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Constructing Representations of Finite
Simple Groups and Covers

Vahid Dabbaghian-Abdoly

Abstract. Let G be a finite group and χ be an irreducible character of G. An efficient and simple

method to construct representations of finite groups is applicable whenever G has a subgroup H such

that χH has a linear constituent with multiplicity 1. In this paper we show (with a few exceptions) that

if G is a simple group or a covering group of a simple group and χ is an irreducible character of G of

degree less than 32, then there exists a subgroup H (often a Sylow subgroup) of G such that χH has a

linear constituent with multiplicity 1.

1 Introduction

Let G be a finite group and χ be an irreducible character of G. An efficient and simple

method to construct representations of finite groups has been presented in [5]. This

is applicable whenever G has a subgroup H such that χH has a linear constituent

with multiplicity 1. We call such a subgroup H, a χ-subgroup. The problem in

using this method to construct representations of G is finding a χ-subgroup for each

irreducible character χ of G. We may need to examine the full lattice of subgroups of

G to find a χ-subgroup. Indeed there is no guarantee that for a given character χ any

χ-subgroup exists. Examples of solvable groups where no such subgroups exist are

given by G. Glauberman [9]. Also one can find non-solvable examples. For instance,

the covering group 6.A7 of the group A7 has three characters of degree 36 and for two

of them there is no such subgroup.

Suppose G is a simple group or a covering group of a simple group which is listed

in the Atlas [1] (see also [2]). Using a combination of theory and computation we

find, with a few exceptions, a χ-subgroup for each nontrivial irreducible character χ
of G of degree< 32. In the exceptional cases we show that the restriction ofχ to some

maximal subgroup of G is irreducible. The bound 32 on the degrees of irreducible

characters has been chosen with an eye to applications. The main theorems described

in [3, Chapter 5] only hold for characters of degrees less than 32. Also as the degree

of χ becomes larger there seem to be increasingly many examples of groups which

contain no χ-subgroup.

The results of this paper form an important part of the theoretical basis for a gen-

eral program which the author has developed to compute representations of finite

groups (see [4]) and for the computational reason we have tried to find easily de-

scribed χ-subgroups.

We now turn to examine specific classes of simple groups and their covers.
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24 V. Dabbaghian-Abdoly

2 Alternating Groups

We recall some facts about characters of the symmetric group Sn (see [8]). Since

the number of irreducible characters of a group is equal to the number of conjugacy

classes, which in the case of Sn is the number of partitions of n, the irreducible char-

acters of Sn are labelled by partitions of n. If λ = (λ1, λ2, . . . , λl) is a partition of

n then [λ] = [λ1, λ2, . . . , λl] denotes the irreducible character labelled by λ. In the

present paper we say the partition λ has level k if k = λ2 + · · · + λl(= n − λ1). Simi-

larly we say that the corresponding irreducible character [λ] of Sn has level k. This is

a nonstandard terminology.

Theorem 2.1 Let k > 0 be fixed. Suppose [λ] = [n − k, λ2, . . . , λl] is an irreducible

character of Sn of level k. Then [λ](1) is a polynomial in n of degree k.

Proof Let Hi j be the hook of the diagram of [λ] corresponding to the node (i, j).

Then |Hi j | = hi j 6 k for i > 2. Also there exist n − k hooks, H1 j , such that

|H1 j | = h1 j has a value of the form (n − m j) with m1 < m2 < · · · < mn−k for

1 6 j 6 n − k. Simplifying the hook formula [8, Theorem 2.3.21],

[λ](1) =

n!
∏

(i, j)∈λ hi, j
=

n!

(
∏

(1, j)∈λ h1, j)(
∏

(i>2, j)∈λ hi, j)

we find that only k factors remain in the numerator, and so [λ](1) is a polynomial in

n of degree k.

This theorem shows that the degrees of irreducible characters of Sn increase when

n increases. Therefore using [1], if [λ] is an irreducible characters of Sn of degree

< 32 such that [λ]An
is irreducible, then [λ] has level 6 2 for n > 9 and has level 6 1

for n > 10.

If λ is a partition of n, then λ ′, the conjugate partition of λ, is the partition of n

whose Young diagram is obtained by reflecting the Young diagram of λ in the main

diagonal. If λ 6= λ ′ then [λ]An
is irreducible [8, Theorem 2.5.7]. In particular λ 6= λ ′

when λ1 6= l.

If we consider the characters of levels 1, 2 and 3, then the following characters are

irreducible: [n−1, 1]An
for n > 4, [n−2, 2]An

for n > 5, [n−2, 12]An
and [n−3, 3]An

for n > 6, [n − 3, 13]An
for n > 8 and [n − 3, 2, 1]An

for n > 7.

The following theorem describes a χ-subgroup for each of these irreducible char-

acters.

Theorem 2.2

(1) If n > 4 and χ = [n − 1, 1]An
, then SylA4

(3) is a χ-subgroup.

(2) If n > 6 and χ = [n − 2, 2]An
or [n − 2, 12]An

, then SylA6
(3) is a χ-subgroup.

(3) If n > 8 and χ = [n − 3, 3]An
, [n − 3, 2, 1]An

or [n − 3, 13]An
, then SylA8

(2) is a

χ-subgroup.
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Proof Suppose k ∈ {1, 2, 3}. If we denote χ = [n − k, λ2, . . . , λl]An
for k =

λ2 + · · · + λl, then for n − r > k + l all constituents of χAn−r
are irreducible. Now

using [3, Theorem 4.1.12], for n − r > k + l we can write χAn−r
= ρ +

∑

miρi such

that ρ = [n − k − r, λ2, . . . , λl]An−r
and ρi are the other constituents. Since ρ is with

multiplicity one, if H is a subgroup of An−r and φ ∈ Irr(H) a linear character such

that 〈ρH, ϕ〉 = 1 and 〈(ρi)H , ϕ〉 = 0 for all i, then 〈χH , ϕ〉 = 1. Simple computations

show that for k = 1, 2, 3 and n greater than or equal to 5, 8, 11, respectively, the Sylow

subgroups SylA4
(3), SylA6

(3) and SylA8
(2) have this property and are χ-subgroups,

respectively.

With the exception of the characters covered in the theorem above, there are only

a few cases where an alternating group has a nontrivial irreducible character of de-

gree < 32. In these cases a χ-subgroup was computed directly using GAP [7]. These

exceptions are listed in Table 6 at the end of this paper. Table 6 also contains χ-sub-

groups for the covering groups of alternating groups and other simple groups and

covers listed in [1] for which there is no general theorem about their χ-subgroups

when χ(1) < 32. These were also found by a direct computation. In most cases we

have found a p-subgroup which is a χ-subgroup. Exceptions occur for 6.A6, 2.A7,

3.A7, 6.A7 and 2.A8 which for some χ do not have χ-subgroups which are p-groups.

However in the exceptional cases, computation in GAP enabled us to find the follow-

ing solvable χ-subgroups of G containing the centre of G.

If G = 6.A6 and χ(1) = 12, then G has a χ-subgroup of order 60. If G = 2.A7

and χ(1) = 20, then G has a χ-subgroup of order 40. If G = 3.A7 and χ(1) = 21

or 24, then G has an abelian χ-subgroup of order 36 and a χ-subgroup of order 60,

respectively. If G = 6.A7 and χ(1) = 20, 21 or 24, then G has χ-subgroups of order

120, 72 and 120, respectively. And finally, if G = 2.A8 and χ(1) = 24, then G has a

χ-subgroup of order 30.

3 PSL(2, q) and Its Cover

The group SL(2, q) is the unique covering group of the simple group PSL(2, q), ex-

cept for q = 9. In the latter case PSL(2, 9) ∼
= A6 and this has been dealt with in the

previous section. Also PSL(2, q) is the factor group of SL(2, q) by its centre so its

characters correspond to the characters of SL(2, q) whose kernels contain the centre.

Thus it is enough to find χ-subgroups for the irreducible characters χ of SL(2, q).

Let G = SL(2, q) where q = pn for some prime p and let

H =

{(

1 0

β 1

)

∣

∣

∣
β ∈ Fq

}

.

Then H is an abelian Sylow p-subgroup of G of order q. The following tables are the

tables of values of characters of G on elements 1 and 1 6= h ∈ H, when q is odd and

when q is even (see [6, pp. 228, 235]).

Now we show H is a χ-subgroup for all irreducible characters of G. We shall need

the following lemma.
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Table 1: Values of characters of SL(2, q) on elements of H when q is even: 1 6 i 6 q/2 and

1 6 j 6 (q − 2)/2.

1 ρ ψi θ j

1 1 q q − 1 q + 1

h 1 0 −1 1

Table 2: Values of characters of SL(2, q) on elements of H when q is odd: ǫ = (−1)(q−1)/2,

1 6 i 6 (q−1)/2 and 1 6 j 6 (q−3)/2. Note that η1(h)+η2(h) = −1 and ξ1(h)+ξ2(h) = 1

for all 1 6= h ∈ H.

1 η1 η2 ξ1 ξ2 ρ ψi θ j

1 1
(q−1)

2

(q−1)

2

(q+1)

2

(q+1)

2
q q − 1 q + 1

h 1
(−1∓√

ǫq)

2

(−1∓√
ǫq)

2

(1∓√
ǫq)

2

(1∓√
ǫq)

2
0 −1 1

Lemma 3.1 Let χ be an irreducible character of group G and suppose p ∤ (|G|/χ(1))

for some prime p. Then χ(g) = 0 whenever p | o(g). In particular if G has a Sylow

subgroup H and an irreducible character χ such that |H| = χ(1), then χH is the regular

character of H and so 〈χH , ϕ〉 = 1 for each linear character ϕ of H.

Proof See [12, Theorem 8.17]

Theorem 3.2 Let G = SL(2, q) for q = pn > 4 and H be a Sylow p-subgroup of G.

Then for all irreducible characters χ of G, H is a χ-subgroup.

Proof By Lemma 3.1 the character ρH of degree q is the regular character of H.

Since H is abelian, all irreducible characters ϕ1 := 1, ϕ2, . . . , ϕq of H are linear. On

the other hand, ψ j(h) = −1 and θi(h) = 1 for all 1 6= h ∈ H so

(ψ j)H = ρH − 1

and

(θi)H = ρH + 1.

Also when q is odd we have η1(h) + η2(h) = −1 and ξ1(h) + ξ2(h) = 1 for all

1 6= h ∈ H so

(η1)H + (η2)H = ρH − 1

and

(ξ1)H + (ξ2)H = ρH + 1.

Now since ρH =

∑q
i=1 ϕi and q > 4, therefore the restriction of each irreducible

character of G to H has at least one linear constituent with multiplicity 1.
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4 PSL(3, q), PSU(3, q) and Covers

By [13, Theorem 7.1.1] the group SL(3, q) where q = pn > 2 and p is a prime, is the

unique covering group of the simple group PSL(3, q) except when q = 4 (the group

PSL(3, 4) has 7 different covering groups, see Table 6). Also PSU(3, q) is a simple

group of twisted Lie type 2A2(q) and the group SU(3, q) is the unique covering group

of the simple group PSU(3, q) (see [10, Corollary 5.1.3]).

As we mentioned for the groups PSL(2, q) in Section 3, the irreducible characters

of PSL(3, q) and PSU(3, q) are obtained from characters of SL(3, q) and SU(3, q),

respectively. Thus it is enough to find a χ-subgroup for each irreducible character χ
of SL(3, q) and SU(3, q).

Suppose H is a Sylow p-subgroup of G = SL(3, q) where q is a power of a prime p.

Using the character table of G in [14], Guzel [11] constructs the primitive idempo-

tents of the complex group algebra of G. Let χ be an irreducible character of G and ψ
a linear character of H. If eχ and eψ are the orthogonal central idempotents afforded

by χ and ψ, respectively, then eχeψ is a primitive idempotent of CG corresponding

to χ. Using this fact he determines the pairs χ, ψ such that 〈χ, ψG〉 = 1. This implies

that the Sylow p-subgroup H is a χ-subgroup for all χ ∈ Irr(G). For a different proof

of this result see [3, Theorems 4.3.3, 4.3.9]. In what follows we denote

LT(a, b, c) =





1 0 0

a 1 0

b c 1



 .

Now suppose G = SU(3, q). Define H := {LT(a, b, c) | a, b, c ∈ Fq}. Then the

order of H is q3 and H is a Sylow p-subgroup for G. We use the character values

of G restricted to H to show that H or an abelian subgroup of order q2 of H is a

χ-subgroup for χ ∈ Irr(G).

The character table of G is known by the work of J. S. Frame and W. A. Simp-

son [14]. We shall use that table to get the values of characters on the different con-

jugacy classes of G which contain the elements of H.

Table 3 is a part of Table 1a of [14] that shows the structure of conjugacy classes

of G which contain some elements of the Sylow p-subgroup H. In this section d =

gcd(3, q + 1), ǫ ∈ GF(q2) and ǫ3 6= 1. In Table 3, ω is a complex primitive cube root

of unity. Each element of H is contained in one of the conjugacy classes C
(0)
1 , C

(0)
2

and C
(0,l)
3 of G. The centre Z(H) = {LT(0, z, 0) | z ∈ Fq} is an elementary abelian

p-group of order q. By using the canonical representative elements of conjugacy

classes C
(0)
1 , C

(0)
2 and C

(0,l)
3 we see that the minimal polynomials of elements of these

conjugacy classes have degrees 1, 2 and 3, respectively and the minimal polynomials

of nontrivial elements of Z(H) have degree 2 so nontrivial elements of Z(H) are

contained in the conjugacy class C
(0)
2 .

The following lemma gives us some properties of H.

Lemma 4.1 Suppose G = SU(3, q) where q is a power of a prime p. If H is a Sylow

p-subgroup of G then we have:

(1) H has q2 + q − 1 conjugacy classes.
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Table 3: Conjugacy classes of SU(3, q) which contain elements of the Sylow p-subgroup H for

d = 1, 3.

Conjugacy Canonical Parameters

class representative

C
(k)
1





ωk 0 0

0 ωk 0

0 0 ωk



 0 6 k 6 (d − 1)

C
(k)
2





ωk 0 0

1 ωk 0

0 0 ωk



 0 6 k 6 (d − 1)

C
(k,l)
3





ωk 0 0

ǫl ωk 0

0 ǫl ωk



 0 6 k, l 6 (d − 1)

(2) H has q2 linear characters and q − 1 non-linear characters of degree q such that

their values on nontrivial elements of Z(H) are 1 and qωi for some 1 6 i 6 p

respectively, where ω is a primitive p-th root of unity.

(3) If τ is an irreducible character of degree q of H, then τ (x) = 0 for x /∈ Z(H), and
∑

1 6=z∈Z(H) τ (z) = −q.

Proof First of all we show H/Z(H) is abelian. Let x, y ∈ H so it is enough to

show x−1 y−1xy ∈ Z(H). Let x = LT(a, b, c) and y = LT(d, e, f ) then x−1 y−1xy =

LT(0, a f − dc, 0). Hence H/Z(H) is abelian and H ′ ⊆ Z(H). Conversely if z =

LT(0, t, 0) ∈ Z(H) then z = x−1 y−1xy ∈ H ′ where x = LT(t, b, c) and y =

LT(0, 1, e) for b, c, e ∈ Fq. Therefore H ′
= Z(H).

Now suppose h = LT(h1, h2, h3) ∈ H\Z(H) so at least one of h1, h3 is not 0. Then

x−1hx = hx
= LT(h1, h1c − ah3 − h2, h3).

As x runs over H, h1c − ah3 − h2 runs over Fq. Thus the conjugacy class {hx | x ∈
H} has order q. Therefore each conjugacy class of H has order 1 or q and H has q

single element conjugacy classes, since |Z(H)| = q. If n is the number of conjugacy

class of order q then |H| = (q×1) + (n× q) and so n = q2 −1. Thus H has q2 + q−1

conjugacy classes.

Since |H : H ′| = q2 therefore H has q2 linear characters and since the number of

conjugacy classes of H is q2 + q − 1 so H has q − 1 non-linear characters. Let τ be

a non-linear irreducible character of H. Since Z(H) ⊆ Z(τ ) and by [12, Corollary

2.30]

(4.1) τ 2(1) 6 |H : Z(τ )| 6 |H : Z(H)| = q2,

so τ (1) 6 q. On the other hand, the number of conjugacy classes of H is q2 + q − 1
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and the order of H is q3 so.

q3
= |H| =

q2

∑

i=1

ϕi(1)2 +

q−1
∑

j=1

τ j(1)2,

where ϕi and τ j are linear and non-linear irreducible characters of H, respectively.

Since τ j(1) 6 q, therefore τ j(1) = q and (4.1) implies Z(H) = Z(τ ). Since H ′
=

Z(H), the value of all linear characters of H on Z(H) is 1. Also for an irreducible

character τ of degree q, if ρ is a representation which affords τ , then ρ(z) is a scalar

for all 1 6= z ∈ Z(H). Thus τ (z) = qω j for some 1 6 j 6 p, where ω is a primitive

p-th root of unity.

Since τ 2(1) = q2
= |H : Z(H)|, [12, Corollary 2.30] shows that τ (x) = 0 for all

x 6∈ Z(H). Using the first orthogonality relation we get

1

|H|

∑

x∈H

τ (x)1(x−1) =

1

|H|

∑

x∈H

τ (x) =

1

|H|

∑

z∈Z(H)

τ (z) = 0.

Therefore τ (1) = q implies

(4.2)
∑

1 6=z∈Z(H)

τ (z) = −q

and this completes the proof.

The following lemmas are simple consequences of Clifford’s theorem and the Frat-

tini argument.

Lemma 4.2 Let H be a subgroup of any group G, x ∈ NG(H) and ϑ and ψ be charac-

ters of H. Then 〈ϑx, ψx〉 = 〈ϑ, ψ〉. In particular taking ψ = ϑ, ϑx is irreducible if and

only if ϑ is irreducible.

Lemma 4.3 Let G be a normal subgroup of a group L and H be a Sylow subgroup of G.

Let χ and ϑ be irreducible characters of G and H, respectively. Let l ∈ L. Then

〈χH , ϑ〉 = 〈χl
H, ϑ

x〉 for some x ∈ NL(H).

In particular 〈χH , 1〉 = 〈χl
H, 1〉.

Table 4 and Table 5 taken from [14] show the values of the restriction of the irre-

ducible characters of the groups SU(3, q) on elements of the Sylow subgroup H when

d = 1 and d = 3, respectively.

By the values of characters ωm and γn on the conjugacy classes C
(0)
1 , C

(0)
2 and C

(0,l)
3

in Table 1b of [14], we have

(4.3) {(ω1)H , (ω2)H , (ω3)H} = {(γ1)H , (γ2)H , (γ3)H}.
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Table 4: Values of characters of SU(3, q) on elements of H when d = 1: 1 6 i, j 6 q,

1 6 r 6 (q2 − q)/6, 1 6 s 6 (q2 − q − 2)/2 and 1 6 t 6 (q2 − q)/3.

C
(0)
1 C

(0)
2 C

(0,0)
3

1 1 1 1

ψ q2 − q −q 0

ρ q3 0 0

ζi q2 − q + 1 −q + 1 1

η j q3 − q2 + q q 0

εr q3 − 2q2 + 2q − 1 2q − 1 −1

µs q3 + 1 1 1

νt q3 + q2 − q − 1 −q − 1 −1

Table 5: Values of characters of SU (3, q) on elements of H when d = 3: 1 6 i, j 6 q,

1 6 r 6 (q2 − q− 2)/6, 1 6 s 6 (q2 − q− 2)/2, 1 6 t 6 (q2 − q− 2)/3 and 1 6 k,m, n 6 3.

C
(0)
1 C

(0)
2 C

(0,l)
3

1 1 1 1

ψ q2 − q −q 0

ρ q3 0 0

ζi q2 − q + 1 −q + 1 1

η j q3 − q2 + q q 0

θk (q3 − 2q2 + 2q − 1)/3 (2q − 1)/3 or (2q − 1)/3 or

(−q − 1)/3 (−q − 1)/3

εr q3 − 2q2 + 2q − 1 2q − 1 −1

µs q3 + 1 1 1

νt q3 + q2 − q − 1 −q − 1 −1

ωm (q3 + q2 − q − 1)/3 (−q − 1)/3 or (−q − 1)/3 or

(2q − 1)/3 (2q − 1)/3

γn (q3 + q2 − q − 1)/3 (−q − 1)/3 or (−q − 1)/3 or

(2q − 1)/3 (2q − 1)/3

Theorem 4.4 Let G = SU(3, q) where q > 2 is a power of the prime p. Let H be a

Sylow p-subgroup of G. Then H is a χ-subgroup for all irreducible characters χ of G

such that χ(1) 6= q2 − q. If χ(1) = q2 − q, then there is an abelian subgroup of order

q2 in H which is a χ-subgroup.

Proof Let ψ be the irreducible character of degree q2 − q of G and τ an irreducible

character of degree q of H. Then using Table 4 and Table 5 for the value of ψ on

the conjugacy class C
(0)
2 containing the nontrivial elements of Z(H), together with
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Lemma 4.1, we have

〈ψH, τ 〉 =

1

|H|

∑

x∈H

ψH(x)τ (x)

=

1

q3
(ψH(1)τ (1) +

∑

1 6=z∈Z(H)

ψH(z)τ (z) +
∑

z /∈Z(H)

ψH(z)τ (z))

=

1

q3

(

(q2 − q)q + (−q)(−q) + 0
)

= 1.

Since H has q − 1 irreducible characters of degree q, we have

(4.4) ψH =

q−1
∑

i=1

τi.

Let ρ be the irreducible character of degree q3 of G. Since ρ(1) = |H|, Lemma 3.1

shows that ρH is the regular character of H. But H has q2 linear characters so for each

linear character ϕ of H we have 〈ρH, ϕ〉 = 1 and by (4.4) we have 〈ψH , ϕ〉 = 0. On

the other hand, Tables 4 and 5 show that:

(ζi)H = ψH + 1,

(η j)H = ρH − ψH ,

(εr)H = ρH − 2ψH − 1,

(µs)H = ρH + 1,

(νt )H = ρH + ψH − 1.

Therefore if ϕ is a non-principal linear character of H then, since 〈ρH , ϕ〉 = 1 and

〈ψH , ϕ〉 = 0, we get

〈(η j)H , ϕ〉 = 〈(εr)H , ϕ〉 = 〈(µs)H , ϕ〉 = 〈(νt )H , ϕ〉 = 1

and

〈(ζi)H , 1〉 = 1.

Now for the case ψ(1) = q2 − q we proved as follows. Define

K := {LT(a, b, a) | for a, b ∈ F}.

Then K is an abelian subgroup of H of order q2 and Z(H) ⊂ K. Let k = LT(a, b, a) ∈
K\{1}. Then

(k − 1)2
=





0 0 0

0 0 0

a2 0 0



 .
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Thus, if (k − 1)2
= 0, then a = 0 and k ∈ Z(H). Otherwise the minimal polynomial

for k has degree 3. Since the minimal polynomials of elements in the conjugacy classes

C
(0)
1 , C

(0)
2 and C

(0,0)
3 have degrees 1, 2 and 3, respectively, we have k ∈ C

(0)
2 when

1 6= k ∈ Z(H) and k ∈ C
(0,0)
3 when k /∈ Z(K). Let φ be a non-principal linear

character of K. Then using the values of ψ on C
(0)
2 and C

(0,0)
3 we have

〈ψK , φ〉 =

1

|K|

∑

k∈K

ψK (k)φ(k)

=

1

|K|

(

ψK (1)φ(1) +
∑

1 6=k∈Z(H)

ψK (k)φ(k) +
∑

k6∈Z(H)

ψK(k)φ(k)
)

=

1

q2

(

(q2 − q) + (−q)
∑

1 6=k∈Z(H)

φ(k) + 0
)

.

Put Z := Z(H) then Z ⊂ K and φZ is a linear character of Z. Using the first

orthogonality relation we have
∑

k∈Z φ(k) =

∑

k∈Z φZ(k) = 0. Therefore

∑

1 6=k∈Z(H)

φ(k) = −1.

This shows 〈ψK , φ〉 = 1 as required.

For the case that d = 3 the only remaining characters to consider are θk, ωm and

γn for 1 6 k,m, n 6 3.

Suppose ϕ is a non-principal linear character of H. Then

〈ψH , ϕ〉 = 0 and 〈ρH , ϕ〉 = 1,

so

〈(η j)H , ϕ〉 = 〈(εr)H , ϕ〉 = 〈(µs)H , ϕ〉 = 〈(νt )H , ϕ〉 = 1 and 〈(ζi)H , ϕ〉 = 0.

Using Frobenius reciprocity we have,

〈η j , ϕ
G〉 = 〈εr, ϕ

G〉 = 〈µs, ϕ
G〉 = 〈νt , ϕ

G〉 = 1 and 〈ζi, ϕ
G〉 = 0.

Also if we define

Kk = 〈(θk)H , ϕ〉, Mm = 〈(ωm)H , ϕ〉 and Nn = 〈(γn)H , ϕ〉,

then

〈θk, ϕ
G〉 = Kk, 〈ωm, ϕ

G〉 = Mm and 〈γn, ϕ
G〉 = Nn

for 1 6 k,m, n 6 3.
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Now if we induce ϕ to G, we get

ϕG
= ρ + qη j +

(

(q2 − q − 2)/6
)

εr +
(

(q2 − q − 2)/2
)

µs

+
(

(q2 − q − 2)/3
)

νt +

3
∑

k=1

Kkθk +

3
∑

m=1

Mmωm +

3
∑

n=1

Nnγn.

But ϕG(1) = |G : H|ϕ(1), so if we calculate the value at 1 and simplify the above

equation we have

|G : H| = q2 − 2q3 + q5 +

3
∑

k=1

Kkθk(1) +

3
∑

m=1

Mmωm(1) +

3
∑

n=1

Nnγn(1).

Since |G : H| = q5 − q3 + q2 − 1, we get

3
∑

k=1

Kkθk(1) +

3
∑

m=1

Mmωm(1) +

3
∑

n=1

Nnγn(1) = q3 − 1.

Since θk(1) = (q3 − 2q2 + 2q − 1)/3 and ωm(1) = γn(1) = (q3 + q2 − q − 1)/3, we

have

(

3
∑

k=1

Kk

)

(

(q3−2q2 +2q−1)/3
)

+
(

3
∑

m=1

Mm +

3
∑

n=1

Nn

)

(

(q3 +q2−q−1)/3
)

= q3−1.

Hence by considering K =

∑3

k=1 Kk, M =

∑3

m=1 Mm and N =

∑3

n=1 Nn we get

K
(

(q3 − 2q2 + 2q − 1)/3
)

+ (M + N)
(

(q3 + q2 − q − 1)/3
)

= q3 − 1,

so

(K +M +N)q3−
(

2K− (M +N)
)

q2 +
(

(2K − (M +N)
)

q− (K +M +N) = 3(q3−1).

Thus

(4.5) (A − 3)(q3 − 1) = B(q2 − q)

where A = K + M + N and B = 2K − (M + N). Since q | B(q2 − q), we have q | A− 3

and this means that A − 3 = tq for some integer t . Hence simplifying (4.5) implies

B = t(q2 + q + 1). Therefore

0 6 3K = A + B = 3 + t(q + 1)2

and

0 6 3(M + N) = 2A − B = 6 − t(q2 − q + 1).
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If q > 2 then the first inequality shows that t > 0 and the second shows that t 6 0.

So t = 0, A = 3 and B = 0, which gives K = 1 and M + N = 2. Hence
∑3

k=1 Kk = 1

and
∑3

m=1 Mm +
∑3

n=1 Nn = 2. Therefore, for some k, Kk = 1 and 〈(θk)H , ϕ〉 = 1.

Let 〈(θ1)H , ϕ〉 = 1. Then the characters θ1, θ2 and θ3 are conjugate in L =

GU(3, q), (see [14, §4]). Hence by Lemma 4.3 we have

〈(θ1)H , ϕ〉 = 〈(θ2)H , ϕ
x〉 = 〈(θ3)H , ϕ

y〉 = 1

for some x, y ∈ NL(H). On the other hand, by Lemma 4.2, ϕx and ϕy are linear char-

acters of H so the restriction of characters θ1, θ2 and θ3 to H have at least a constituent

of degree one with multiplicity one.

Also equation (4.3) shows
∑3

m=1 Mm =

∑3

n=1 Nn and so both sums equal 1.

Therefore for some m and n we have Nn = 1 and Mm = 1, which means 〈(ωm)H , ϕ〉=
〈(γn)H , ϕ〉 = 1. Without loss in generality we can suppose 〈(ω1)H , ϕ〉 = 〈(γ1)H , ϕ〉
= 1. Since the elements of each set of characters {ω1, ω2, ω3} and {γ1, γ2, γ3} are

conjugate in L = GU(3, q) (see [14, §4]), therefore by Lemma 4.3 and Lemma 4.2

there exist r, s, t, u ∈ NL(G) such that ϕr, ϕs, ϕt and ϕu are linear characters of H and

〈(ω2)H , ϕ
r〉 = 〈(ω3)H , ϕ

s〉 = 〈(γ2)H , ϕ
t〉 = 〈(γ3)H , ϕ

u〉 = 1.

Hence for 1 6 m, n 6 3 the characters (ωm)H and (γn)H have a linear constituent

with multiplicity 1. This completes the proof.

5 Other Simple Groups and Covers

We have shown above that for each irreducible character χ of degree less than 32

of the alternating groups and their covers there exists a χ-subgroup (often a Sylow

subgroup). Also without any restriction on the degree of characters, if G is one of

the groups PSL(2, q), PSL(3, q), PSU(3, q) or their covers and χ is an irreducible

character of G, then there exists a Sylow subgroup or a p-subgroup of G which is a

χ-subgroup.

Lemma 3.1 shows that if a group G has a Sylow subgroup P and an irreducible

character χ such that |P| = χ(1), then χP is the regular character of P. In this case

〈χP, ϕ〉 = 1 for each linear character ϕ of P (i.e., P is a χ-subgroup). Using these

results and some computations in GAP, we found all the other cases listed in [1],

where G is a simple group or a cover of a simple group and χ an irreducible character

of G with degree less than 32, for which there exists a Sylow subgroup which is a

χ-subgroup. We have summarized our results in the Table 6.

For the groups 3.O7(3), 3.U6(2) and the covering groups of U4(3) we have not

been able to determine whether their characters of degree less than 32 have χ-sub-

groups. However, in [4] we have used an alternative approach to construct the repre-

sentations based on the fact that we can show that the character remains irreducible

on some proper subgroup. Suppose G̃ is one of these groups and χ is an irreducible

character of G̃ of degree less than 32. We shall use [1] to find a maximal subgroup

M̃ of G̃ such that χM̃ is irreducible. It is enough to find a maximal subgroup M̃ such

that

〈χM̃ , χM̃〉 = 〈χM̃χ̄M̃ , 1〉 = 1.
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Since χ is irreducible, 〈χ, χ〉 = 〈χχ̄, 1〉 = 1. Note that the kernel of χχ̄ contains the

centre of G̃ and so we can consider χχ̄ as a character of G = G̃/Z(G̃). So

(5.1) χMχ̄M = 1 +
∑

1 6=ψi∈Irr(G)

mi(ψi)M ,

where M = M̃/Z(G̃). Now if we find a maximal subgroup M of G such that for

each constituent (ψi)M of equation (5.1), 〈(ψi)M , 1〉 = 0 then 〈χMχ̄M , 1〉 = 1. This

means that the restriction χM̃ of χ to the inverse image M̃ of M in the centre of G̃ is

irreducible.

Suppose G = U4(3). The covering groups 2.G and 4.G have one and two charac-

ters of degree 21, respectively (see [1]). The covering group 31.G has two characters

of degree 15 and two characters of degree 21. Finally the covering group 61.G has two

characters of degree 6. If χ is an irreducible character of degree less than 32 of one

of these covers such that χ(1) 6= 21, then for the maximal subgroup M ∼
= 34 : A6 of

index 112 of G we have 〈χMχ̄M, 1〉 = 1 which means χM̃ is irreducible. If χ(1) = 21,

then G has a maximal subgroup M isomorphic to PSL(3, 4) of index 162 such that

〈χMχ̄M , 1〉 = 1 and so χM̃ is irreducible.

If G = O7(3), then the covering group 3.G has two characters of degree 27, and

G has a maximal subgroup M of index 364 such that M ∼
= 35 :U4(2) : 2. For each

character χ of degree 27, χM̃ is irreducible.

Finally for G = U6(2) the covering group 3.G has two irreducible characters of

degree 21, and G has a maximal subgroup M of index 891 such that M ∼
= 29 : L3(4).

We find that χM̃ is irreducible when χ is character of degree 21. For more details

about these maximal subgroups see [3].

Table 6 describes χ-subgroups for the characters of degree less than 32 for simple

groups and covers which have not been already described in the theorems.

Table 6:

G Degree χ-subgroup

A5 3 Syl(3)

2.A5 2, 3, 4, 5, 6 Syl(5)

A6 8 Syl(2)

2.A6 4, 5, 8, 9, 10 Syl(3)

3.A6 3, 5, 6, 8, 9, 10, 15 Syl(2)

3, 4, 5, 6, 8, 9 Syl(5)

6.A6 10 Syl(3)

15 Syl(2)

A7 10, 21 Syl(3)

2.A7 4, 6, 10, 14, 15, 21 Syl(3)

3.A7 4, 6, 10, 14, 15, 20 Syl(2)

4, 6, 10 Syl(7)

6.A7 14 Syl(3)

15 Syl(2)

Continued on next page
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G Degree χ-subgroup

M11 10, 11, 16 Syl(11)

A8 14, 21 Syl(3)

7, 8 Syl(7)

2.A8 14, 20, 21 Syl(3)

28 Syl(2)

2.L3(4) 10, 20, 28 Syl(2)

3.L3(4) 15, 20, 21 Syl(2)

41.L3(4) 8, 10, 20, 28 Syl(2)

42.L3(4) 10, 20, 28 Syl(2)

6.L3(4) 6, 10, 15, 20, 21, 28 Syl(2)

121.L3(4) 6, 10, 15, 20, 21, 24, 28 Syl(2)

122.L3(4) 6, 10, 15, 20, 21, 28 Syl(2)

U4(2) 6 Syl(5)

5, 10, 15, 20, 24, 30 Syl(3)

Sp4(3) 6 Syl(5)

4, 5,10, 15, 20, 24, 30 Syl(3)

Sz(8) 14 Syl(13)

M12 11, 16 Syl(2)

2.M12 10, 11, 12, 16 Syl(2)

A9 21 Syl(2)

2.A9 8 Syl(7)

21, 27, 28 Syl(3)

M22 21 Syl(2)

2.M22 10 Syl(3)

21 Syl(2)

3.M22 21 Syl(2)

J2 14, 21 Syl(5)

2. J2 6, 14, 21 Syl(5)

S4(4) 18 Syl(5)

S6(2) 7 Syl(7)

15, 21, 27 Syl(3)

2.S6(2) 7, 8 Syl(7)

15, 21, 27 Syl(3)

2.A10 9, 16 Syl(5)

U4(3) 21 Syl(2)

G2(3) 14 Syl(13)

3.G2(3) 14, 27 Syl(2)

S4(5) 13 Syl(13)

Sp4(5) 12, 13 Syl(3)

L4(3) 26 Syl(3)

L5(2) 30 Syl(2)

M23 22 Syl(23)

Continued on next page
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G Degree χ-subgroup

U5(2) 10, 11 Syl(11)
2F4(2) ′ 26, 27 Syl(3)

2.A11 10, 16 Syl(11)

HS 22 Syl(2)

3. J3 18 Syl(17)

O+
8 (2) 28 Syl(5)

2.O+
8 (2) 8, 28 Syl(5)

3D4(2) 26 Syl(7)

M24 23 Syl(23)

2.G2(4) 12 Syl(13)

McL 22 Syl(2)

S6(3) 13 Syl(13)

2.S6(3) 13, 14 Syl(13)

U6(2) 22 Syl(3)

2.Ru 28 Syl(29)

6.Suz 12 Syl(13)

Co3 23 Syl(23)

Co2 23 Syl(23)

2.Co1 24 Syl(23)
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