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IDEALS GENERATED BY POWERS OF ELEMENTS

D.D. ANDERSON, KENT R. K N O P P AND REBECCA L. LEWIN

For an ideal / in a commutative ring R we consider the ideal /„ = ({»n | i € /}) .
We show that if n! is a unit in R, then /„=/**. We give an example of a doubly
generated ideal / with /3 not finitely generated.

Let R be a commutative ring with identity and let / be an ideal of R. For a
natural number n, In is of course the ideal of R generated by all the products ii • • -in

where each i, £ I. It is natural to wonder what happens if instead of taking products
ii • • • in, we take n-th powers of elements from I. Thus we make the following definition,
first given in [1].

DEFINITION 1: Let / be an ideal in the commutative ring R and let n be a natural
number. Then In — ({in \ i £ /}) is the ideal generated by n th powers of elements of
I.

So In 3 In with equality if n = 1. Suppose that we are given a generating
set for 1,1= ({aa}a 6A)- Then there is a natural generating set for In, namely,
In = ({a£\ • • • a ' ' | <*i € A, pi + • • • + pit = n}) . Moreover, we have the following con-
tainments:

/n - ( { C " ) 0 " 1 • • • < i<*•• G A> pi+• • • + ? * = n } ) - i n -

where I I = ra!/pi! • • • p*! is the usual multinomial coefficient. For n = 1
\Pi,---,PkJ

all the containments are equalities. For n = 2, only the second containment must
be an equality. For example, in Z[X,Y], we have (X,Y)2 = (X2,XY,Y2) D

(X2,2XY,Y2) = (X,Y)2 D (X2,Y2). For n ^ 3, none of the containments need
be equalities. For example, in Ii[X,Y], we have

(X,Y)3 = (X3,X2Y,XY2,Y3) D (X3,3X2Y,3XY2,Y3) D

(X,Y)3 = (X3,3X2Y + ZXY2,6XY2,Y3) 3 (X3,Y3).
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If I is locally principal, then In = ({a£ | a £ A}); so / " = Jn. We shall prove (Theorem
5) that for any ideal / , if n\ is a unit in R, then In — In.

The ideal / „ , like the ideal In, behaves well with respect to localisations and
homomorphic images. If 5 is a multiplicatively closed subset of R, then it is easily
proved that Ins = {Is)n- Thus in many cases we can reduce to the quasi-local case. If
tp : R —» T is a ring epimorphism, then <p{In) — (v(-0)n-

Since I\ — I1, the first case of interest is I2 • Suppose that I = ({aa \ a £ A}).
Then it is easily seen that

= ({a2
a I a £ A} U {2aaap \ a,0 £ A, a

So (a,b)2 = (a2,2a6,62) . Thus / finitely generated implies that I2 is finitely generated.
As we shall see (Example 4), for I3 this no longer need be true. Note that if / is locally
principal or 2 is a unit in R, then I2 = I2 • We offer the following partial converse.

THEOREM 2 . Let (R, M) be a quasi-local integrally closed ring. Let a,b £ R be
nonzerodivisors. Then (a,b)2 — (a,b) if and only if either (1) (a, 6) is principal or (2)
2 is a unit.

PROOF: We have already remarked that the implication (<i=) holds. Conversely,
suppose that (a2,2ab,62) = (a,b)2 — (a,b) and that 2 is not a unit. Then ab =
ra2 + s(2ab) + tb2, so (1 - 2s)ab — ra2 + tb2. Since 2 £ M, 1 - 2s is a unit, so
ab — ua2+vb2 for some u, v £ R. Dividing both sides by b2 yields u(a/b) —a/b+v = 0.
By the •u,u~1 Lemma [2, Theorem 67], either a/b or b/a is in R. In either case, (a, b)
is principal. U

For n = 2, we found a natural basis for I2 in terms of a basis for / . In particular,
if / is finitely generated, so is /„ for n = 1,2. I f n ^ 3 and / is not locally principal,
then no such natural basis for Jn exists. In fact, for n ^ 3,1 finitely generated need not
even imply that In is finitely generated. We show (Example 4) that the ideal (X, Y)3

in Z[X, Y, {Tj}i£jv] is not finitely generated. But first a lemma. Note that Lemma 3
shows that (X,Y)3 C (X3,3X2Y,3XY2,Y3) in Z[X,Y).

LEMMA 3 . Let X and Y be in determinates over Z. In Z[X,Y], {X,Y)3 =
(X3,Y3,3X2Y + 3XY2,6XY2).

PROOF: It is easily checked that X3,Y3,3X2Y + 3XY2,6XY2 £ (X,Y)S. So
the containment D holds. Now (fX + gY)3 = f3X3 + 3f2gX2Y + 3fg2XY2 +
g3Y3, so to prove the reverse containment, it suffices to show that 3f2gX2Y +
3fg2XY2 e (X3,Y3,3X2Y + 3XY2,6XY2). And to show this it suffices to prove
that fg(fX +gY)eA= (X + Y,2Y,X2,Y2). Note that XY = (X + Y)Y-Y2 £ A.
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Let / = oo + axX + a2Y + • • • and g = b0 + bxX + b2Y + • • • . Thus fX + gY =

a0X + b0Y = (60 - ao)Y (mod A). Hence fg(fX+gY) = a0b0{b0 - ao)Y = 0 (mod
A) because ao6o(&o — ao) is even. U

EXAMPLE 4. Let X, Y, and {Ti}i6jv be indeterminates over Z. Then for the ideal
{X,Y) of Z[X,Y,{Ti}i€N], {X,Y)3 is not finitely generated.

Let / = (X, Y) in Z[X,Y,{Ti}ieN]. Suppose that J3 is finitely generated. Now I

is generated by elements of the form (fX + gY)3 = f3X3 + 3f2gX2Y + 3fg2XY2 +

g3Y3. So 73 finitely generated gives that I3 = (X3,Y3 J2
giX

2Y + 3fig
2XY2, ••• ,

3ftgnX
2Y + 3fng

2
nXY2) where fu • • • , fn,glt • • • , gn E Z[X,Y,TU- • • , T.-X\. So

we have

3T2X2Y + 3T.XY2 = HiX3 + H2Y
3 + F j (3f2

giX
2Y + 3fl9

2XY2) + •••

where Hi,Fi£ Z[X, Y, {Ti}i€Z] • Map all the T; -> 0 except for T,. Then in (*), / ; , gi £
Z[X,Y] while Hi,FiE Z[X,Y,T.]. Replacing Ts by a new indeterminate T says that
3T2X2Y + 3TXY2 £ JZ[X,Y,T] = JZ[X,Y][T\ where J = {X,Y)3 in Z[X,Y]. Thus
3XY2 EJ.By Lemma3, 3XY2 = fiX3 + f2Y

3 + f3(3X2Y + 3XY2) + U(6XY2) for
some fi € Z[X,Y]. By degree consideration, we can assume that each fi£Z. Clearly
/ ! = /a = 0. Thus Y = h{X + Y) + / 4 (2Y) . Now clearly / 3 = 0. Thus 1 = 2 / 4 ) a
contradiction.

In [1] we showed that if R contains a field of characteristic 0, then / „ = In for
all n. Examples given in [1] show that it is not enough to assume that n is a unit.
We next show that if n! is a unit in R, then / „ = In. The proof given here, using
the inclusion-exclusion principle, is different from the proof of the previously mentioned
result.

THEOREM 5 . Suppose that R is a commutative ring and I is an ideal of R. If

n! is a unit in R, then In= In.

P R O O F : Let f(Xu • • • , Xn) = £ £ ( - l ) n - f c ( X i ( 1 ) + •• • + XiW)n. It
* ( ) <(*)

suffices to observe that f{X\, • • • , Xn) = n! Xi • • • Xn. For then if n! is a unit in R,

for i i , • • • , in £ I, we have ii • • in — ( n ! ) " 1 / ^ , • • • , in) £ / „ . Hence / " = / „ .

That f(Xi, • • • , Xn) has the desired form may be seen as follows. Note that

f(Xi, • • • , Xn) is a form of degree n. Now clearly / (0 ,X2, • • • , Xn) = 0, so X\ | / .

By symmetry, each Xi \ f, so f(Xi, • • • , Xn) = aX\ • • • Xn. Here

k=l t(l)<-<i(fc) *=1
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D
We have already remarked that if / = ({aQ | a G A}) is locally principal, then

/ " = / „ = ({a£ | a G A}). We end with a related result.

THEOREM 6 . Let a and b be nonzerodivisoTS in the commutative ring R. Then
(o.,b)n locally principal (for example, invertible) implies that (a,b)n = (an,bn) and
hence is invertible.

PROOF: It is enough to prove that (a, b)n = (an,bn) locally. Thus we may suppose
that (R,M) is a quasi-local ring, a and b are nonzerodivisors in R, and (a,b)n is
principal, say (a, b)n — (ra + sb)nR. Now a™ G (a,b)n,

 s o a™ = a{ra + sb)n for some
a e R. If a is a unit, then bn G {a,b)n = (ra + sb)nR = anR, so (an,bn) = anR =
{a,b)n. So assume a G M. Then a" = ct(ra + sb)n = arnan + nar"-1 a""1 sb +

\-narasn~1bn-1 +asnbn. Hence (1 - arn)an = nar"'1 a""1 sb-\ \-asnbn where
1 — ctrn is a unit. Dividing by (1 — arn)bn shows that a/b G R, the integral closure
of R. Thus (a,b)R~ = b~R is principal; so (a,6)"fl = &ni2 = (an,bn)R~. Now {an,bn) D
(a,b)n where (a,b)n is principal; so (an,bn) = A(a,b)n for some ideal A of R. Now
(o,6)"!R = ( a n , 6 n ) l = ^(a,6)nfi = (A^) ((a,6)n5) C (A^)(a,&)nfi. Hence AR = fl
since (a, 6)n is finitely generated. But since R C JZ is integral, .A/? = i? gives that
A = R. So (an,6n) = (o,6)n. D
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