M. Maejima Nagoya Math. J. Vol. 142 (1996), 161-181

LIMIT THEOREMS RELATED TO A CLASS OF OPERATOR-SELF-SIMILAR PROCESSES

ΜΑΚΟΤΟ ΜΑΕJIMA

1. Introduction and results

An \mathbf{R}^{d} -valued $(d \ge 1)$ stochastic process $X = \{X(t)\}_{t \ge 0}$ is said to be operator-self-similar if there exists a linear operator D on \mathbf{R}^{d} such that for each c > 0

$$\{X(ct)\}\stackrel{f.d.}{=}\{c^D X(t)\},\$$

where $\stackrel{f.d.}{=}$ means the equality for all finite-dimensional distributions and

$$c^{D} = \exp\{(\ln c)D\} = \sum_{k=0}^{\infty} \frac{1}{k!} (\ln c)^{k} D^{k}.$$

We refer the reader to [HM1], [Sa] and [MM] for more information about operator-self-similar processes. In the present paper, we show limit theorems related to a class of operator-self-similar processes, as a direct extension of [KS].

A probability distribution μ on \mathbf{R}^d is said to be full if μ is not concentrated on a proper hyperplane and a full distribution μ on \mathbf{R}^d is called operator-stable if it is infinitely divisible and there exist an invertible linear operator B on \mathbf{R}^d and a function $b: (0, \infty) \to \mathbf{R}^d$ such that for all t > 0,

$$\varphi(\theta)^{t} = \varphi(t^{B^{*}}\theta)e^{ib(t)}, \quad \theta \in \mathbf{R}^{d},$$

where φ is the characteristic function of μ , B^* is the adjoint operator of B. μ is called strictly operator-stable if we can choose $b(t) \equiv 0$. In this paper, we always assume μ is a full strictly operator-stable on \mathbf{R}^d . However, Sharpe ([Sh]) showed that if 1 is not an eigenvalue of B, then the operator-stable law can be centered so as to become strictly operator-stable. Thus the assumption for the strict operator-stability is not so restrictive. So, in the present paper, we always assume

Received May 13, 1994. Revised May 2, 1995. ΜΑΚΟΤΟ ΜΑΕJIMA

(1)
$$\varphi(\theta)^{t} = \varphi(t^{B^{*}}\theta), \quad \theta \in \mathbf{R}^{d}.$$

The exponent *B* is not necessarily unique. Let $\Lambda_B = \max\{\operatorname{Re} \sigma : \sigma \in \sigma(B)\}$ and $\lambda_B = \min\{\operatorname{Re} \sigma : \sigma \in \sigma(B)\}$, where $\sigma(B)$ is the set of all eigenvalues of *B*. Then it is known ([Sh]) that $\lambda_B \geq \frac{1}{2}$ and a full operator-stable measure μ can be classified as follows:

(i) μ is Gaussian. In this case, $B = \frac{1}{2}I$ can always be taken as an exponent of μ .

(ii) μ is purely non-Gaussian. In this case, $\lambda_B > \frac{1}{2}$. When μ is *d*-dimensional α -stable measure, we can take $B = \frac{1}{\alpha} I$.

(iii) μ is general. Theorem 1 in [HM2] allows us to consider the Gaussian component and the purely non-Gaussian component separately.

In this paper, we focus on purely non-Gaussian operator-stable laws, since Gaussian case $\left(B = \frac{1}{2}I\right)$ can be handled similarly to [KS]. The representation for the characteristic function of purely non-Gaussian operator-stable law with exponent B is known as follows:

(2)
$$\varphi(\theta) = \exp\left\{i\langle\theta, c\rangle + \int_{S} \gamma(dx) \int_{0}^{\infty} \left[e^{i\langle\theta, s^{B}x\rangle} - 1 - i\langle\theta, s^{B}x\rangle I_{Q}(s^{B}x)\right] \frac{1}{s^{2}} ds\right\},$$

where

$$\theta \in \mathbf{R}^{d}, \quad c \in \mathbf{R}^{d},$$

$$S = \{x \in \mathbf{R}^{d} : ||x|| = 1 \text{ and } ||t^{B}x|| > 1 \text{ for all } t > 1\},$$

$$Q = \{x \in \mathbf{R}^{d} : ||x|| \le 1\},$$

 $\gamma \text{ is a probability measure on } S,$
 \langle , \rangle is the inner product in \mathbf{R}^{d} .

Let Z_B be a purely non-Gaussian operator-stable random vector with exponent B and let $\{\xi(k)\}_{k\in\mathbb{Z}}$ be i.i.d. \mathbf{R}^d -valued random variables such that they belong to be domain of normal attraction of Z_B , namely

(3)
$$n^{-B} \sum_{k=1}^{n} \xi(k) \xrightarrow{w} Z_{B}.$$

Let $\{S_n\}_{n=0}^\infty$ be an integer-valued random walk independent of $\{\xi(k)\}$ such that

(4)
$$\frac{1}{n^{1/\alpha}} S_n \xrightarrow{w} Z_{\alpha},$$

where Z_{α} is one-dimensional α -stable with $1 < \alpha \leq 2$. In this paper, we are concerned with a sequence of dependent stationary random vectors $\{\xi(S_k)\}_{k=0}^{\infty}$ and study the asymptotic behavior of its cumulative sum

$$W_n = \sum_{k=1}^n \xi(S_k).$$

Kesten and Spitzer ([KS]) called this a random walk in random scenery when d = 1, and proved that with a suitable normalization, $W_{[nt]}$ converges weakly to a self-similar process represented by a stable integral whose integrand is a local time.

To describe our theorem, we need some preliminaries. Let $\{Y(t)\}_{t\geq 0}$ be an α -stable Lévy process with right continuous sample paths such that the distribution of Y(1) is the same as that of Z_{α} in (4). Since $1 < \alpha \leq 2$, $L_t(x)$, the local time of $Y(\cdot)$ at x, exists and we can take a version of $L_t(x)$ (denoted by $L_t(x)$ again) which is continuous in (t, x). Let $\{Z_B(t)\}_{t\in \mathbf{R}}$ be an \mathbf{R}^d -valued Lévy process independent of $\{Y(t)\}_{t\geq 0}$ such that the distribution of $Z_B(1)$ is the same as that of Z_B in (3). This $\{Z_B(t)\}$ is called an operator-stable Lévy process or operator-stable motion with exponent B. Each component $\{Z_B^{(t)}(t)\}$, $i = 1, 2, \cdots$, d, of $\{Z_B(t)\}$ is also a real-valued (not necessary stable) Lévy process. Hence the stochastic integral

$$\Delta^{(i)}(t) = \int_{-\infty}^{\infty} L_t(x) dZ_B^{(i)}(x)$$

can be defined for each *i* as in [KS]. The \mathbf{R}^{d} -valued stochastic process whose *i*-th component is $\Delta^{(i)}(t)$ is denoted by

$$\Delta(t) = \int_{-\infty}^{\infty} L_t(x) \, dZ_B(x) \, ,$$

where $L_t(x)$ is a random scalar and Z_B is a random vector.

Define W_t for t > 0 by

$$W_{t} = W_{[t]} + (t - [t]) (W_{[t]+1} - W_{[t]}),$$

where [t] is the integer part of t. Our theorems are the following.

ΜΑΚΟΤΟ ΜΑΕЈΙΜΑ

THEOREM 1. Let $D = \left(1 - \frac{1}{\alpha}\right)I + \frac{1}{\alpha}B$. Then any finite dimensional distribution of $\{n^{-D}W_{nt}\}_{t\geq 0}$ converges to that of $\{\Delta(t)\}_{t\geq 0}$. $\{\Delta(t)\}_{t\geq 0}$ is operator-self-similar with exponent D and has stationary increments.

The latter half of Theorem 1 is easily seen by the definition of $\Delta(t)$.

THEOREM 2. $\{n^{-D}W_{nl}\}_{t\geq 0}$ converges weakly to $\{\Delta(t)\}_{t\geq 0}$ in the space $C([0, \infty): \mathbf{R}^d)$, provided that $\xi(0)$ is symmetric in the sense that $\xi(0) \stackrel{d}{=} -\xi(0)$ when $\lambda_B \leq 1 \leq \Lambda_B$.

The idea of the proofs of these theorems is found in [KS]. The only technical difference in the proof of Theorem 1 comes from the fact that the characteristic function of operator-stable random vector (eq. (2)) does not have a simple form like that of one-dimensional stable random variable. This technical point can be dealt with the basic relation (1) and observations given in Lemmas 4 and 7 below. (Lemma 4 is trivial for the one-dimensional case.) The rest of the argument is exactly the same as in [KS].

For the proof of Theorem 2, we need some estimates for the "tail" behavior of the random vector belonging to the domain of normal attraction of operator-stable law. It will be recognized as in [W] that in the multidimensional case $P\{|| n^{-B}\xi || \in A\}$ should be estimated instead of $P\{||\xi || \in A\}$. (See Lemmas 9, 11 and 12 below.) The estimates presented here can also be applied to a functional version of operator-stable limit theorem and other weak convergence theorem (see [M]).

We give here a brief remark on the extra condition of the symmetricity of $\xi(0)$ for the case $\lambda_B \leq 1 \leq \Lambda_B$. When d = 1, this case $(\lambda_B = \Lambda_B = 1)$ corresponds to the so-called Cauchy case where the index of stability is 1, and we often assume some conditions related to the symmetricity of $\xi(0)$. Such conditions are needed for the estimates for the tail behavior of random variables. However, the condition here is rather technical. The essential point would be whether 1 is an eigenvalue of B or not. From this point of view, the extra condition in Theorem 2 might be weakened, although we do not try it in this paper.

We end this section with a remark about the *i*-th component $\Delta^{(i)}(t)$ of the \mathbf{R}^{d} -valued stochastic process $\Delta(t)$. If B is diagonalizable over \mathbf{R} , then $Z_{B}^{(i)}(t)$ is one-dimensional stable ([H]). Thus $\Delta^{(i)}(t)$ is nothing but the process appearing in [KS]. Therefore it is self-similar. However if B is not semi-simple, then $Z_{B}^{(i)}(t)$ is not stable ([H]). Thus this process is not covered by [KS]. If B is not semi-simple,

nor is *D*. Then it follows from Theorem 5.1 in [M] that $\Delta^{(i)}(t)$ is not self-similar. Therefore the **R**-valued process $\Delta^{(i)}(t)$ is different from that in [KS].

2. Proof of Theorem 1

In the following, $\|\cdot\|$ stands for the ordinary Euclidean norm. The first step of the proof is to represent W_n as

(5)
$$W_n = \sum_{k=0}^n \xi(S_k) = \sum_{u \in \mathbf{Z}} N_n(u) \xi(u),$$

where $N_n(u)$ is the number of visits of the random walk $\{S_n\}$ to the point u in the time interval [0, n]. All that are necessary about the occupation time $N_n(u)$ of $\{S_n\}$ and the local time $L_t(x)$ are found in [KS]. We collect some of them which we need later as lemmas. Consider the linear interpolation of $N_n(u)$ as W_t as follows:

$$N_t(u) = N_{[t]}(u) + (t - [t]) (N_{[t]+1}(u) - N_{[t]}(u)).$$

For $-\infty < a < b < \infty$, define

$$T_{t}^{n}(a, b) = \frac{1}{n} \sum_{n^{\frac{1}{a}a \le u < n^{\frac{1}{a}b}}} N_{nt}(u)$$

and

$$\Gamma_t(a, b) = \int_a^b L_t(u) du.$$

LEMMA 1 ([KS]). For any $t_1, t_2, \dots, t_k \ge 0$, $\{T_{t_j}^n(a_j, b_j), 1 \le j \le k\} \xrightarrow{w} \{\Gamma_{t_j}(a_j, b_j), 1 \le j \le k\}.$

LEMMA 2 ([KS]). For any $p \ge 1$,

(6)
$$\sup_{u \in \mathbb{Z}} E[N_n(u)^p] = O(n^{p(1-\frac{1}{\alpha})})$$

and

(7)
$$P\{N_n(u) > 0 \text{ for some } u \text{ with } | u | > An^{\frac{1}{\alpha}}\} \le \varepsilon(A) \text{ for } n \ge 1$$

where $\varepsilon(A) \to 0$ as $A \to \infty$ and $\varepsilon(A)$ is independent of n.

In what follows, C denotes an absolute constant which may differ from one

inequality to another. Let $f = \log \varphi$, where φ is the characteristic function of Z_B defined in (2). We are going to show three lemmas.

LEMMA 3 (The joint distribution of $\Delta(t)$). For any $t_1, t_2, \ldots, t_k \ge 0$ and $\theta_1, \theta_2, \ldots, \theta_k \in \mathbf{R}^d$,

$$E\left[\exp\left\{i\sum_{j=1}^{k} \langle \theta_{j}, \Delta(t_{j}) \rangle\right\}\right] = E\left[\exp\left\{\int_{-\infty}^{\infty} f\left(\sum_{j=1}^{k} L_{t_{j}}(u) \theta_{j}\right) du\right\}\right].$$

Proof. The assertion easily follows from the facts that

$$\int_{0}^{\infty} L_{t}(u) dZ_{B}(u) = \lim_{n \to \infty} \sum_{l=0}^{\infty} L_{t}(u_{l}^{n}) [Z_{B}(u_{l+1}^{n}) - Z_{B}(u_{l}^{n})] \quad \text{w.p.1},$$

where $0 = u_0^n < u_1^n < \cdots$ is a suitable sequance satisfying

$$\lim_{l\to\infty} u_l^n = \infty, \quad \lim_{n\to\infty} \max_l (u_{l+1}^n - u_l^n) = 0,$$

and that

$$E[e^{i\langle \theta, Z_{B}(u_{l+1}^{n}) - Z_{B}(u_{l}^{n})\rangle}] = \varphi(\theta)^{u_{l+1}^{n} - u_{l}^{n}}$$

as in Lemma 5 in [KS].

LEMMA 4. Let $\beta = 1$ when $\Lambda_B < 1$ and let $0 < \beta < \frac{1}{\Lambda_B}$ when $\Lambda_B \ge 1$. Then for any θ_1 and $\theta_2 \in \mathbf{R}^d$, we have

$$|f(\theta_1) - f(\theta_2)| \le C\{ \|\theta_1 - \theta_2\|(1 + \|\theta_1\| + \|\theta_2\|) + \|\theta_1 - \theta_2\|^{\beta} \}.$$

Proof. By (2),

$$f(\theta_{1}) - f(\theta_{2})$$

$$= i\langle\theta_{1} - \theta_{2}, c\rangle$$

$$+ \int_{S} \gamma(dx) \int_{\{||s^{B}x|| \leq 1\}} \left[e^{i\langle\theta_{1}, s^{B}x\rangle} - e^{i\langle\theta_{2}, s^{B}x\rangle} - i\langle\theta_{1} - \theta_{2}, s^{B}x\rangle\right] \frac{1}{s^{2}} ds$$

$$+ \int_{S} \gamma(dx) \int_{\{||s^{B}x|| > 1\}} \left[e^{i\langle\theta_{1}, s^{B}x\rangle} - e^{i\langle\theta_{2}, s^{B}x\rangle}\right] \frac{1}{s^{2}} ds$$

Observe that if $0 < \beta \leq 1$,

$$|e^{i\xi_1} - e^{i\xi_2}| \le 2^{(1-\beta)/\beta} |\xi_1 - \xi_2|^{\beta}.$$

For, if $|\xi_1 - \xi_2| \ge 2^{1/\beta}$, then $|e^{i\xi_1} - e^{i\xi_2}| \le 2 \le |\xi_1 - \xi_2|^{\beta}$. If $|\xi_1 - \xi_2| < 2^{1/\beta}$, then

$$|e^{i\xi_1} - e^{i\xi_2}| \le |\xi_1 - \xi_2| = |\xi_1 - \xi_2|^{1-\beta} |\xi_1 - \xi_2|^{\beta} \le 2^{(1-\beta)/\beta} |\xi_1 - \xi_2|^{\beta}.$$

Thus we have

$$\begin{split} |f(\theta_{1}) - f(\theta_{2})| &\leq C \, \| \, \theta_{1} - \theta_{2} \, \| \\ &+ 2 \, \| \, \theta_{1} - \theta_{2} \, \| \, (\| \, \theta_{1} \, \| + \| \, \theta_{2} \, \|) \, \int_{S} \gamma(dx) \, \int_{\{||s^{B}x|| \leq 1\}} \frac{\| \, s^{B}x \, \|^{2}}{s^{2}} \, ds \\ &+ 2^{(1-\beta)/\beta} \, \| \, \theta_{1} - \theta_{2} \, \|^{\beta} \, \int_{S} \gamma(dx) \, \int_{\{||s^{B}x|| > 1\}} \frac{\| \, s^{B}x \, \|^{\beta}}{s^{2}} \, ds. \end{split}$$

Recall that $\lambda_B > \frac{1}{2}$ since μ is purely non-Gaussian operator-stable with exponent *B*. Hence

$$\int_{\mathcal{S}} \gamma(dx) \int_{\{||s^Bx||\leq 1\}} \frac{\|s^Bx\|^2}{s^2} ds < \infty.$$

On the other hand, since $\beta < \frac{1}{\Lambda_B}$,

$$\int_{\mathcal{S}} \gamma(dx) \, \int_{\{||s^{B}x||>1\}} \frac{\|s^{B}x\|^{\beta}}{s^{2}} \, ds < \infty.$$

Altogether we conclude the lemma.

LEMMA 5. For any $t_1, t_2, \ldots, t_k \ge 0$ and $\theta_1, \theta_2, \ldots, \theta_k \in \mathbf{R}^d$,

$$\sum_{u \in \mathbf{Z}} f\left(n^{-D^*} \sum_{j=1}^k N_{nt_j}(u) \theta_j\right) \xrightarrow{w} \int_{-\infty}^{\infty} f\left(\sum_{j=1}^k L_{t_j}(u) \theta_j\right) du.$$

Proof. Since $n^{-D^*} = n^{-(1-\frac{1}{\alpha})} n^{-\frac{1}{\alpha}B^*}$, we have, by the use of the relation (1),

$$\sum_{u \in \mathbf{Z}} f\left(n^{-D^*} \sum_{j=1}^k N_{nt_j}(u) \theta_j\right)$$

= $\sum_{u \in \mathbf{Z}} \log \varphi \left(n^{-(1-\frac{1}{\alpha})} \sum_{j=1}^k N_{nt_j}(u) n^{-\frac{1}{\alpha}B^*} \theta_j\right)$
= $\sum_{u \in \mathbf{Z}} n^{-\frac{1}{\alpha}} \log \varphi \left(n^{-(1-\frac{1}{\alpha})} \sum_{j=1}^k N_{nt_j}(u) \theta_j\right).$

Thus it is enough to show that

(8)
$$\sum_{u \in \mathbf{Z}} n^{-\frac{1}{\alpha}} f\left(n^{-(1-\frac{1}{\alpha})} \sum_{j=1}^{k} N_{nt_j}(u) \theta_j\right) \xrightarrow{w} \int_{-\infty}^{\infty} f\left(\sum_{j=1}^{k} L_{t_j}(u) \theta_j\right) du.$$

The following argument is very similar to that in [KS]. For some small $\tau > 0$ and large M, define

$$A_{n,l} = \{ u \in \mathbf{Z} : l\tau n^{\frac{1}{\alpha}} \le u < (l+1)\tau n^{\frac{1}{\alpha}} \}, \quad l \in \mathbf{Z},$$

$$U(\tau, M, n) = \sum_{|u| > M\tau n^{\frac{1}{\alpha}}} n^{-\frac{1}{\alpha}} f\left(n^{-(1-\frac{1}{\alpha})} \sum_{j=1}^{k} N_{nl_j}(u) \theta_j\right)$$

and

$$V(\tau, M, n) = \sum_{|l| \le M} |A_{n,l}| n^{-\frac{1}{\alpha}} f\left(n^{-(1-\frac{1}{\alpha})} \frac{1}{\tau n^{\frac{1}{\alpha}}} \sum_{y \in A_{n,l}} \sum_{j=1}^{k} N_{nt_j}(y) \theta_j\right),$$

where $|A_{n,l}|$ is the number of integers in $A_{n,l}$. Then

$$I := \sum_{u \in \mathbb{Z}} n^{-\frac{1}{\alpha}} f\left(n^{-(1-\frac{1}{\alpha})} \sum_{j=1}^{k} N_{nt_{j}}(u) \theta_{j}\right) - U(\tau, M, n) - V(\tau, M, n)$$

$$= \sum_{|I| \le M} \sum_{u \in A_{n,i}} n^{-\frac{1}{\alpha}} \left\{ f\left(n^{-(1-\frac{1}{\alpha})} \sum_{j=1}^{k} N_{nt_{j}}(u) \theta_{j}\right) - f\left(n^{-(1-\frac{1}{\alpha})} \frac{1}{\tau n^{\frac{1}{\alpha}}} \sum_{y \in A_{n,i}} \sum_{j=1}^{k} N_{nt_{j}}(y) \theta_{j}\right) \right\}.$$

Set, for a moment,

$$g_j = N_{nt_j}(u)$$
 and $h_j = \frac{1}{\tau n^{\frac{1}{lpha}}} \sum_{y \in A_{n,l}} N_{nt_j}(y)$.

By Lemma 4,

$$\begin{split} E[|I|] &\leq C(2M+1) |A_{n,l}| n^{-\frac{1}{\alpha}} \sup_{u \in A_{n,l}} \left\{ E\left[n^{-(1-\frac{1}{\alpha})} \| \sum_{j=1}^{k} (g_j - h_j) \theta_j \| \right. \\ &\left. \left. \left(1 + n^{-(1-\frac{1}{\alpha})} \| \sum_{j=1}^{k} g_j \theta_j \| + n^{-(1-\frac{1}{\alpha})} \| \sum_{j=1}^{k} h_j \theta_j \| \right) \right] \right. \\ &+ E\left[n^{-\beta(1-\frac{1}{\alpha})} \| \sum_{j=1}^{k} (g_j - h_j) \theta_j \|^{\beta} \right] \right\} \\ &\leq CM\tau \sup_{u \in A_{n,l}} \left\{ n^{-(1-\frac{1}{\alpha})} \left(E\left[\| \sum_{j=1}^{k} (g_j - h_j) \theta_j \|^{2} \right] \right)^{1/2} \\ &\left. \left(1 + n^{-2(1-\frac{1}{\alpha})} E\left[\| \sum_{j=1}^{k} g_j \theta_j \|^{2} \right] + n^{-2(1-\frac{1}{\alpha})} E\left[\| \sum_{j=1}^{k} h_j \theta_j \|^{2} \right] \right)^{1/2} \end{split}$$

$$+ n^{-\beta(1-\frac{1}{\alpha})} \left(E\left[\left\| \sum_{j=1}^{k} (g_{j} - h_{j})\theta_{j} \right\|^{2} \right] \right)^{\beta/2} \right\}$$

$$\leq CM\tau \sup_{u \in A_{n,i}} \left\{ n^{-(1-\frac{1}{\alpha})} \left(E\left[\left\| \sum_{j=1}^{k} (g_{j} - h_{j})^{2} \right] \sum_{j=1}^{k} \left\| \theta_{j} \right\|^{2} \right)^{1/2}$$

$$\left(1 + n^{-2(1-\frac{1}{\alpha})} E\left[\sum_{j=1}^{k} g_{j}^{2} \right] \sum_{j=1}^{k} \left\| \theta_{j} \right\|^{2}$$

$$+ n^{-2(1-\frac{1}{\alpha})} E\left[\sum_{j=1}^{k} h_{j}^{2} \right] \sum_{j=1}^{k} \left\| \theta_{j} \right\|^{2} \right)^{1/2}$$

$$+ n^{-\beta(1-\frac{1}{\alpha})} \left(E\left[\sum_{j=1}^{k} (g_{j} - h_{j})^{2} \right] \sum_{j=1}^{k} \left\| \theta_{j} \right\|^{2} \right)^{\beta/2} \right\}$$

In [KS], it is proved that

$$\sup_{u\in A_{n,i}}E[|g_j-h_j|^2]\leq C\tau^{\alpha-1}n^{2-\frac{2}{\alpha}}.$$

Also by (6) in Lemma 2,

$$\sup_{u\in\mathbf{Z}}E[N_n(u)^2]=O(n^{2-\frac{2}{\alpha}}).$$

Hence we have

$$E[|I|] \leq CM \, (\tau^{\frac{\alpha}{2} + \frac{1}{2}} + \tau^{1 + \frac{\beta}{2}(\alpha - 1)}) = CM\tau(\tau^{\frac{1}{2}(\alpha - 1)} + \tau^{\frac{\beta}{2}(\alpha - 1)}).$$

As to $U(\tau, M, n)$, as in [KS], we see that for large n and for each $\eta > 0$, we can take $M\tau$ so large that

$$P\{U(\tau, M, n) \neq 0\} \leq \eta.$$

Recall $\alpha > 1$. Then take τ so small that

$$CM\tau(\tau^{\frac{1}{2}(\alpha-1)}+\tau^{\frac{\beta}{2}(\alpha-1)}) \leq \eta^{2}.$$

Then we can conclude that for such τ , M and large n,

(9)
$$P\left\{\left|\sum_{u\in\mathbf{Z}}f\left(n^{-D^*}\sum_{j=1}^k N_{nt_j}(u)\theta_j\right) - V(\tau, M, n)\right| > \eta\right\} \le 2\eta.$$

By the above consideration, it is enough to show the convergence of $V(\tau, M, n)$ in order to prove the lemma. By the use of the notation and the statement of Lemma 1, we have

$$V(\tau, M, n) = \sum_{|l| \le M} \frac{|A_{n,l}|}{n^{\frac{1}{\alpha}}} f\left(\frac{1}{\tau} \sum_{j=1}^{k} T_{t_j}^n(l\tau, (l+1)\tau)\theta_j\right)$$

https://doi.org/10.1017/S0027763000005687 Published online by Cambridge University Press

which, as $n \rightarrow \infty$, weakly converges to

(10)
$$\tau \sum_{|l| \leq M} f\left(\sum_{j=1}^{k} \frac{1}{\tau} \int_{l\tau}^{(l+1)\tau} L_{t_j}(y) dy \theta_j\right),$$

where we have used $\frac{|A_{n,l}|}{n^{\frac{1}{\alpha}}} \rightarrow \tau$.

Finally, the continuity of $\sum_{j=1}^{k} L_{t_j}(u) \theta_j$ as a function of u and the fact that $L_{t_j}(\cdot)$ has a.s. compact support imply that as $\tau \to 0$ and $M \to \infty$, (10) converges to

$$\int_{-\infty}^{\infty} f\left(\sum_{j=1}^{k} L_{t_j}(u) \theta_j\right) du.$$

 \Box

This together with (9) shows (8), completing the proof of the lemma.

We now return to the proof of the theorem. Denote the characteristic function of $\xi(u)$ by

$$\lambda(\theta) = E[e^{i\langle \theta, \xi(u) \rangle}], \quad \theta \in \mathbf{R}^d.$$

Then by (5)

(11)

$$I_{n} := E\left[\exp\left\{i\sum_{j=1}^{k} \langle \theta_{j}, n^{-D}W_{nt_{j}} \rangle\right\}\right]$$

$$= E\left[\exp\left\{i\sum_{j=1}^{k} \langle \theta_{j}, n^{-D}\sum_{u \in \mathbf{Z}} N_{nt_{j}}(u)\xi(u) \rangle\right\}\right]$$

$$= E\left[\prod_{u \in \mathbf{Z}} \lambda\left(n^{-D^{*}}\sum_{j=1}^{k} N_{nt_{j}}(u)\theta_{j}\right)\right].$$

We need more lemmas.

Lemma 6.

$$\lim_{n\to\infty}\sup_{u\in\mathbf{Z}}N_n(u)n^{-D^*}\theta=0 \text{ in probability.}$$

Proof. By (6) and (7) in Lemma 2, we have for some $p \ge 1$,

$$P\left\{\sup_{u \in \mathbf{Z}} N_n(u) \| n^{-D^*} \theta \| > \eta\right\}$$

$$\leq P\{N_n(u) > 0 \text{ for some } u \text{ with } | u | > An^{\frac{1}{\alpha}}\}$$

$$+ P\left\{\sup_{|u| \le An^{\frac{1}{\alpha}}} N_n(u) \| n^{-D^*} \theta \| > \eta\right\}$$

https://doi.org/10.1017/S0027763000005687 Published online by Cambridge University Press

(12)

$$\leq \varepsilon(A) + \sum_{|u| \leq An^{\frac{1}{\alpha}}} \frac{1}{\eta^{p}} E[N_{n}(u)^{p}] \| n^{-D^{*}} \theta \|^{p}$$

$$= \varepsilon(A) + \sum_{|u| \leq An^{\frac{1}{\alpha}}} \frac{1}{\eta^{p}} O(n^{p(1-\frac{1}{\alpha})}) n^{-p(1-\frac{1}{\alpha})} \| n^{-\frac{1}{\alpha}B^{*}} \theta \|^{p}$$

$$= \varepsilon(A) + O(n^{\frac{1}{\alpha}} \| n^{-\frac{1}{\alpha}B^{*}} \theta \|^{p}).$$

Since for any $\varepsilon > 0$,

$$\|n^{-\frac{1}{\alpha}B^*}\| \leq Cn^{-\frac{1}{\alpha}(\lambda_B-\varepsilon)},$$

if we take p such that $\frac{1}{\alpha} - \frac{1}{\alpha} (\lambda_B - \varepsilon) p < 0$, the last term in (12) converges to 0 for fixed η and A. If we next let A tend to infinity, then the desired conclusion follows.

LEMMA 7 (Lemma 6.1 of [MM]). Under (3), $\log \lambda(\theta) \sim \log \varphi(\theta)$ as $\theta \to 0$.

We now return to (11). By Lemmas 6 and 7,

$$\lim_{n \to \infty} I_n = \lim_{n \to \infty} E\left[\prod_{u \in \mathbf{Z}} \varphi\left(n^{-D^*} \sum_{j=1}^k N_{nt_j}(u) \theta_j\right)\right]$$
$$= \lim_{n \to \infty} E\left[\exp\left\{\sum_{u \in \mathbf{Z}} f\left(n^{-D^*} \sum_{j=1}^k N_{nt_j}(u) \theta_j\right)\right\}\right]$$
$$= E\left[\exp\left\{\int_{-\infty}^{\infty} f\left(\sum_{j=1}^k L_{t_j}(u) \theta_j\right) du\right\}\right] \text{ (by Lemma 5)}$$
$$= E\left[\exp\left\{i \sum_{j=1}^k \langle \theta_j, \Delta(t_j) \rangle\right\}\right] \text{ (by Lemma 3).}$$

The proof of Theorem 1 is thus completed.

3. Proof of Theorem 2

We prove the tightness of $\{n^{-D}W_{nt}\}$ by showing that for each $T\geq 0$ and any $\eta\geq 0$

(13)
$$\lim_{n \to \infty} \limsup_{\delta \downarrow 0} P\{\sup_{\substack{0 \le t, s \le T \\ |t-s| \le \delta}} \|\Delta_t^n - \Delta_s^n\| \ge \eta\} = 0,$$

where $\Delta_t^n = n^{-D} W_{nt}$. To this end, as in [KS], we first approximate Δ_t^n by $\bar{\Delta}_t^n$ plus a linear function $E_n t$ such that $\bar{\Delta}_t^n$ has the second moments, E_n are bounded and

ΜΑΚΟΤΟ ΜΑΕJIMA

$$\limsup_{n\to\infty} P\Big\{\sup_{t\leq T} \|\Delta_t^n - \bar{\Delta}_t^n - E_n t\| \geq \frac{1}{2}\eta\Big\} \leq \frac{\varepsilon}{2},$$

and then use Kolmogorov's moment criteria for $\bar{\Delta}_t^n$.

For any $\varepsilon > 0$, choose large A such that $\varepsilon(AT^{-\frac{1}{\alpha}}) \leq \frac{\varepsilon}{4}$, where $\varepsilon(\cdot)$ is the one defined in (7) in Lemma 2. Then we have

(14)
$$P\{N_{nt}(u) > 0 \text{ for some } | u | > An^{\frac{1}{\alpha}} \text{ and } t \le T\}$$
$$\le P\{N_{nt}(u) > 0 \text{ for some } | u | > An^{\frac{1}{\alpha}}\}$$
$$\le \varepsilon (AT^{-\frac{1}{\alpha}}) \le \frac{\varepsilon}{4}.$$

We need several lemmas, where we always assume (3). For notational simplicity, we write ξ for $\xi(0)$ in the following. Let

$$c_n(G) = nP\{ \| n^{-B} \xi \| \in G \}, \quad G \in \mathfrak{V}((0, \infty)),$$
$$M(F) = \int_S \gamma(dx) \int_0^\infty I_F(s^B x) \frac{1}{s^2} ds, \quad F \in \mathfrak{V}(\mathbf{R}^d \setminus \{0\})$$

and

$$c(G) = M(\{x : ||x|| \in G\}), \quad G \in \mathfrak{V}((0, \infty)).$$

Note that under (3), by the general central limit theorem for infinitely divisible laws in \mathbf{R}^{d} (cf. Proposition 1.8.17 in [JM]),

$$nP\{n^{-B}\xi\in F\}\to M(F)$$

for every Borel set F which is bounded away from the origin and $M(\partial F) = 0$, and

(15)
$$\lim_{\varepsilon \downarrow 0} \limsup_{n \to \infty} n \int_{||x|| < \varepsilon} \langle \theta, x \rangle^2 P\{n^{-B} \xi \in dx\} = 0, \quad \theta \in \mathbf{R}^d.$$

(Recall that we are dealing with purely non-Gaussian case.) Assume for a moment that $\|\cdot\|$ is the "invariant norm" of [HJV]. In their norm, $c(\{y\}) = 0$ for each y > 0. Then by eq. (7) in [W], we have

LEMMA 8. For every y > 0,

$$c_n([y, \infty)) \to c([y, \infty)).$$

LEMMA 9. (i) Let $\rho > 0$. Then

$$\sup_n \int_0^\rho y^2 c_n(dy) < \infty$$

(ii)

$$\lim_{\varepsilon \downarrow 0} \limsup_{n \to \infty} \int_0^\varepsilon y^2 c_n(dy) < \infty.$$

Proof. Suppose $\{\theta_1, \ldots, \theta_d\}$ is an orthonormal basis for \mathbf{R}^d . Then $||x||^2 = \sum_{i=1}^d \langle \theta_i, x \rangle^2$. Since

$$\int_0^{\varepsilon} y^2 c_n(dy) = n \int_{||x|| < \varepsilon} ||x||^2 P\{n^{-B}\xi \in dx\},$$

we conclude the lemma by (15) with $\theta = \theta_1, \ldots, \theta_d$.

LEMMA 10. Let $\rho > 0$. (i) If $\lambda_B > 1$, then

$$\int_0^\rho yc(dy) < \infty.$$

(ii) If $\Lambda_{\scriptscriptstyle B} < 1$, then

$$\int_{\rho}^{\infty} yc(dy) < \infty.$$

Proof. We have

$$c((y, \infty)) = M(\{x : ||x|| > y\}) = \int_{S} \gamma(dx) \int_{0}^{\infty} I[||s^{B}x|| > y] \frac{1}{s^{2}} ds.$$

Note that for any $\delta \geq 0$ there exists $C_1 \geq 0$ such that

(16)
$$\|s^B\| \leq \begin{cases} C_1 s^{\lambda_B - \delta} & \text{if } s \leq 1, \\ C_1 s^{\Lambda_B + \delta} & \text{if } s > 1. \end{cases}$$

By the use of (16), we have

$$c((y, \infty)) \leq \int_{0}^{1} I[s > C_{2}y^{1/(\lambda_{B}-\delta)}] \frac{1}{s^{2}} ds$$

+
$$\int_{1}^{\infty} I[s > C_{2}y^{1/(\lambda_{B}+\delta)}] \frac{1}{s^{2}} ds$$

=:
$$I_{1}(y) + I_{2}(y),$$

for some $C_2 > 0$.

(i) As $y \to 0$, $I_2(y) = O(1)$ and $I_1(y) = O(y^{-1/(\lambda_B - \delta)})$. If $\lambda_B > 1$, we can find $\delta > 0$ such that $1/(\lambda_B - \delta) < 1$. Thus $\int_0^{\rho} c((y, \infty)) dy < \infty$, which concludes (i).

(ii) As $y \to \infty$, $I_1(y) = o(1)$ and $I_2(y) = O(y^{-1/(A_B + \delta)})$. Thus, if $A_B < 1$, we have $\int_{\rho}^{\infty} c((y, \infty)) dy < \infty$, concluding (ii).

LEMMA 11. Let $\rho > 0$. If $\lambda_B > 1$, then

$$\sup_n \int_0^\rho y c_n(dy) < \infty.$$

Proof. It is obvious that for every $n \ge 1$

$$\int_0^\rho yc_n(dy) < \infty,$$

and also

$$\int_0^\rho yc(dy) < \infty$$

by Lemma 10 (i). Note that $c_n(\cdot)$ and $c(\cdot)$ are Lévy measures on $(0, \rho)$, namely $\int_0^{\rho} (y^2 \wedge 1) c_n(dy) < \infty$ and $\int_0^{\rho} (y^2 \wedge 1) c(dy) < \infty$. Hence, by Lemmas 8 and 9 (ii), a convergence theorem of infinitely divisible laws (cf. Corollary 1.8.16 in [JM]) implies that the characteristic function

$$f_n(\theta) := \exp\left\{\int_0^{\rho} (e^{i\theta y} - 1)c_n(dy)\right\}, \quad \theta \in \mathbf{R}$$

converges to

$$f(\theta) := \exp\left\{\int_0^{\rho} (e^{i\theta y} - 1)c(dy)\right\}, \quad \theta \in \mathbf{R}.$$

Thus

$$\lim_{n\to\infty}\int_0^\rho (e^{i\theta y}-1)c(dy)$$

https://doi.org/10.1017/S0027763000005687 Published online by Cambridge University Press

exists. This together with Lemma 9 (i) concludes the lemma.

LEMMA 12. Let $\rho > 0$. If $\Lambda_B < 1$, then

$$\sup_n\int_{\rho}^{\infty}yc_n(dy)<\infty.$$

Proof. We first show the statement when ξ is symmetric. Let $\varepsilon > 0$, and choose a so large that

$$2P\Big\{\Big\| n^{-B}\sum_{k=1}^n \xi(k) \Big\| > a\Big\} < \varepsilon \text{ for all } n,$$

which is possible by tightness, (see eq. (3)). Thus

$$2P\left\{\left\| n^{-B}\sum_{k=1}^{n}\xi(k) \right\| > y\right\} < \varepsilon ext{ for all } y \ge a ext{ and for all } n.$$

Since $\{\xi(k)\}$ are symmetric, we have

$$P\Big\{\max_{1\leq k\leq n} \| n^{-B}\xi(k) \| > y\Big\} \leq 2P\Big\{\Big\| n^{-B}\sum_{k=1}^{n}\xi(k) \| > y\Big\}.$$

Thus

$$[P\{\| n^{-B}\xi \| \le y\}]^n = P\left\{\max_{1\le k\le n} \| n^{-B}\xi(k) \| \le y\right\}$$
$$= 1 - P\left\{\max_{1\le k\le n} \| n^{-B}\xi(k) \| > y\right\}$$
$$\le 1 - 2P\left\{\left\| n^{-B}\sum_{k=1}^n \xi(k) \| > y\right\}$$

so that, for any $y \geq a$

$$nP\{\| n^{-B}\xi\| > y\} \le n \left\{ 1 - \left[1 - 2P\{\| n^{-B} \sum_{k=1}^{n} \xi(k) \| > y\} \right]^{1/n} \right\}$$
$$\le \frac{2}{1-\varepsilon} P\{\| n^{-B} \sum_{k=1}^{n} \xi(k) \| > y\},$$

since for a fixed $\varepsilon < 1$,

$$n\{1-(1-x)^{1/n}\}\leq rac{1}{1-arepsilon}x, \ \ ext{for any } 0\leq x$$

Hence

$$\begin{split} \sup_{n} \int_{a}^{\infty} nP\{\|n^{-B}\xi\| > y\} dy \\ &\leq \frac{2}{1-\varepsilon} \sup_{n} \int_{a}^{\infty} P\{\|n^{-B}\sum_{k=1}^{n}\xi(k)\| > y\} dy \\ &\leq \frac{2}{1-\varepsilon} \sup_{n} E\left[\|n^{-B}\sum_{k=1}^{n}\xi(k)\|\right]. \end{split}$$

By Theorem 3 in [HVW], if $\|\,\cdot\,\|$ is the ordinary Euclidean norm and $\Lambda_{\scriptscriptstyle B}<1,$

$$E\left[\left\| n^{-B}\sum_{k=1}^{n}\xi(k) \right\|\right] \to E\left[\left\| Z_{B}\right\|\right]$$

and hence

$$\sup_{n}\int_{a}^{\infty}nP\{\|n^{-B}\xi\|>y\}dy<\infty$$

for the "invariant norm" as well as for the ordinary Euclidean norm. This implies

$$\sup_n \int_a^\infty y c_n(dy) < \infty.$$

On the other hand

$$\int_{\rho}^{a} y c_{n}(dy) \to \int_{\rho}^{a} y c(dy)$$

by Lemma 8, thus we conclude

$$\sup_n \int_a^\infty y c_n(dy) < \infty$$

when $\hat{\xi}$ is symmetric.

It remains to prove the lemma for the non-symmetric case and the following argument is a standard desymmetrization. For general ξ , let ξ' be an independent copy of ξ . Since $\xi - \xi'$ is symmetric, we have shown

$$\sup_{n}\int_{\rho}^{\infty}nP\Big\{\|n^{-B}(\xi-\xi')\|>\frac{y}{2}\Big\}dy=:K<\infty.$$

Let

https://doi.org/10.1017/S0027763000005687 Published online by Cambridge University Press

$$g_n(z) = \int_{\rho}^{\infty} nP\left\{ \| n^{-B}(\xi - z) \| > \frac{y}{2} \right\} dy.$$

Then

$$\sup_{n} E[g_n(\xi')] = K.$$

Let b be so large that $P\{\|\xi\| > b\} < \frac{1}{2}$. Also let

$$B_b = \{x \in \mathbf{R}^d : \|x\| \le b\}$$

and

$$G_n = \{z \in \mathbf{R}^a : g_n(z) \leq 3K\}.$$

Then B_b is not contained in $\mathbf{R}^d \setminus G_n$, because if it were, we would have

$$K = \sup_{n} E[g_{n}(\xi')] \ge \sup_{n} E[g_{n}(\xi')I[\xi' \in B_{b}]]$$

> $3KE[I[\xi' \in B_{b}]] = 3KP\{||\xi|| \le b\} > \frac{3}{2}K,$

which is impossible. Hence $B_b \cap G_n \neq \phi$. Let $z_n \in B_b \cap G_n$ for each $n \ge 1$. Since $||z_n|| \le b$, we have

$$\int_{\rho}^{\infty} nP\{\| n^{-B}\xi \| > y\} dy \le g_n(z_n)$$

for large *n*. Since $g_n(z_n) \leq 3K$, the proof is complete.

Remark. Lemmas 9-12 have been proved for the "invariant norm" of [HJV]. However, the compatibility of all norms on \mathbf{R}^{d} implies the same conclusions for the ordinary Euclidean norm.

LEMMA 13. If $\Lambda_B < 1$, then $E[||\xi||] < \infty$ and $E[\xi] = 0$.

Proof. The first part follows from Theorem 3 in [HVW]. The second part can be shown by the same way as in the one-dimensional case. \Box

By Lemma 8, we can find a ρ such that for all large n

(17)
$$(2An^{\frac{1}{\alpha}}+1)P\{\|n^{-\frac{1}{\alpha}\beta}\xi\|>\rho\}\leq \frac{\varepsilon}{4},$$

ΜΑΚΟΤΟ ΜΑΕЈΙΜΑ

for the "invariant norm". By the compatibility of all norms on \mathbf{R}^d again, the same observation also follows for the ordinary Euclidean norm. In the following, once again the norm $\|\cdot\|$ stands for the ordinary Euclidean norm.

Set

$$\bar{\xi}(u) = \xi(u) I[\| n^{-\frac{1}{\alpha}B} \xi(u) \| \le \rho],$$
$$E_n = n^{-D} E\left[\sum_{u \in \mathbf{Z}} N_n(u) \bar{\xi}(u)\right]$$

and

178

$$\bar{\Delta}_t^n = n^{-D} \sum_{u \in \mathbf{Z}} N_{nt}(u) \{ \bar{\xi}(u) - E[\bar{\xi}(u)] \}.$$

Again, for notational simplicity, we write $\overline{\xi}$ for $\overline{\xi}(0)$ in the following.

Lemma 14. We have

(18)
$$\|E[n^{-\frac{1}{\alpha}B}\overline{\xi}]\| = O(n^{-\frac{1}{\alpha}}),$$

provided that ξ is symmetric when $\lambda_B \leq 1 \leq \Lambda_B$.

Proof. When ξ is symmetric, the left hand side of (18) is 0. Hence it is enough to consider the case $\lambda_B > 1$ or $\Lambda_B < 1$.

When $\lambda_{\beta} > 1$,

$$\sup_{n} n^{\frac{1}{\alpha}} \| E[n^{-\frac{1}{\alpha}B}\overline{\xi}] \|$$

=
$$\sup_{n} n^{\frac{1}{\alpha}} \| E[n^{-\frac{1}{\alpha}B}\xi I[\| n^{-\frac{1}{\alpha}B}\xi \| \le \rho]] \|$$

$$\le \sup_{n} \int_{0}^{\rho} y c_{n^{1/\alpha}}(dy) < \infty$$

by Lemma 11.

When $\Lambda_B \leq 1$, by the use of Lemmas 12 and 13,

$$\sup_{n} n^{\frac{1}{\alpha}} \| E[n^{-\frac{1}{\alpha}B}\overline{\xi}] \|$$

= $\sup_{n} n^{\frac{1}{\alpha}} \| E[n^{-\frac{1}{\alpha}B}\xi I[\| n^{-\frac{1}{\alpha}B}\xi \| \le \rho]] \|$
= $\sup_{n} n^{\frac{1}{\alpha}} \| E[n^{-\frac{1}{\alpha}B}\xi I[\| n^{-\frac{1}{\alpha}B}\xi \| > \rho]] \|$
 $\le \sup_{n} \int_{\rho}^{\infty} yc_{n^{1/\alpha}}(dy) < \infty.$

This concludes the lemma.

n

Let us return to the proof of Theorem 2. We have by Lemma 14,

$$\|E_{n}\| = \| n^{-(1-\frac{1}{\alpha})} n^{-\frac{1}{\alpha}B} E\left[\sum_{u \in \mathbb{Z}} N_{n}(u)\overline{\xi}(u)\right] \|$$

= $\| n^{-(1-\frac{1}{\alpha})} E[n^{-\frac{1}{\alpha}B}\overline{\xi}] E\left[\sum_{u \in \mathbb{Z}} N_{n}(u)\right] \|$
= $n^{-(1-\frac{1}{\alpha})} O(n^{-\frac{1}{\alpha}}) (n+1) = O(1).$

We also have

$$\begin{aligned} \Delta_{t}^{n} - \bar{\Delta}_{t}^{n} - E_{n}t \\ &= n^{-D} \sum_{u \in \mathbf{Z}} N_{nt}(u) \left[\xi(u) - (\bar{\xi}(u) - E[\bar{\xi}(u)]) \right] - n^{-D}E \left[\sum_{u \in \mathbf{Z}} N_{n}(u) \bar{\xi}(u) \right] t \\ &= n^{-D} \sum_{u \in \mathbf{Z}} N_{nt}(u) \left[\xi(u) - \bar{\xi}(u) \right] + n^{-D} \sum_{u \in \mathbf{Z}} N_{nt}(u) E[\bar{\xi}(u)] \\ &- n^{-D}E \left[\sum_{u \in \mathbf{Z}} N_{n}(u) \bar{\xi}(u) \right] t \end{aligned}$$

$$(19) =: n^{-D} \sum_{u \in \mathbf{Z}} N_{nt}(u) \left[\xi(u) - \bar{\xi}(u) \right] + Q_{n}(t),$$

where by Lemma 14 for $t \leq T$,

$$\| Q_n(t) \| = \| n^{-D} E[\bar{\xi}] (nt+1-(n+1)t) \|$$

$$\leq T n^{-(1-\frac{1}{\alpha})} \| E[n^{-\frac{1}{\alpha}B} \bar{\xi}] \| = O(\frac{1}{n}).$$

It follows from (14) and (17) that

$$P\{\sum_{u\in\mathbf{Z}} N_{nt}(u) [\xi(u) - \overline{\xi}(u)] \neq 0 \text{ for some } t \leq T\}$$

$$\leq P\{\xi(u) \neq \overline{\xi}(u) \text{ for some } |u| \leq An^{\frac{1}{\alpha}}\}$$

$$+ P\{N_{nt}(u) > 0 \text{ for some } |u| > An^{\frac{1}{\alpha}} \text{ and } t \leq T\}$$

$$\leq (2An^{\frac{1}{\alpha}} + 1)P\{||n^{-\frac{1}{\alpha}B}\xi|| > \rho\} + \frac{\varepsilon}{4} \leq \frac{\varepsilon}{2}.$$

Hence by (19) for any $\eta > 0$,

(20)
$$\limsup_{n \to \infty} P\left\{\sup_{t \le T} \|\Delta_t^n - \bar{\Delta}_t^n - E_n t\| \ge \frac{1}{2}\eta\right\} \le \frac{\varepsilon}{2}.$$

We finally show

(21)
$$E[\|\bar{\Delta}_t^n - \bar{\Delta}_s^n\|^2] \le C(t-s)^{2-\frac{1}{\alpha}}.$$

If we could show (21), the relation (13), with the respective replacements of Δ_t^n and η by $\bar{\Delta}_t^n$ and $\frac{\eta}{2}$, would follow, and it together with (20) implies (13). We have (22) $E[\|\bar{\Delta}_t^n - \bar{\Delta}_s^n\|^2]$

$$= E\left[\left\| n^{-D} \sum_{u \in \mathbf{Z}} \left(N_{nt}(u) - N_{ns}(u) \right) \left(\bar{\xi}(u) - E[\bar{\xi}(u)] \right) \right\|^{2}\right]$$

$$= \sum_{u \in \mathbf{Z}} E\left[\left(N_{nt}(u) - N_{ns}(u) \right)^{2} \right] n^{-2(1-\frac{1}{\alpha})} E\left[\left\| n^{-\frac{1}{\alpha}B}(\bar{\xi}(0) - E[\bar{\xi}(0)] \right) \right\|^{2} \right]$$

$$\leq \sum_{u \in \mathbf{Z}} E\left[\left(N_{nt}(u) - N_{ns}(u) \right)^{2} \right] n^{-2(1-\frac{1}{\alpha})} E\left[\left\| n^{-\frac{1}{\alpha}B}\bar{\xi}(0) \right\|^{2} \right],$$

where

(23)
$$\sup_{n} n^{\frac{1}{\alpha}} E[\| n^{-\frac{1}{\alpha}B} \bar{\xi} \|^{2}] = \sup_{n} n^{\frac{1}{\alpha}} E[\| n^{-\frac{1}{\alpha}B} \xi \|^{2} I[\| n^{-\frac{1}{\alpha}B} \xi \| \le \rho]]$$
$$= \sup_{n} \int_{0}^{\rho} y^{2} c_{n^{1/\alpha}}(dy) < \infty$$

by Lemma 9. On the other hand, Kesten and Spitzer ([KS]) showed

(24)
$$\sum_{u \in \mathbf{Z}} E[(N_{nt}(u) - N_{ns}(u))^2] \le C[(t-s)n]^{2-\frac{1}{\alpha}}.$$

Thus (21) is given from (22)-(24) and the proof is completed.

Acknowlegement. The author wishes to thank the referee for a very careful reading of the original manuscript.

REFERENCES

- [HHV] Hahn, M. G., Hudson, W. N. and Veeh, J. A., Operator stable laws: Series representations and domain of normal attraction. J. Theor. Probab., 2 (1989), 3-35.
- [H] Hudson, W. H., Operator-stable distributions and stable marginals, J. Multivar. Anal., 10 (1980), 26-37.
- [HJV] Hudson, W. N., Jurek, Z. J. and Veeh, J. A., The symmetry group and exponents of operator stable probability measures, Ann. Probab., 14 (1986), 1014-1023.
- [HM1] Hudson, W. N. and Mason, J. D., Operator-self-similar processes in a finitedimensional space, Trans. Amer. Math. Soc., 273 (1982), 281-297.
- [HM2] Hudson, W. N. and Mason, J. D., Operator-stable laws, J. Multivar. Anal., 11 (1981), 434-447.
- [HVW] Hudson, W. N., Veeh, J. A. and Weiner, D. C., Moments of distributions attracted to operator-stable laws, J. Multivar. Anal., 24 (1988), 1-10.
- [JM] Jurek, Z. J. and Mason, J. D., Operator-Limit Distributions in Probability Theory, Wiley, 1993.

- [KS] Kesten, H. and Spitzer, F., A limit theorem related to a new class of self similar processes, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 50 (1979), 5-25.
- [M] Maejima, M., Operator-stable processes and operator fractional stable motions, Probab. Math. Statist., 15 (1995), 449-460.
- [MM] Maejima, M. and Mason, J. D., Operator-self-similar stable processes, Stoch. Proc. Appl., 54 (1994). 139-163.
- [Sa] Sato, K., Self-similar processes with independent increments, Probab. Th. Rel. Fields, 89 (1991), 285-300.
- [Sh] Sharpe, M., Operator-stable probability distributions on vector groups, Trans. Amer. Math. Soc., 136 (1969), 51-65.
- [W] Weiner, D. C., On the existence and convergence of pseudomoments for variables in the domain of attraction of an operator stable distribution, Proc. Amer. Math. Soc., 101 (1987), 521-529.

Department of Mathematics Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokahama 223, Japan