multipliers that weight the relative impor-
tance of each term. We thus seek that Ω* such that Ε is minimized. Since 
this function is convex, there is only one minimum, and the solution can 
be readily obtained. 

3. FINDING THE GLOBAL MINIMUM 

If one is , however, unlucky enough to require the use of a non-convex 
constraint, then more sophisticated numerical techniques are needed to 
discover the optimal solution. Two relatively new techniques (simulated 
annealing and neural network processing) show promise of efficiently 
solving this problem. These algorithms are described in more detail 
elsewhere (see Jeffrey and Rosner 1986) , but a brief description fol-
lows : Simulated Annealing mimics the way a thermal system will achieve its 
minimum free energy state if its temperature is lowered slowly. Avoid-
ing the local minima is accomplished because at any finite temperature, 
there is a finite probability (given by the Boltzmann probability) that 
a fluctuation consistent with local thermal equilibrium will knock the 
solution out of a given local minimum, and allow it to proceed to find 
the global minimum. This procedure can easily be simulated on a computer 
for any objective function. Neural network processing has its origin in the 
way neurobiologists model the interaction of neurons in the storage and 
recall of human memory. For the discrete optimization case, Hopfield and 
Tank (1985) have worked out the details of implementation. For analog 
problems, Jeffrey and Rosner (1986) implement a version of neural net-
works that is equivalent to a type of stochastic gradient descent. Both 
methods give satisfactory results on a variety of simple optimization 
problems. 

As an example of the performance of these techniques, the global min-
imum of the following function was sought: 

x4 

E{x, y) = [4 - 2.1x2 + — ]x2 + xy + [Ay2 - 4]y2, \x + 1, y| < 2 
ά 

which has six minima, two of them global. The results of using neural 
networks, a modified annealing approach, and a conjugate gradient method 
are shown in Table 1. Both relative computation time and success in de-
termining the global minimum are listed. The modified annealing uses an 
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idea proposed by Szu and Hartley (1986) which suggests that a Lorentzian 
probability distribution rather than Boltzmann should be used to de-
termine changes to the trial solution. We took this alteration one step 
further, and ran it at zero temperature: that is , only downhill moves 
would be accepted. Since the Lorentzian has infinite variance, the trial 
solution can quickly span the entire domain of interest, allowing the 
solution to "step out" of local minima and find points at lower energy. 
For this problem, the modified annealing is then sped up by several or-
ders of magnitude over the traditional simulated annealing. 

T A B L E 1 

METHOD COMPUTATION GLOBAL MINIMUM 
TIME FOUND (%) 

CONJUGATE 
GRADIENT 1 56 
MODIFIED 
ANNEALING 2.4 98 
NEURAL 1.8 76 
NETWORK 4.2 100 

4. CONCLUSIONS 

The following conclusions can be drawn: 
• The solar inverse problem can be posed as a variational problem. 
• This reformulation allows any constraints to be naturally incorporated 

into the problem. 
• If the objective function is convex, then any descent algorithm can be 

used to determine the global minimum. 
• If the objective function is not convex, algorithms do exist to find 

the global minimum. 
• The solution obtained in this way is often more accurate and more sta-

ble than solutions found by using traditional techniques. 

5. REFERENCES 

Backus, G. and Gilbert, F. 1970, Philos. Trans. R. Soc. Lond. (A), 266, 
123. 

Frieden, B.R. 1972, J . Opt. Soc. Am., 62, 511. 
Hopfield, J.J. and Tank, D. 1985, Biol. Cybern., 52, 141. 

Jaynes, E.T. 1957, Phys. Rev., 106,620. 
Jeffrey, W. andRosner, R. 1986, Ap. J . , (to appear Nov. 1) . 
Kirkpatrick, S. , Gelatt, CD. , and Vecchi, M.P. 1983, Science, 220, 671. 
Parker, R.L. 1972, Geophys. J. Roy. Astron. Soc, 29, 123. 

Szu, H. and Hartley, R. 1986, (private communication). 
Tikhonov, A.N. 1963, Sov. Math. Dokl., 4, 1035. 
Twomey, S. 1977, Introduction to the Mathematics of Inversion in Remote Sens-

ing and Indirect Measurements (New York: Elsevier) . 

https://doi.org/10.1017/S0074180900157912 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900157912

