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REPRESENTATIONS FOR THE DECAY PARAMETER
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Abstract

We study the decay parameter (the rate of convergence of the transition probabilities)
of a birth–death process on {0, 1, . . . }, which we allow to evanesce by escape, via
state 0, to an absorbing state −1. Our main results are representations for the decay
parameter under four different scenarios, derived from a unified perspective involving
the orthogonal polynomials appearing in Karlin and McGregor’s representation for the
transition probabilities of a birth–death process, and the Courant–Fischer theorem on
eigenvalues of a symmetric matrix. We also show how the representations readily yield
some upper and lower bounds that have appeared in the literature.
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1. Introduction

A birth–death process is a continuous-time Markov chain X := {X(t), t ≥ 0} taking values
in S := {0, 1, 2, . . .} with q-matrix Q := (qij , i, j ∈ S) given by

qi,i+1 = λi, qi+1,i = μi+1, qii = −(λi + μi),

qij = 0, |i − j | > 1,

where λi > 0 for i ≥ 0, μi > 0 for i ≥ 1, and μ0 ≥ 0. Positivity of μ0 entails that the process
may evanesce by escaping from S, via state 0, to an absorbing state −1. Throughout this paper
we will assume that the birth rates λi and death rates μi uniquely determine the process X.
Karlin and McGregor [9] have shown that this is equivalent to assuming that

∞∑
n=0

(
πn + 1

λnπn

)
= ∞, (1)

where πn are constants given by

π0 := 1 and πn := λ0λ1 . . . λn−1

μ1μ2 . . . μn
, n > 0.

We note that condition (1) does not exclude the possibility of explosion, escape from S, via all
states larger than the initial state, to an absorbing state ∞.
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Representations for the decay parameter of a birth–death process 279

It is well known that the transition probabilities

pij (t) := P{X(t) = j | X(0) = i}, t ≥ 0, i, j ∈ S,
have limits

pj := lim
t→∞pij (t) =

⎧⎪⎨
⎪⎩
πj

( ∞∑
n=0

πn

)−1

if μ0 = 0 and
∑∞
n=0 πn < ∞,

0 otherwise,

(2)

which are independent of the initial state i. If μ0 > 0 and the initial state is i then ai , the
probability of eventual absorption at −1, is given by

ai = μ0
∑∞
n=i (λnπn)−1

1 + μ0
∑∞
n=0(λnπn)

−1 , i ∈ S, (3)

where the right-hand side of (3) should be interpreted as 1 if
∑
n(λnπn)

−1 diverges (see Karlin
and McGregor [10, Theorem 10]).

The exponential rate of convergence of pij (t) to its limit pj will be denoted by αij , that is,

αij := − lim
t→∞

1

t
log |pij (t)− pj | ≥ 0, i, j ∈ S.

From Callaert [1] we know that these limits exist, and that

α := α00 ≤ αij , i, j ∈ S,
with equality whenever μ0 > 0, and inequality prevailing for at most one value of i or j when
μ0 = 0. We will refer to α as the decay parameter of X.

In this paper our interest focuses on representations and bounds for α. Our main goal is
to provide new proofs for a number of results that have appeared in the literature, notably in
the work of Chen [2]–[5], but see also Sirl et al. [13]. Our approach involves the orthogonal
polynomials appearing in Karlin and McGregor’s spectral representation for the transition
probabilities of a birth–death process, and the Courant–Fischer theorem on eigenvalues of a
symmetric matrix.

2. Results

We discern four different scenarios depending on whether μ0 = 0 or μ0 > 0, and the series∑
n πn (if μ0 = 0) or

∑
n(λnπn)

−1 (if μ0 > 0) converges or diverges. We will prove the
representations and bounds for α that are given in Theorems 1 to 4 below. These results readily
yield a number of known bounds for α, which are displayed in Corollaries 1 to 4.

In what follows 0 denotes a sequence consisting entirely of zeros andU is the set of sequences
of real numbers u := (u0, u1, . . . ) �= 0 that are eventually vanishing, that is, U = ∪n≥0Un,
where

Un := {u = (u0, u1, . . . ) �= 0 : ui = 0 for i > n}. (4)

Theorem 1. Let μ0 > 0 and
∑
n(λnπn)

−1 = ∞. Then

α = inf
u∈U

{ ∑∞
i=0 μiπiu

2
i∑∞

i=0 πi(
∑i
j=0 uj )

2

}
. (5)
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Corollary 1. ([5], [13].) Let μ0 > 0 and
∑
n(λnπn)

−1 = ∞. If

R0 := sup
n≥0

{ n∑
i=0

1

μiπi

∞∑
i=n

πi

}
= ∞

then α = 0, while

R0 < ∞ 
⇒ 1

4R0
< α <

1

R0
.

Theorem 2. Let μ0 > 0 and
∑
n(λnπn)

−1 < ∞. Then

α = inf
u∈U

{ ∑∞
k=0(μkπk)

−1 ∑∞
i=0 u

2
i /πi∑∞

k=0(μkπk)
−1 ∑∞

i=1(μiπi)
−1(

∑i−1
j=0 uj

)2 − (∑∞
i=1(μiπi)

−1 ∑i−1
j=0 uj )

2

}
,

whence,

α̃a ≤ α ≤ α̃a

(
1 + μ0

∞∑
n=0

1

λnπn

)
,

where

α̃a := inf
u∈U

{ ∑∞
i=0 u

2
i /πi∑∞

i=0(λiπi)
−1(

∑i
j=0 uj )

2

}
.

Corollary 2. ([5].) Let μ0 > 0 and
∑
n(λnπn)

−1 < ∞. If

S := sup
n≥0

{ n∑
i=0

πi

∞∑
i=n

1

λiπi

}
= ∞ (6)

then α = 0, while

S < ∞ 
⇒ 1

4S
< α <

1

S

(
1 + μ0

∞∑
n=0

1

λnπn

)
.

Theorem 3. Let μ0 = 0 and
∑
n πn = ∞. Then

α = inf
u∈U

{ ∑∞
i=0 u

2
i /πi∑∞

i=0(λiπi)
−1(

∑i
j=0 uj )

2

}
.

Corollary 3. ([5].) Let μ0 = 0 and
∑
n πn = ∞. If (6) holds then α = 0, while

S < ∞ 
⇒ 1

4S
< α <

1

S
.

Theorem 4. Let μ0 = 0 and
∑
n πn < ∞. Then

α = inf
u∈U

{ ∑∞
k=0 πk

∑∞
i=0 λiπiu

2
i∑∞

k=0 πk
∑∞
i=0 πi+1(

∑i
j=0 uj )

2 − (
∑∞
i=0 πi+1

∑i
j=0 uj )

2

}
, (7)

whence,

α̃r ≤ α ≤ α̃r

∞∑
n=0

πn,

where

α̃r := inf
u∈U

{ ∑∞
i=0 λiπiu

2
i∑∞

i=0 πi+1(
∑i
j=0 uj )

2

}
.
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Corollary 4. ([3], [4].) Let μ0 = 0 and
∑
n πn < ∞. If

R1 := sup
n≥1

{ n∑
i=1

1

μiπi

∞∑
i=n

πi

}
= ∞

then α = 0, while

R1 < ∞ 
⇒ 1

4R1
< α <

1

R1

∞∑
n=0

πn.

Note that the corollaries provide simple criteria for α to be positive. This is particularly
relevant in the setting of a birth–death process for which absorption at −1 is certain (that is, in
view of (3), the setting of Theorem 1), since positivity of the decay parameter is necessary and
sufficient for the existence of a quasi-stationary distribution (see [16, Section 5.1] for detailed
information).

Before proving the theorems and corollaries in Section 4, we present a number of preliminary
results in Section 3. In Section 5 we provide some additional information on related literature.

3. Preliminaries

3.1. Birth–death polynomials

The birth and death rates of the process X determine a sequence of polynomials {Qn} through
the recurrence relation

λnQn+1(x) = (λn + μn − x)Qn(x)− μnQn−1(x), n > 0,

λ0Q1(x) = λ0 + μ0 − x, Q0(x) = 1.
(8)

It is sometimes convenient to renormalize the polynomials Qn by letting

P0(x) := 1 and Pn(x) := (−1)nλ0λ1 . . . λn−1Qn(x), n > 0,

so that the recurrence relation (8) translates into

Pn+1(x) = (x − λn − μn)Pn(x)− λn−1μnPn−1(x), n > 0,

P1(x) = x − λ0 − μ0, P0(x) = 1.
(9)

It will also be convenient to set λ−1 := 0.
The sequence {Qn} plays an important role in the analysis of the birth–death process X

since, by a famous result of Karlin and McGregor [9], the transition probabilities of X can be
represented as

pij (t) = πj

∫ ∞

0
e−xtQi(x)Qj (x)ψ(dx), t ≥ 0, i, j ∈ S, (10)

whereψ is a probability measure on the nonnegative real axis, which is uniquely determined by
the birth and death rates if (1) is satisfied. Note that as a result of (10) we have pj = πjψ({0}),
so (2) implies that

ψ({0}) =

⎧⎪⎨
⎪⎩

( ∞∑
n=0

πn

)−1

if μ0 = 0 and
∑∞
n=0 πn < ∞,

0 otherwise.

(11)
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The measureψ has a finite moment of order −1 ifμ0 = 0 and
∑
n(λnπn)

−1 < ∞, or ifμ0 > 0.
Indeed, by [9, Equation (2.4) and Lemma 6] we have∫ ∞

0

ψ(dx)

x
=

∑∞
n=0(λnπn)

−1

1 + μ0
∑∞
n=0(λnπn)

−1 , (12)

which should be interpreted, if
∑
n(λnπn)

−1 diverges, as ∞ forμ0 = 0 and asμ−1
0 forμ0 > 0.

Of particular interest to us will be the quantities ξi, recurrently defined by

ξ1 := inf supp(ψ) (13)

and
ξi+1 := inf{supp(ψ) ∩ (ξi,∞)}, i ≥ 1, (14)

where supp(ψ) denotes the support of the measure ψ (also referred to as the spectrum of the
process). Namely, representation (10) implies (see [14, Theorem 3.1 and Lemma 3.2]) that the
decay parameter α of X can be expressed as

α =
{
ξ2 if ξ2 > ξ1 = 0,

ξ1 otherwise.
(15)

If ξ2 > ξ1 = 0 we must have pj = πjψ({0}) > 0, so (11) tells us

μ0 > 0 or
∞∑
n=0

πn = ∞ 
⇒ α = ξ1. (16)

We further define
σ := lim

i→∞ ξi, (17)

the first accumulation point of supp(ψ) if it exists, and ∞ otherwise. It is clear from the
definition of ξi that, for all i ≥ 1,

ξi+1 ≥ ξi ≥ 0,

and
ξi = ξi+1 ⇐⇒ ξi = σ.

Note that we must have σ = 0 if ξ1 = 0 but ψ({0}) = 0.
Since pij (0) = δij , where δij is Kronecker’s delta, (10) implies that

πj

∫ ∞

0
Qi(x)Qj (x)ψ(dx) = δij , i, j ∈ S, (18)

that is, the polynomials {Qn(x)} are orthogonal with respect to the measure ψ . In the ter-
minology of the theory of moments the Stieltjes moment problem associated with {Qn} is
said to be determined if there is a unique probability measure ψ on the nonnegative real axis
satisfying (18), and indeterminate otherwise. In the latter case there is, by [6, Theorem 5], a
unique orthogonalizing probability measure for which the infimum of its support is maximal.
We will refer to this measure (which happens to be discrete) as the natural measure for {Qn}.
Our assumption (1) does not necessarily imply that the Stieltjes moment problem associated
with {Qn} is determined, but if it is indeterminate then (10) will be satisfied only by the natural
measure. For details and related results we refer the reader to [9] (see also [8] and [15]).
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In what follows the measure ψ , if not uniquely determined by (18), should be interpreted as
the natural measure. With this convention the quantities ξn and σ of (13), (14), and (17) may
be defined alternatively in terms of the (simple and positive) zeros of the polynomials Qn(x)

(see [7, Section II.4]). Namely, with xn1 < xn2 < · · · < xnn denoting the n zeros of Qn(x),

we have the classical separation result

0 < xn+1,i < xni < xn+1,i+1, i = 1, 2, . . . , n, n ≥ 1, (19)

so that the limits as n → ∞ of xni exist, and

lim
n→∞ xni = ξi, i = 1, 2, . . . , n. (20)

3.2. Dual birth–death processes

Our point of departure in this subsection is a birth–death process X with birth rates λi and
death rates μi such that μ0 > 0. Following Karlin and McGregor [9], [10], we define the
process Xd to be a birth–death process on S with birth rates λdi and death rates μdi given by
μd0 = 0 and

λdi := μi, μdi+1 := λi, i ≥ 0. (21)

Accordingly, we define

πd0 := 1 and πdn := λd0λ
d
1 . . . λ

d
n−1

μd1μ
d
2 . . . μ

d
n

= μ0μ1 . . . μn−1

λ0λ1 . . . λn−1
, n ≥ 1,

and note that

πdn+1 = μ0(λnπn)
−1 and (λdnπ

d
n )

−1 = μ−1
0 πn, n ≥ 0. (22)

So our assumption (1) is equivalent to

∞∑
n=0

(
πdn + 1

λdnπ
d
n

)
= ∞,

and, hence, the process Xd is uniquely determined by its rates. So, within the setting of birth–
death processes satisfying (1), (21) establishes a one-to-one correspondence between processes
with μ0 = 0 and those with μ0 > 0. Therefore, X and Xd will be called each other’s dual.

The transition probabilities of Xd satisfy a representation formula analogous to (10),
involving birth–death polynomials Qd

n (with corresponding monic polynomials Pdn ) and a
unique probability measure ψd on the nonnegative real axis with respect to which the polyno-
mials Qd

n are orthogonal. By [9, Lemma 3] (see also [14]), we have

μ0ψ([0, x]) = xψd([0, x]), x ≥ 0.

With ξdi and σd denoting the quantities defined by (13), (14), and (17) if we replace ψ by ψd ,
we thus have σd = σ and

ξi =
{
ξdi+1 if ξd1 = 0,

ξdi if ξd1 > 0,
i ≥ 1. (23)
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The relations between the polynomials corresponding to X and Xd are most conveniently
expressed in terms of the monic polynomials Pn and Pdn , namely

Pdn+1(x) = Pn+1(x)+ λnPn(x), n ≥ 0, (24)

and
xPn(x) = Pdn+1(x)+ λdnP

d
n (x), n ≥ 0. (25)

These relations, which are easy to verify, reveal the fact that the zeros of the polynomials
corresponding to a birth–death process—which determine the decay parameter of the process
through (15) and (20)– may be studied via the polynomials of the dual process. This will prove
to be a crucial observation, since the technique that is used in the next subsection to obtain
representations for the zeros, although applicable to Pn(x) and Pdn (x), appears more rewarding
when applied to Pn+1(x)+ λnPn(x) and Pdn+1(x)+ λdnP

d
n (x). We will obtain representations

for the smallest zero of Pn+1(x)+ λnPn(x), and, hence, for the smallest zero of Pdn+1(x), and
for the second smallest zero of Pdn+1(x)+ λdnP

d
n (x) (the smallest being 0), and, hence, for the

smallest zero of Pn(x).
The superindex d , used in this subsection to identify quantities related to the dual process in

one direction only, will from now on be used in two directions, so that, for example, (Xd)d = X.

3.3. Representations for the zeros of Pn+1(x) + λnPn(x)

In this subsection we allow μ0 ≥ 0 again, and define P̃0(x) = 1 and

P̃n+1(x) := Pn+1(x)+ λnPn(x), n ≥ 0.

The zeros of P̃n(x) will be denoted by x̃ni , i = 1, 2, . . . , n. In view of (19), (24), and (25) we
have x̃n,1 = 0 for all n if μ0 = 0 and, for μ0 ≥ 0,

0 ≤ x̃n+1,i ≤ x̃ni < x̃n+1,i+1, i = 1, 2, . . . , n, n ≥ 1, (26)

which implies the existence of the limits

ξ̃i := lim
n→∞ x̃ni , i = 1, 2, . . . , n. (27)

To obtain suitable representations for x̃n1 and ξ̃1, and, if μ0 = 0, for x̃n2 and ξ̃2, we will
generalise the approach leading to [17, Theorem 3].

First note that, by the recurrence relation (9),

P̃n+1(x) = (x − μn)Pn(x)− λn−1μnPn−1(x), n > 0,

so that the polynomials P0(x), P1(x), . . . , Pn(x), P̃n+1(x) satisfy a three-terms recurrence
relation similar to (9) except that λn is replaced by 0. Next, let the (n+ 1)× (n+ 1) symmetric
tridiagonal matrix Mn be defined by M0 := (μ0) and, for n > 0,

Mn :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ0 + μ0 −√
λ0μ1 0 · · · 0 0

−√
λ0μ1 λ1 + μ1 −√

λ1μ2 · · · 0 0
0 −√

λ1μ2 λ2 + μ2 · · · 0 0
...

. . .
. . .

. . .
. . .

...

0 0 0 · · · λn−1 + μn−1 −√
λn−1μn

0 0 0 · · · −√
λn−1μn μn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.
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Denoting then×n identity matrix by In, it is now readily verified by expanding det(xIn+1−Mn)

by its last row that
det(xIn+1 −Mn) = P̃n+1(x), n ≥ 0,

so that the zeros x̃n+1,1, . . . , x̃n+1,n+1 of P̃n+1(x) are precisely the (real and simple) eigen-
values of Mn. From the Courant–Fischer theorem for symmetric matrices (see, for example,
Meyer [11, page 550]) it follows that

x̃n+1,1 = min
y �=0

yMny
T

yyT

and

x̃n+1,2 = max
dim V=nmin

y∈V
y �=0

yMny
T

yyT
, (28)

where y := (y0, y1, . . . , yn). Writing

yi = si
√
πi and si =

i∑
j=0

uj , i ≥ 0, (29)

we obtain

yMny
T =

n∑
i=0

(
y2
i (λi(1 − δin)+ μi)− 2yi−1yi

√
λi−1μi

)

=
n−1∑
i=0

λiπis
2
i +

n∑
i=0

μiπis
2
i − 2

n∑
i=1

si−1si
√
λi−1πi−1μiπi

=
n∑
i=1

μiπi(s
2
i−1 + s2

i − 2si−1si)+ μ0s
2
0

=
n∑
i=0

μiπiu
2
i ,

where we have exploited the fact that λi−1πi−1 = μiπi . It follows that

x̃n+1,1 = min
u �=0

{ ∑n
i=0 μiπiu

2
i∑n

i=0 πi(
∑i
j=0 uj )

2

}
, (30)

where u = (u0, u1, . . . , un) is a sequence of real numbers.
If μ0 = 0 the expression between the braces is minimised by choosing u = (1, 0, . . . , 0),

yielding x̃n+1,1 = 0, which is in complete agreement with (25). In this case, we can use (28)
to find a suitable representation for x̃n+1,2. Note that u = (1, 0, . . . , 0) corresponds to
y = a := (

√
π0,

√
π1, . . . ,

√
πn), which is readily seen to be a left eigenvector of Mn cor-

responding to the eigenvalue 0. Hence, choosing V to be the space orthogonal to a we have

x̃n+1,2 ≤ min
yaT =0

y �=0

yMny
T

yyT
.
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But, in fact, equality holds, since we may choose y to be a left eigenvector ofMn corresponding
to the eigenvalue x̃n+1,2. Indeed, since the eigenvalues of Mn are simple, the space of eigen-
vectors corresponding to a particular eigenvalue is one-dimensional. Using the notation (29)
again, it is readily seen that

yaT = 0 ⇐⇒
n∑
i=0

πi

i∑
j=0

uj = 0 ⇐⇒ u0 = −
∑n
i=1 πi

∑i
j=1 uj∑n

i=0 πi
.

Hence, if yaT = 0 we have

yyT =
n∑
i=0

πi

( i∑
j=0

uj

)2

=
n∑
i=0

πi

(
u0 +

i∑
j=1

uj

)2

=
n∑
i=1

πi

( i∑
j=1

uj

)2

+ 2u0

n∑
i=0

πi

( i∑
j=0

uj − u0

)
+ u2

0

n∑
i=0

πi

=
n∑
i=1

πi

( i∑
j=1

uj

)2

− u2
0

n∑
i=0

πi,

so that

yyT =
n∑
i=1

πi

( i∑
j=1

uj

)2

− (
∑n
i=0 πi

∑i
j=1 uj )

2∑n
i=0 πi

.

The preceding observations can be summarised by stating that, if μ0 = 0,

x̃n+1,2 = min
u �=0

{ ∑n
k=0 πk

∑n
i=1 μiπiu

2
i∑n

k=0 πk
∑n
i=1 πi(

∑i
j=1 uj )

2 − (
∑n
i=1 πi

∑i
j=1 uj )

2

}
, (31)

where u = (u1, u2, . . . , un). It follows that

min
u�=0

{ ∑n
i=1 μiπiu

2
i∑n

i=1 πi(
∑i
j=1 uj )

2

}
≤ x̃n+1,2 ≤ min

u �=0

{∑n
i=0 πi

∑n
i=1 μiπiu

2
i∑n

i=1 πi(
∑i
j=1 uj )

2

}
, (32)

since, by the Cauchy–Schwarz inequality,

n∑
k=1

πk

n∑
i=1

πi

( i∑
j=1

uj

)2

−
( n∑
i=1

πi

i∑
j=1

uj

)2

≥ 0.

4. Proofs

In what follows we allow the birth–death process X to have μ0 ≥ 0 and will use the
superindex d bidirectionally to identify quantities related to the dual process. Note that

μ0 > 0 
⇒ ξ̃i = ξdi , i ≥ 1,

μ0 = 0 
⇒ ξ̃1 = 0, ξ̃i+1 = ξdi , i ≥ 1,
(33)

as a consequence of (20), (24), (25), and, (27). Before proving Theorem 1 we observe
the following.
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Proposition 1. If μ0 > 0 and
∑
n(λnπn)

−1 = ∞, then α = ξ̃1.

Proof. By (16) we haveα = ξ1. Moreover,
∑
n(λnπn)

−1 = ∞ is equivalent to
∑
n π

d
n = ∞

by (22). Sinceμd0 = 0, we conclude from (11) thatψd({0}) = 0, so that 0 cannot be an isolated
point in the support of ψd . Hence, either ξd1 > 0 or ξd1 = ξd2 = σd = 0, so that, by (23),
ξ1 = ξd1 . Finally, by (33), ξd1 = ξ̃1, which establishes the result.

Proof of Theorem 1. Theorem 1 follows from the preceding result and representation (30).
Indeed, let C∞(u) and Cn(u) denote the expressions between the braces in (5) and (30),
respectively. Then, recalling definition (4), we have, for all n ≥ 0,

inf
u∈U C∞(u) ≤ inf

u∈Un
C∞(u) ≤ inf

u∈Un
Cn(u) = x̃n+1,1, (34)

so that infu∈U C∞(u) ≤ ξ̃1 = limn→∞ x̃n1. Assuming that infu∈U C∞(u) < ξ̃1, there must
be an eventually vanishing sequence ũ �= 0 such that C∞(ũ) < ξ̃1, whence, Cn(ũ) < ξ̃1 for
sufficiently large n. This, however, contradicts (30) and the fact that x̃n1 decreases to ξ̃1 as n
tends to ∞, as a consequence of (26).

The second proposition leads to the proof of Theorem 4.

Proposition 2. If μ0 = 0 and
∑
n πn < ∞, then α = ξ̃2.

Proof. We have ξ1 = 0 in view of (11). Hence, α = ξ2 by (15), and ξ2 = ξd1 by (23).
Finally, from (33) it follows that ξd1 = ξ̃2, which proves the statement.

Proof of Theorem 4. The representation forα in Theorem 4 follows from the preceding result
and representation (31) for x̃n+1,2. Namely, with D∞(u) and Dn(u) denoting the expressions
between the braces in (7) and (31), we have, for all n ≥ 0,

inf
u∈U D∞(u) ≤ inf

u∈Un
D∞(u) ≤ inf

u∈Un
Dn(u) = x̃n+1,2,

where the second inequality follows straightforwardly but, in contrast to the second inequality
of (34), with somewhat cumbersome calculations. The remainder of the proof is similar to the
proof of Theorem 1, now using the fact that x̃n2 decreases to ξ̃2 as n tends to ∞.

The lower bound for α in Theorem 4 is trivial, while the upper bound, as in (32), is implied
by the Cauchy–Schwartz inequality.

Theorems 2 and 3 follow from Theorems 1 and 4 by duality.

Proof of Theorem 2. If μ0 > 0 and
∑
n λnπn < ∞, then μd0 = 0 and

∑
n π

d
n < ∞, so,

by (11), ξd1 = 0. Moreover, by (16), (15), and (23), α = ξ1 = ξd2 = αd . So we can
apply Theorem 4 to the dual process and obtain Theorem 2 after translation in terms of the
original process.

Proof of Theorem 3. If μ0 = 0 and
∑
n πn = ∞, then, by (11), ψ({0}) = 0, implying that

either ξ1 > 0 or ξ1 = ξ2 = σ = 0. Moreover,μd0 > 0 and
∑
n λ

d
nπ

d
n = ∞, so, by (15) and (22),

α = ξ1 = ξd1 = αd . Theorem 3 results from applying Theorem 1 to the dual process.

The corollaries can be proven in various ways. The most efficient proof uses the weighted
discrete Hardy’s inequalities given by Miclo [12, Proposition 1.1], which state that when
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v = (v0, v1, . . . ) and w = (w0, w1, . . . ) are sequences of positive real numbers (weights), the
smallest constant A ≤ ∞ such that, for all real sequences u = (u0, u1, . . . ),

∞∑
i=0

vi

( i∑
j=0

uj

)2

≤ A

∞∑
i=0

wiu
2
i ,

satisfies
B ≤ A ≤ 4B, (35)

where

B = sup
n≥0

{ n∑
i=0

1

wi

∞∑
i=n

vi

}
.

Proofs of Corollaries 1–4. To prove Corollary 1 we first observe that (5) may be reformu-
lated as

1

α
= inf

{
A ≤ ∞:

∞∑
i=0

πi

( i∑
j=0

uj

)2

≤ A

∞∑
i=0

μiπiu
2
i for all u ∈ U

}
. (36)

But it is easy to see that (36) remains valid if we require that the inequality should hold
for all real sequences u instead of all real sequences u �= 0 that are eventually vanishing.
Subsequently, using the weighted discrete Hardy’s inequalities (35) with suitable interpretations
for the weights, yields R0 ≤ α−1 ≤ 4R0, establishing the corollary.

In the same way we can apply the weighted discrete Hardy’s inequalities to α in the setting
of Corollary 3, and to αa of Theorem 2 and αr of Theorem 4, establishing Corollaries 2–4.

We finally note that as a consequence of Theorems 1 and 3 we always have α = 0 if∑
n πn = ∑

n(λnπn)
−1 = ∞. But this is also obvious from the fact that σ = 0 in this case

(by (11), (12), and the fact that σ = σd ). Thirdly, arguing probabilistically, α = 0 is implied
(if μ0 = 0) by

∫ ∞
0 p00(t)dt = ∞, divergence of both sums being equivalent to null recurrence

of the process.

5. Concluding remarks

In a series of papers published in Chinese journals since the early 1990s, Chen has studied,
among related and more general issues, the problem of evaluating, or finding bounds for, the
decay parameter of a birth–death process using the theory of Dirichlet forms. With the exception
of [5] all of his publications involving birth–death processes pertain to ergodic processes (the
setting of Theorem 4). The representation for α in Theorem 4 may be obtained already from
results in [2], but the bounds of Corollary 4 appear for the first time in [3], together with some
more refined (but less explicit) bounds. For a survey of Chen’s results up to 2005, see [4]. Since
then Chen’s approach was adopted by Sirl et al. [13] in the setting of Theorem 1, resulting
in the bounds in Corollary 1, and also in more refined bounds. Only recently, in the very
comprehensive paper [5], Chen himself applied his methods to birth–death processes of all four
types, yielding, among many more results, the bounds in Corollaries 2 and 3.

We also note that in [12], where Miclo develops the weighted discrete Hardy inequalities
(35), the inequalities are actually applied to obtain bounds on the decay parameter of a birth–
death process on the entire set of integers on the basis of a representation for α in terms of a
Dirichlet form. Miclo suggests (page 324) that a similar approach may be applied in the setting
of a birth–death process on the nonnegative integers, but does not supply explicit results.
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Besides Dirichlet forms and the techniques used in this paper, there are many more
approaches towards evaluation of the decay parameter of a birth–death process. For an overview
of methods and results see [13].
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