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Abstract

With the increasing utilization of machine learning (ML) to enhance products’ capabilities,
the design research community has begun to explore how to support the conceptual design
of ML-enhanced products. However, UX value creation of ML-enhanced products is still chal-
lenging because of ML’s unique characteristics and numerous complex factors in conceptual
design. To help designers create UX value for ML-enhanced products, we developed the UX
value framework and the CoMLUX design process. The proposed framework describes how
ML, stakeholders, and context co-create the UX value of ML-enhanced products, and identi-
fies the growability and opacity of ML, helping designers systematically understand the co-
creators while avoiding cognitive overload. The CoMLUX design process provides practical
guidance for designing ML-enhanced products with growability and transparency. At last,
we demonstrate the usage methods of the framework and process in an actual project and
summarize the inspirations and limitations of our work.

Introduction

In recent years, machine learning (ML) has increasingly been used to enhance the capabilities
of products. As a branch of Artificial Intelligence (AI), ML is defined as a set of algorithms that
can learn patterns from data and improve performance (Mitchell, 1999). ML-enhanced pro-
ducts, which include hardware products such as smart speakers and software products such
as photo-recognition applications, have the potential to respond appropriately to various sit-
uations and handle complex tasks that could only be solved by human intelligence in the past
(Sun et al., 2020).

In light of the growing universality of ML-enhanced products, the design research commu-
nity has been actively exploring how to support the conceptual design of ML-enhanced pro-
ducts. Prior literature has revealed the challenges in using ML as a design material (Dove et al.,
2017) and the corresponding design strategies (Luciani et al., 2018). Based on traditional
design process models such as the Design Thinking Process (DTP) (Foster, 2021) model,
the process models proposed by IBM (Zarattini Chebabi and von Atzingen Amaral, 2020),
Gonçalves and da Rocha (2019), and Subramonyam et al. (2021) have made initial attempts
to help designers work with ML. More practically, tools such as Human-Centered AI
Canvas (Maillet, 2019), the Value Card toolkit (Shen et al., 2021), and Delft AI Toolkit
(van Allen, 2018) made efforts to assist designers at different stages of designing
ML-enhanced products.

Although the above work made a solid first step, a further question raises about how to
create user experience (UX) value for ML-enhanced products. UX value refers to the emotions,
perceptions, physical and psychological responses, as well as behaviors that are brought about
by the product (Mirnig et al., 2015). Beyond the basic capabilities, UX value offers uniqueness
and more opportunities for ML-enhanced products. However, it is a complex cognitive skill for
designers to purposefully use ML to enhance the UX of products (Clay et al., 2021). To put it
more specifically, the UX value creation of ML-enhanced products requires the use of multi-
disciplinary design knowledge (Nie et al., 2022), and designers need to consider not only the
unique characteristics of ML but also numerous complex factors such as the properties of
stakeholders and context, which brings cognitive load to designers.

On the one hand, ML’s typical characteristics can be summarized as growability and opa-
city from the perspective of conceptual design, which contributes to the UX value of
ML-enhanced products and meanwhile present challenges. Growability comes from ML’s life-
cycle, in which ML continuously accumulates data and optimizes algorithms, enabling
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products to provide personalized service. Opacity means that
ML’s mechanism is not transparent to humans, and incompre-
hensible information is hidden in a “black box” (McQuillan,
2018). However, growability makes it difficult to anticipate pro-
ducts’ performance. Additionally, the opaque inference process
of ML might confuse stakeholders, thereby hindering their inter-
action with products.

On the other hand, many other factors could impact the UX
values of ML-enhanced products. As suggested by prior work,
the UX of ML-enhanced products is affected by stakeholders-
related factors (Forlizzi, 2018) such as users’ needs and humanis-
tic considerations (Yang, 2017). Human-centered AI (HAI)
emphasizes the collective needs and benefits of humanity and
society (Auernhammer, 2020). However, balancing the factors
between ML and human brings a heavy cognitive load onto
designers (Dove et al., 2017), let alone taking into account the
context-related factors. In addition, UX value creation is not a
transient process (Kliman-Silver et al., 2020), and it requires
close coordination among co-creators throughout the entire con-
ceptual design process. Nevertheless, existing design frameworks
and processes do not provide designers with the guidance to
leverage ML, stakeholders, and context, and they fail to clarify
the mechanism for creating the UX value of ML-enhanced pro-
ducts. Meanwhile, current design tools are commonly separated
from the ongoing design process, which does not conform to
the contiguity principle that can help reduce cognitive load
(Moreno and Mayer, 2000).

Considering the above issues, this paper aims to facilitate UX
value creation for ML-enhanced products in conceptual design
by developing the UX value framework and the CoMLUX
(Co-creating ML-enhanced products’ UX) design process. Based
on the bibliometric analysis, integrative literature review, and con-
cept matrix, concepts related to the UX value of ML-enhanced
products were synthesized into an initial framework. To avoid
cognitive overload for designers, we invited design experts to pro-
vide feedback and rank all concepts into three levels according to
the requirement of mastery. The key stages of the design process
were distilled based on Material Lifecycle Thinking (MLT) (Zhou
et al., 2020), and the key activities at each stage were identified by
integrating human-centered methods. We then iterated the design
process in an expert interview and incorporated design tools to
bridge the gap between the process and tools. The framework
and process were then applied to an actual design project. The
completed project provided preliminary evidence that our work
can assist designers in creating UX values for ML-enhanced pro-
ducts. To further improve our work, future efforts could be made
to incorporate more practical design experience, extend our
framework and process to other design phases, and tailor the
UX value framework to designers’ cognitive styles.

This paper makes three major contributions. First, the pro-
posed framework outlines how ML, stakeholders, and context
co-create the UX value of ML-enhanced products. This frame-
work identifies the growability and opacity of ML and helps
designers systematically comprehend the co-creators, their
dimensions, and corresponding properties while avoiding cog-
nitive overload. Second, the CoMLUX design process offers prac-
tical guidance for designing ML-enhanced products that are
growable and transparent. With the design tools tailored to
ML’s characteristics, the process helps designers leverage the
co-creators by following the five key stages including Capture,
Co-create, Conceptualize, Construct, and Cultivate in a
cognitively-friendly manner. Finally, the application of the

framework and process in an actual project demonstrates the
usage methods, advantages, and limitations of our work. Our
research could hopefully inspire future research in the conceptual
design of ML-enhanced products.

Related work

Recent research has become increasingly interested in the concep-
tual design of ML-enhanced products. Numerous research insti-
tutes and commercial organizations have investigated the
conceptual design process and developed conceptual design
tools for ML-enhanced products.

Design research about ML and UX

The increasing ubiquity of ML encourages the research commu-
nity to explore how to integrate ML into products. The idea of
ML as design material assumed that ML is a tough design material
to work with (Holmquist, 2017), and designers are supposed to
understand the characteristics of ML for design innovations
(Rozendaal et al., 2018). Furthermore, Benjamin et al. (2021)
advocated utilizing the uncertainty of ML as a design material
that constitutes the UX of ML-enhanced products. These claims
agree that ML is the creator of ML-enhanced products’ UX
instead of an add-on technical solution. As a design material,
the ability of ML to process large amounts of data is remarkably
higher than that of human and traditional technology
(Holmquist, 2017). However, ML struggles to accomplish cog-
nitive tasks due to its lack of common sense about the real
world (Zimmerman et al., 2007). Prior work believed that the
capability uncertainty and output complexity of ML lead to
unique design challenges (Yang et al., 2020). On the one hand,
the capability of ML can evolve as algorithm updates and data
accumulates. As a result, ML sometimes works against human
expectations or even makes bizarre errors (Zimmerman et al.,
2007). On the other hand, the prediction outcome of ML contains
several possibilities (Holbrook, 2018) and is less interpretable
(Burrell, 2016; Kliman-Silver et al., 2020). Any potential bias or
abuse of data may result in unfair results (Yang et al., 2018b).
These characteristics of ML might not only lead to negative UX
but also be harmful to humans.

To mitigate the potential harm caused by AI, HAI aims to
serve the collective needs and benefits of humanity (Li, 2018).
Researches such as humanistic AI and responsible AI
(Auernhammer, 2020) emphasize that the relationship between
humans and AI should be considered at the beginning of design
(Riedl, 2019). In recent years, the European Union, Stanford
University, and many other organizations have established
research institutes focused on HAI, exploring the design, develop-
ment, and application of AI (Xu, 2019). For example, several HAI
frameworks have been proposed (see Table 1). Besides, by com-
bining cross-disciplinary knowledge such as cognitive science
(Zhou et al., 2018) and psychology (Lombrozo, 2009), prior
work proposed design principles and strategies to improve algo-
rithm experience (Alvarado and Waern, 2018) and avoid informa-
tion overload (Poursabzi-Sangdeh et al., 2021).

Based on the theory of value co-creation, UX researchers
become interested in creating values for ML-enhanced products.
Value co-creation theory encourages stakeholders to interact
with each other for creating personalized value (Galvagno and
Dalli, 2014). With the engagement of AI, the created value
becomes more diverse. For example, AI provides new forms of
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interaction (Zhu et al., 2022), enables products to recognize
human feelings (Leone et al., 2021), and assists humans’ behav-
iors and decision-making (Abbad et al., 2021). Kliman-Silver
et al. (2020) further summarized three dimensions of AI-driven
UX. Besides, prior work suggested that the UX of ML-enhanced
products is co-created by several stakeholders-related factors
(Forlizzi, 2018) such as users’ needs and humanistic considera-
tions (Yang, 2017).

The above researches provide valuable contributions to the UX
design of ML-enhanced products, but meanwhile expose chal-
lenges. During the design process of ML-enhanced products,
leveraging the complex factors of ML, stakeholders, and context
can bring a heavy cognitive load onto designers, especially for
those who lack systematical knowledge about ML. Furthermore,
there is no decent framework currently available to assist
designers in organizing related factors and clarifying the mecha-
nism that creates UX value for ML-enhanced products.

Design process models

Early on, the design of ML-enhanced products mostly adopted the
traditional design process models. These process models could be
divided into activity-based ones and stage-based ones according
to their different purposes (Clarkson and Eckert, 2005).

Activity-based design process models focus on
problem-solving, providing holistic design strategies or specific
instructions for design activities. Clarkson and Eckert (2005) pro-
posed the process of problem-solving, which includes activities of
analysis, synthesis, and evaluation. Focused on a certain design
stage, C-Sketch (Shah et al., 2001) and the work of Inie and
Dalsgaard (2020) supported creative activities in ideation, and
the morphology matrix instructed designers to explore combina-
tions of design solutions (Pahl et al., 2007). The analytic hierarchy
process (Saaty, 1987) and controlled convergence (O’Connor,
1991) guided designers to make design decisions, while TRIZ

supported the innovation by identifying and resolving conflicts
in design (Al’tshuller, 1999).

Most stage-based design process models follow a certain
sequence, and some of them encompass iterative activities.
Among them, the DTP is one of the most commonly used process
models, including stages of Empathize, Define, Ideate, Prototype,
and Test (Foster, 2021). To compare commonalities and differ-
ences between numerous stage-based process models, these mod-
els are mapped into DTP (as shown in Fig. 1). Although some of
the models refine or weaken certain stages, they mainly follow the
stages of DTP. For example, the Munich Procedural Model split
the Ideate stage into “structure task” and “generate solutions”
(Lindemann, 2006), and the Design Cycle Model skipped the
Define Stage (Hugentobler et al., 2004).

Despite that traditional design process models provide some
guidance, designers need processes that focus more on ML’s char-
acteristics and other related factors including context and stake-
holders (Yang et al., 2018a, 2018b, 2018c; Yang et al., 2020). To
this end, some researchers attempt to modify traditional design
processes concerning ML. For example, researchers from IBM
extended the Empathize stage and proposed Blue Journey for
AI (Zarattini Chebabi and von Atzingen Amaral, 2020). It
requires designers to empathize with users of ML-enhanced pro-
ducts, explore the possibilities to use AI, and identify available
data and resources. Similarly, following the process of designing
user interfaces, the process presented by Gonçalves and da
Rocha (2019) offered recommendations regarding methods and
technologies for intelligent user interfaces. Besides,
Subramonyam et al. (2021) proposed an activity-based process
model to promote design ideation with AI. Considering the advo-
cacy that design processes of ML-enhanced products should focus
more on stakeholders (Forlizzi, 2018) and collaborations
(Girardin and Lathia, 2017), some researchers have investigated
how to promote collaborations among different groups (Cerejo,
2021).

Although current design process models make efforts to sup-
port designers to work with ML, it is not sufficient for the design
of ML-enhanced products. According to prior work (Sun et al.,
2022), the design process of ML-enhanced products is distinct
from that of traditional technologies. To optimize the UX of
ML-enhanced products, an ideal process should echo the typical
characteristics and unique lifecycle of ML. Besides, Green et al.
(2014) claimed that a design process has to clarify possible impact
factors about UX, which indicates that the influence of ML, stake-
holders, and context should be assessed throughout the concep-
tual design.

Conceptual design tools

Conceptual design tools are essential for designers to perceive
information, inquire about solutions, and communicate with
stakeholders. Table 2 summarizes available traditional tools at
each stage, and designers could take advantage of these tools in
the process of designing ML-enhanced products. For example,
Yang et al. (2016a) applied Journey Map to identify design oppor-
tunities for ML-enhanced products in medical treatment.
However, these traditional tools are not adapted to ML’s charac-
teristics and lifecycle, which means that designers have to learn
about ML on their own, and they cannot assess the effectiveness
of ML-enhanced products. To this end, several design tools tai-
lored to ML have been developed to support designers at different
design stages.

Table 1. Typical HAI frameworks

Component Description

Auernhammer’s HAI
framework

Humanity,
judicial,
rationalistic

To mitigate AI’s impact,
humanistic design is vital
in collaborations with
technologists and
policymakers
(Auernhammer, 2020).

XU’s HAI framework Human,
technology,
environment

Apply multidisciplinary
methods to achieve
better interaction and
ethical goals, and
implement the idea of
HAI (Xu, 2019).

Extended HAI
framework

Human, ethic,
technology

Show synergy across
three components to
provide people with safe,
efficient, healthy, and
satisfying HAI solutions
(Xu, 2019).

Two-dimensional
HAI framework

Human control,
Computer
automation

Describe different design
objectives according to
the level of human
control and computer
automation
(Shneiderman, 2020).
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For the stages of Empathize and Define, several design
tools guide designers to explore UX issues brought by ML.
Maillet (2019) developed the Human-Centered AI Canvas,
which is composed of 10 factors including jobs-to-be-done,
benefits for humans, etc. By filling this canvas, designers can clar-
ify the uncertainty and risk of each factor. The data landscape
canvas proposed by Wirth and Szugat (2020) focused on
data-related issues such as data privacy and quality, promoting
designers’ empathy with individuals, governments, and
enterprises.

For the Ideate stage, design tools help to uncover design
opportunities concerning ML. Google (2022a) and Microsoft
(Amershi et al., 2019) provide a set of principles and examples
to inspire designers’ ideation about ML-enhanced products,

involving issues about data collection, mental model, explainabil-
ity, controllability, etc. To help designers generate AI-powered
ideas from existing examples, Jin et al. (2021) concluded four
design heuristics including decision-making, personalization, pro-
ductivity, and security. For the same purpose, the AI table pro-
vides a tridimensional view for envisioning AI solutions, which
includes the impact area, AI technology, and use-case (Zarattini
Chebabi and von Atzingen Amaral, 2020). More recently, the
Value Cards toolkit helps design practitioners to leverage factors
about models, stakeholders, and social consideration, and opti-
mize existing ideas (Shen et al., 2021). Apart from that, the
Fairlearn toolkit (Agarwal et al., 2018) and the AI fairness 360
toolkit (Bellamy et al., 2019) guide design practitioners to assess
and mitigate potential unfairness caused by AI during ideation.

To facilitate the Prototype and Test stages of ML-enhanced
products, design tools are developed to support people with dif-
ferent expertise. Open-source platforms like TensorFlow (Abadi
et al., 2016) and ML as a service (MLaaS) platforms (Ribeiro
et al., 2015) like IBM Watson provide diverse functions for
users to participate in ML lifecycle and create complex ML algo-
rithms, but they require skilled programing ability. As for non-
programing toolkits like Delft AI Toolkit (van Allen, 2018),
Wekinator (Fiebrink and Cook, 2010), and Yale (Mierswa et al.,
2006), they significantly lower the barrier of prototyping
ML-enhanced products, but designers can hardly know ML’s
characteristics or iterate products according to ML’s lifecycle.
Besides, low-code toolkits for creators like Google AIY (Google,

Table 2. Available traditional design tools in different stages of DTP

Stage Methods and Tools

Empathize Empathy Map, Shadowing, Service Safaris

Define Journey Map, Persona, Mind Map,

Ideate Brainstorming, Role Play, Speed Dating (Davidoff
et al., 2007), Improvisational Acting (Macaulay et al.,
2006)

Prototype &
Test

Storyboard, Wizard of Oz, Video, Beauty and the Beast
(Jung et al., 2017)

Fig. 1. Comparison among different stage-based process models.
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2022b) and ML-Rapid toolkit (Sun et al., 2020) are more flexible
and only require rudimentary programing skills.

Existing design tools address several challenges in designing
ML-enhanced products, but there is still room for improvement.
Most of the tools are oriented towards certain design stages but
do not cover the entire design process. Furthermore, according
to the contiguity principle, displaying relevant content simultane-
ously rather than successively could reduce cognitive load (Berbar,
2019). It indicates that design tools and design processes are sup-
posed to facilitate the conceptual design of ML-enhanced pro-
ducts as a whole, but currently, the use of tools is separated
from the process.

Methodology

To cope with challenges in designing ML-enhanced products, we
followed the methodology below to construct the design frame-
work and design process.

Construct the design framework

The construction of the UX value framework for ML-enhanced
products included three phases as shown in Figure 2.

Extract concepts
To extract concepts from multidisciplinary literature and design
cases, we adopted bibliometric analysis and integrative literature
review (Torraco, 2005) in the field of ML-enhanced products.

Referring to the work of MacDonald (2019), we first applied
bibliometric analysis to extract concepts quantitatively. We
searched the ACM Digital Library and Web of Science for relevant
literature in the field of HCI using search terms including “AI”,

“ML”, “UX”, “interface”, “interaction”, “human-centered”,
“design framework”, and “design process”. We manually excluded
irrelevant literature, and finally 970 papers including 32 key
papers were chosen. The titles, keywords, and abstracts of the
970 papers were collected as corpus for analysis. The corpus
was analyzed following the below steps: (1) remove stop words
that do not convey actual meanings and break down the remained
words into their roots; (2) generate high-frequency terms through
the term frequency-inverse document frequency (TF-IDF) (Wu
et al., 2008); (3) analyze and visualize the co-occurrence of high-
frequency terms to show the relationship among the terms.

Because the algorithmically identified terms are not suffi-
ciently informative, the integrative literature review was applied
to further extract concepts. We conducted a second round of lit-
erature search through the snowballing technique (Boell and
Cecez-Kecmanovic, 2014) using high-frequency terms, and 55
additional key papers and 18 design cases were collected. Based
on the high-frequency terms and co-occurrence graph, we read
all 87 key papers following a hermeneutic approach, defined con-
cepts, and finally obtained 38 preliminary concepts. Several
domain-specific concepts were extended into generic settings.
For example, the automation level of vehicles was extended to
the automation level of general ML-enhanced products.

Construct the initial framework
The concept matrix, which is usually used to organize concepts
through a set of existing theories (Webster and Watson, 2002),
was applied to guide the construction of the initial framework.
According to the theories of ML as a design material, HAI, and
value co-creation (introduced in Section “Design Research about
ML and UX”), we distill ML, stakeholders, context, and UX
value as components of the concept matrix.

Fig. 2. The construction process of the UX value
framework.
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We iteratively reorganized existing concepts using the above-
mentioned concept matrix, and finally defined the dimensions
and properties of each component. For example, stakeholders
include dimensions such as basic information, mental model,
etc., while uncertainty and explainability pertain to cognition in
UX value. After the above steps, the initial framework consisting
of 30 concepts in 4 categories was constructed. Besides, we sum-
marized how to create UX value in response to the growability
and opacity of ML, providing inspiration for the design process.

Iterate the framework
To refine the framework, we invited eight design experts (with at
least 5 years of experience designing ML-enhanced products) to
evaluate the initial framework and rank all the concepts.
Experts first read the description of the framework independently,
and they were required to think aloud (van den Haak et al., 2003)
while reading. After that, experts evaluated the clarity, coherence,
and completeness of this framework following a set of laddering
questions (Grüninger and Fox, 1995). Additionally, to avoid cog-
nitive overload for designers, experts ranked the concepts into
three levels, Know, Understand, and Apply, based on the require-
ments of mastery.

The evaluation results revealed that all participants held a pos-
itive attitude towards this framework, stating that it was concise
and could effectively direct designers to envision ML-enhanced
products. Furthermore, we iterated the initial framework to the
final version (see Section “The UX value framework”) according
to feedback. The main modifications include: (1) Separating crit-
ical properties into independent dimensions. For example, separ-
ating “social environment” as an independent dimension from the
“task type” dimension in context. (2) Expanding some dimen-
sions with more properties. For example, expanding stakeholders’
“familiarity of technology” to “mental model”, so as to incorpo-
rate properties related to the usage experience of ML-enhanced
products. (3) Enriching concepts with examples. We introduce
representative types of stakeholders and context and use examples
to help designers understand different dimensions.

Construct the design process

Identify the key stages
Based on MLT, we determined the key stages of the design pro-
cess. MLT regards ML as a growable design material with its

own lifecycle, during which the properties of ML change as ML
interacts with co-creators, thus affecting the performance of pro-
ducts (Zhou et al., 2020). The gray cycle in Figure 3 illustrates the
main steps of MLT using an example of how a potted plant is cul-
tivated. As shown in Figure 3, each stage of the process corre-
sponds to a step of MLT. For example, at the third step of
MLT, designers are prompted to illustrate the lifecycle of the
material, and outline how co-creators change and interact in the
lifecycle. Similarly, the third stage Conceptualize requires
designers to envision the whole ML lifecycle and explore design
solutions.

Identify the key activities
Referring to human-centered design methods such as participa-
tory design, we specified design activities at each design stage.
The identification of activities obeyed the following principles:
(1) Refer to existing design process models and design practice.
For example, by combining the insights in guidelines for AI
(Amershi et al., 2019) and People + AI Handbook (People+AI
Research, 2022), design activities such as user research were
added to the corresponding stage. (2) Implement the core ideas
of MLT. For example, at the stage of Co-create, designers identify
touchpoints and relationships between co-creators. (3) Encourage
the participation of stakeholders. For example, the Construct stage
adopted the evaluation matrix and functional prototype, driving
stakeholders to select desired design solutions. (4) Guide
designers to integrate the dynamically changing co-creators into
the ML lifecycle. For example, the activities at Cultivate stage
require designers to monitor the delicate changes of stakeholders
and context and develop strategies to cope with these changes.

Iterate the process
To integrate practical design experience and iterate the design
process, the eight design experts involved in the framework itera-
tion were also invited to evaluate the design process. Experts were
first required to introduce the design process of their prior design
projects. Then they evaluated the CoMLUX design process, put-
ting forward suggestions for improvement as well as supplement-
ing design activities.

According to the suggestions from experts, we modified the
CoMLUX process as follows: (1) Adjust the sequence of some
design activities. For example, “select tested solutions” was
moved to the Conceptualize stage. (2) Supplement specific design

Fig. 3. The inner gray cycle illustrates the main steps of MLT.
The outer red cycle shows the identified key stages based on
MLT.
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strategies at some stages. For example, introducing brainstorming
in “explore design opportunities”, and regulating data collection
in “research co-creators”. (3) Explain how designers collaborate
with other stakeholders (e.g., developers and maintenance person-
nel) at each stage.

Incorporate design tools
Based on the iterated design process, we incorporated two design
tools proposed in our prior work. Transparent ML Blueprint
(Zhou et al., 2022) aims to address the opacity of ML, and ML
Lifecycle Canvas (Zhou et al., 2020) illustrates the growability of
ML. The specific introduction to each tool can be found in
Section “Overview of conceptual design tools”. To incorporate
the tools into the CoMLUX design process, for each tool, we
interviewed six designers who had used it, and asked for their opi-
nions about which stages should the tool be applied to. By inte-
grating design tools with the CoMLUX design process,
designers can use different tools seamlessly throughout the design
process (see Section “The CoMLUX design process”), which is
consistent with the contiguity principle.

The UX value framework

This section introduces the UX value framework, which defines
ML, stakeholders, and context as co-creators, and identifies repre-
sentative UX values (see Fig. 4). Concentrating on the growability

and opacity of ML, this framework helps designers to understand
how co-creators contribute to UX values.

Combining the knowledge level of AI (Newell, 1982) and the
hierarchical model of design knowledge (Kolarić et al., 2020),
we adopted a differentiation approach to describe the require-
ments for mastery of concepts in the framework, including levels
of Know, Understand, and Apply. The description of the three
levels is as follows:

• Know: designers only need to know the basic meaning of con-
cepts, so as to collaborate with engineers or other stakeholders.

• Understand: designers have to specify the details or rationales of
concepts.

• Apply: designers should be capable of implementing the con-
cept when designing ML-enhanced products.

The framework of ML

The framework of ML applied a hierarchical approach to elabo-
rate the dimensions, properties, as well as the typical characteris-
tics of ML (see Fig. 5).

Dimensions and properties of ML
Data, algorithms, computing power, and supporting technology
work together to support the functioning of ML, and they consti-
tute the four dimensions of ML: (1) data: collected data for algo-
rithm training, inference, updating, and task execution; (2)

Fig. 4. The UX value framework.
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algorithm: specific methods that enable ML to gain intelligence
from the given data and solve problems, for example, neural net-
work; (3) computing power: the resource for algorithm training
and inference; (4) supporting technology: other technologies to
support the functioning of products. Each dimension contains
several properties. Figure 5 introduces the properties of different
dimensions and the corresponding level of mastery. For example,
properties of data include size, annotation, authorization, data
format, and quality.

The four dimensions are not isolated but collaborate to sup-
port the ML lifecycle, which includes the following steps: (1)
data collection: to collect and annotate data; (2) algorithm con-
struction: to construct algorithms to learn patterns from data;
(3) algorithm training: to train algorithms with data based on
computing power; (4) algorithm inference: to make inference
based on input data; (5) task execution: to execute tasks with
the help of algorithms and supporting technologies; (6) algorithm
update: to collect new data and feedback to improve algorithm
performance. Within the lifecycle, ML empowers products to
learn and make decisions autonomously.

Typical characteristics of ML
From the perspective of designing ML-enhanced products, the
typical characteristics of ML could be summarized as growability
and opacity. The two characteristics are closely related to the crea-
tion of ML-enhanced products’ UX value.

Growability. ML’s growability, primarily due to its learning
mechanism, brings benefits and challenges to ML-enhanced pro-
ducts (Yang et al., 2020). Growability allows ML-enhanced pro-
ducts to constantly evolve, which could be analogized to the
cultivation of a tree. With the gardener’s nurture, the tree is
able to adapt to changing weather as water and nutrients accumu-
late. Similarly, during the ML lifecycle, the performance of ML
improves through learning data from stakeholders and context,
thus creating UX value. However, it is difficult to cultivate a grow-
able “tree” into a pre-determined shape. In other words, the con-
tinuously changing performance of ML prevents the creation of
the desired UX value.

Specifically, the challenges brought by the growability of ML
are twofold. On the one hand, the performance of ML can be
easily influenced by the size and quality of data. Meanwhile,
more data accumulates during the usage process of
ML-enhanced products. Such uncertainty makes it difficult to
anticipate the behavior of ML-enhanced products and their UX
value. On the other hand, ML-enhanced products can outperform
humans in certain tasks but sometimes they cannot complete
tasks independently. Therefore, it is crucial to flexibly adjust the
collaboration between humans and ML-enhanced products
according to different tasks.

Opacity. The opacity of ML-enhanced products mainly comes
from the hidden decision-making process and the unexplainable
inference results. Traditional products usually follow
human-understandable rules, and their working mechanism is
transparent to humans. However, through synthesizing informa-
tion such as the physical environment and user intention,
ML-enhanced products could make inferences without human
intervention (Schaefer et al., 2016). The decision-making process
involves complex parameters, which are hidden in a black box
and opaque to humans.

The opacity of ML brings several challenges to the conceptual
design of ML-enhanced products. First, it may hinder humans
from understanding the performance of products and subse-
quently impact their trust, especially in contexts such as autono-
mous driving. Second, opacity challenges the collaboration
between stakeholders and products. For example, when a product
encounters a problem that requires human assistance, stake-
holders could not take over in time if they are not informed of
the product’s status. Third, the opaque algorithm training process
may impede stakeholders from providing needed data or neces-
sary assistance, thus affecting the training progress.

The framework of stakeholders

Stakeholders refer to those who can either affect or be affected by
ML-enhanced products. In conceptual design, designers should
clarify the involved stakeholders and take their needs and rights
into consideration. This framework illustrates the dimensions
and properties of stakeholders as well as typical stakeholders
(see Fig. 6).

Dimensions and properties of stakeholders
When interacting with ML-enhanced products, different stake-
holders may exhibit various characteristics. For example, stake-
holders differ in their capabilities to utilize information and
understand products’ behavior (Tam et al., 2015). Therefore, the
design of ML-enhanced products should consider stakeholders’
dimensions. The dimensions of stakeholders include (1) basic
information: mainly includes stakeholders’ age, gender, occupa-
tions, etc. (2) function need: the function of ML-enhanced pro-
ducts needed by stakeholders (Shen et al., 2021); (3) mental
model: experience of using ML-enhanced products and familiarity
of related technologies (Browne, 2019); (4) ethical consideration:
consideration about ethical issues such as privacy and fairness;
(5) esthetic preference: stakeholders’ consideration about the
appearance of products (Li and Yeh, 2010); (6) lifecycle: proper-
ties’ changes within the lifecycle. For example, during the usage
of products, end-users’ mental models may change and new func-
tion needs may emerge. The corresponding properties of each
dimension and their levels of mastery are shown in Figure 6.

Types of stakeholders
This section summarizes the most typical stakeholders, including
end-users, bystanders, developers, maintenance personnel, and
regulators (Weller, 2019). It should be noted that different types
of stakeholders are not mutually exclusive, which means that a
single individual may play multiple roles. In addition, stake-
holders do not necessarily have a preference for all dimensions.

End-users. End-users refer to those who use ML-enhanced pro-
ducts in their daily life. The basic information of end-users
often affects the product definition. As for function needs,
end-users usually need an intuitive interface to interact with the
product more effectively. For the mental model, most end-users
possess limited expertise about the mechanisms and supporting
technology of ML, but some of them may have used
ML-enhanced products in the past. Additionally, they are con-
cerned about data privacy and want to know how their data are
being used. In some cases, end-users should also include elderly
and disabled users (Kuner et al., 2017), whose function need
and mental model are somewhat different from others.
End-users are encouraged to actively acquire relevant knowledge,
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Fig. 6. The framework of stakeholders and the suggested level of mastery for
the properties.

Fig. 5. The framework of ML and the suggested level of mastery for the
properties.

Fig. 7. The framework of context and the suggested level of mastery for the
properties.
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so as to interact with ML-enhanced products legally and
efficiently.

Bystanders. Bystanders do not proactively interact with
ML-enhanced products (Tang et al., 2008), but they may perceive
end-users’ interaction with products and be affected by it
(Montero et al., 2010). In terms of function needs, bystanders
might want to know the product’s behavior and intention to
avoid being affected. For example, pedestrians as bystanders
need to know the intention of autonomous vehicles (Merat
et al., 2018) in case of traffic accidents. As for ethical considera-
tions, bystanders are particularly concerned about privacy issues.
For example, smart speakers sometimes inadvertently record con-
versations from bystanders, which can negatively impact the pro-
duct’s social acceptance. When confronted with these situations,
bystanders could take the initiative to protect their legitimate
rights.

Developers. Developers refer to those who take part in the devel-
opment of products, including ML experts, data scientists, etc.
Typically, they need to comprehensively know the purpose and
behavioral details of algorithms, compare different algorithms
(Mohseni et al., 2018), or even develop new algorithms for pro-
ducts. In terms of the mental model, developers are familiar
with ML and able to understand abstract explanations of algo-
rithms. As for ethical considerations, developers desire unbiased
data and a clear mechanism of accountability, and they should
strictly follow relevant regulations. For example, at the steps of
data collection and task execution, they are responsible for ensur-
ing the completeness and accuracy of data and avoiding bias.

Maintenance personnel. Maintenance personnel includes
engineers and designers who maintain the service of
ML-enhanced products. Their function needs include accurate
data and diverse user feedback for identifying errors and improv-
ing UX. Meanwhile, maintenance personnel need information
about products’ performance and working status (Kim et al.,
2018), so that they can collaborate with developers to refine algo-
rithms. The mental model of maintenance personnel is similar to
that of developers, with a more in-depth understanding of
explainable algorithms. As for ethical considerations, they
would continuously pay attention to the social impact caused
by algorithms and timely identify ethical issues such as algorithm
bias. Maintenance personnel is supposed to ensure the growability
of ML and monitor the status of products to avoid risk and
breakdowns.

Regulators. Regulators (e.g., legislators, government) audit the
behavior and legal liability of ML-enhanced products (Weller,
2019), thus making products ethically and socially responsible
(Blass, 2018). Regulators need information about products’ work-
ing environment, working process, performance, etc. As for the
mental model, regulators have to comprehensively understand
the capabilities and potential risks of ML. Regulators should
pay particular attention to the ethical issues and social impact
brought by ML-enhanced products, and they are obligated to
determine whether a product could be used in public society
(Mikhail et al., 2018).

The framework of context

The design of ML-enhanced products is highly related to the con-
text (Springer and Whittaker, 2020), which describes the environ-
ment of products and the activities that happened during a period
of time. Figure 8 hierarchically illustrates the dimensions of con-
texts and corresponding properties as well as the most typical
contexts.

Dimensions and properties of the context
The design and performance of ML-enhanced products can be
influenced by dimensions of context, which include: (1) physical
environment: factors in the physical environment that might
directly impact the performance of products. For example, inap-
propriate temperature and humidity may reduce the lifetime of
hardware; (2) social environment: factors in the social environ-
ment that might impact products (Cuevas et al., 2007). For exam-
ple, the regulations and culture of different countries and regions;
(3) task type: characteristics of tasks to be accomplished by
ML-enhanced products; (4) lifecycle: the changing properties of
the context within the lifecycle, such as the frequent change in
light and sound. Figure 7 shows the corresponding properties of
each dimension.

Types of contexts
The context of ML-enhanced products can be categorized into
four quadrants according to risk and timeliness (see Fig. 8).
The four types of contexts are not strictly separated, so designers
should determine the type of context according to their design
projects. Additionally, in the same type of context,
ML-enhanced products can also interact with stakeholders using
varying levels of automation.

Context #1: low risk and low timeliness. In context #1, the conse-
quences of failing a task are not severe, and real-time feedback is
not necessary. Taking the shopping recommender system as an
example, there is no severe consequence even if the recommended
content is irrelevant. In addition, the system only needs to recom-
mend the content of interest when users browse next time instead
of adjusting the content in real time. In this context, the speed of
algorithms can be sacrificed in pursuit of higher accuracy, thus
improving the UX value of ML-enhanced products.

Context #2: high risk and low timeliness. For risky but low timely
tasks, failure of tasks will probably lead to injury, death, or other
serious consequences. In context #2, designers should pay special
attention to the transparency of the decision-making process and
the explainability of prediction results, so as to reduce potential
risks and build trust. According to the research of Pu and Chen
(2006), the risk perceived by users will influence their interaction.
Therefore, ML-enhanced products need to help humans assess the
risk of current tasks and allow humans to question decisions
made by ML (Edwards and Veale, 2018). As an example, the
clinic diagnosis system should inform stakeholders about uncer-
tainties and risks associated with its decisions, allowing patients
and doctors to adjust the decision based on the actual situation
(Sendak et al., 2020).

Context #3: low risk and high timeliness. In a less risky but timely
context, ML-enhanced products have to respond to stakeholders
promptly, and potential errors or misunderstandings will not
bring risks. ML-enhanced products could adjust the response
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time according to the current task and context (Amershi et al.,
2019). For example, the accuracy of a chatbot can be reduced to
provide immediate response for end-users. Since the interaction
between products and end-users is real-time, information over-
load should also be avoided. Additionally, in context #3, products
should allow stakeholders to provide feedback on faults, so as to
continuously improve products’ performance (Ashktorab et al.,
2019).

Context #4: high risk and high timeliness. Context #4 requires
high timeliness, and failure of tasks could lead to serious conse-
quences. Designers should take measures to balance the accuracy
and timeliness of ML-enhanced products. Specifically, products
have to report unexpected errors immediately (Theodorou et al.,
2017), helping stakeholders to adjust their expectations of pro-
ducts’ capabilities. For example, in an autonomous driving task,
prediction results and alerts (e.g., engine failure) are necessary
for end-users to take over in time. Furthermore, the provided
information should be concise, because end-users usually need
to make decisions immediately when faced with an emergency.

Except for the levels of risk and timeliness, products of differ-
ent automation levels could cooperate with humans in distinct
ways, thus affecting the design of ML-enhanced products
(Mercado et al., 2016; Bhaskara et al., 2020). For instance, a
sweeping robot is supposed to complete the task fully automati-
cally, whereas a chatbot generally only provides information
according to human instructions. Based on the Society of
Automotive Engineers (SAE) taxonomy of driving automation
(Wright et al., 2015; Selkowitz et al., 2016), we produced a univer-
sal taxonomy for general ML-enhanced products, which could be
found in Appendix 1.

UX values of ML-enhanced products

As shown in Figure 4, the UX value of ML-enhanced products is
co-created by ML, stakeholders, and context. This section intro-
duces six representative UX values and discusses how co-creators
bring UX values around ML’s characteristics.

Typical UX values
The UX values brought about by ML reveal design opportunities
for ML-enhanced products while posing several challenges (see
Table 3). The challenges designers faced in creating UX values
are mainly related to the growability and opacity of ML. For

example, the autonomy of products relies on the evolving ability
of algorithms and users’ understanding of algorithm decisions. As
a result, products’ autonomy could be influenced by both grow-
ability and opacity.

How to create UX values
This section introduces general ways to overcome design chal-
lenges and create UX values for stakeholders during the concep-
tual design of ML-enhanced products with regard to ML’s
growability and transparency.

Create UX values around growability. The growability of ML is
directly related to most UX values. Through learning patterns
from massive data, ML-enhanced products could have the auton-
omy to make decisions independently or assist humans in

Fig. 8. Typical types of context.

Table 3. Typical UX values of ML-enhanced products

UX Value Description

Autonomy Opportunities: perform tasks without human
intervention; bring diversity to areas such as artistic
creation.
Challenges: avoid users’ unrealistic expectations of
products’ capability; better understand the intentions of
stakeholders (Yang and Newman, 2013); manage the
uncertainty of automatic ability and improve reliability.

Auxiliary Opportunities: assist humans in performing tasks and
making decisions with stakeholders; co-control the
product with users in an adjustable and adaptive way
(Hancock and Chignell, 1988).
Challenges: determine the priority of decisions between
human and products; clarify the responsibility of human
and products; clarify the timing, approach and degree of
assistance; manage the trade-offs between automatic
and manual control (Grudin, 2006).

Cognition Opportunities: help users perceive the environment and
understand complex information; provide visualized or
interactive explanations for humans to understand ML’s
working mechanism; increase the understandability of
the algorithm; promote users’ trust and willingness to
use (Eslami et al., 2019).
Challenges: explain the working mechanism and
prediction results in a more understandable way; avoid
information overload; inform users about correct ways of
input (Dellermann et al., 2021); build user trust through
explanations.

Learnability Opportunities: learn from data and the interaction with
users; continuously improve and extend the capability of
products.
Challenges: coordinate resources needed in algorithm
training; reduce bias in data and improve the quality of
data; protect data privacy and regulate the process of
data collection.

Affectivity Opportunities: provide emotional support for users
through human-like qualities (Nass et al., 1994);
accompany users through conversations;
Challenges: avoid the Valley of Terror effect; proactively
provide emotional support by intention recognition
(Allen et al., 1999).

Interactivity Opportunities: provide adaptive and personalized
interaction; enable users to perform complex tasks
through simple interactions such as voice/gesture
interaction.
Challenges: balance the accuracy of algorithms and the
effectiveness of interaction.
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completing certain tasks. ML-enhanced products could also pro-
vide affective support. Growability also enables products to adapt
to stakeholders’ habits and meet personalized needs. During the
usage process of products, ML will continuously learn from
new data, and UX values will also evolve as the lifecycle updates.

To create UX values around growability, designers have to par-
ticipate in the ML lifecycle and coordinate co-creators. For exam-
ple, to create learnability value, designers should get involved in
steps including data collection, algorithm training, and algorithm
update. Ideally, ML could continuously obtain data about the
social environment from the context, and stakeholders (especially
end-users) could regularly provide feedback data. Using these
data, designers are able to improve the performance of
ML-enhanced products and refine the created UX values. At the
algorithm construction step, for example, the function needs of
stakeholders and the task type of context provide a reference for
algorithm selection. At the step of data collection, designers
should consider regulations in the context, encourage stake-
holders to contribute data, and incorporate data into the algo-
rithm training (Yang et al., 2018c).

Create UX values around transparency. To address the challenges
brought by opacity (discussed in Section “Typical characteristics
of ML”) and create UX values, the transparency of
ML-enhanced products is necessary. As the opposite of transpar-
ency, opacity hinders the creation of UX values including cogni-
tion, interactivity, auxiliary, and learnability. For example, if
humans are unable to know the status of a product, they cannot
interact with it appropriately, which affects its interactivity and
auxiliary. Although improving transparency is effective to build
trust (Miglani et al., 2016), an inappropriate increase in transpar-
ency is dispensable (Braun et al., 2020) and might lead to infor-
mation overload (Chuang et al., 2017). To this end, designers
should determine the transparency of products with systematic
consideration of co-creators.

ML plays an influential role in determining the transparency of
products. To moderately increase transparency, designers can: (1)
select explainable algorithms. Generally, the explainability of algo-
rithms decreases as their complexity increases. For example, the
linear regression algorithm is easy to explain but it could not han-
dle complex data. (2) apply methods such as explainable AI (XAI)
to provide explanations (Du et al., 2019). For instance, by analyz-
ing various inputs and outputs of algorithms, XAI can report how
different inputs influence the inference results. (3) disclose infor-
mation about ML’s inference process (Oxborough et al., 2018),
including general demonstrations of how ML processes data
(Lyons, 2013) and how ML is performing the analysis. (4) provide
background information, which includes the purpose of the cur-
rent algorithms (Bhaskara et al., 2020) and reasons behind break-
downs (Theodorou et al., 2017), to help stakeholders understand
ML.

Apart from that, stakeholders and context would also impact
the transparency of ML-enhanced products. Due to stakeholders’
distinct ability to perceive information, they have different
requirements for transparency. For example, in the clinical diag-
nosis task, well-trained doctors are able to perceive mass informa-
tion, but patients would struggle to handle complex information.
As for context, the task type can also affect the desired transpar-
ency of products, and this point has been introduced in Section
“Types of contexts” in detail. Meanwhile, certain regulations,
such as the EU’s General Data Protection Regulation, have forced
products to implement transparency at a legal level.

The COMLUX design process

Within the CoMLUX design process, designers coordinate three
co-creators (ML, stakeholders, and context) to create UX values
for ML-enhanced products. This process provides specific strate-
gies for designers to consider the growability and opacity of ML,
and to apply the UX value framework systematically.

Overview of the conceptual design process

The CoMLUX design process comprises five design stages:
Capture, Co-create, Conceptualize, Construct, and Cultivate.
Each stage includes specific design activities, such as making
trade-offs and collecting related information (see Fig. 9).

In terms of growability, this process instructs designers to par-
ticipate in the ML lifecycle. Through activities such as “map the
lifecycle” and “monitor the growing process”, designers could
focus on the changes in stakeholders and contexts, and update
the conceptual design solutions accordingly.

In terms of opacity, this process guides designers to appropri-
ately improve the transparency of ML-enhanced products. By
determining the dimensions of ML based on the properties of
stakeholders and contexts, designers are able to cope with the
opacity of ML and design appropriate interfaces.

Ideally, this process will result in a mutually supportive ecosys-
tem composed of the three co-creators. The ecosystem will be
dynamically updated according to the ML lifecycle and be able
to respond to the changes in stakeholders and context agilely.

Overview of conceptual design tools

The two design tools incorporated in this process could support
designers in implementing the UX value framework while parti-
cipating in the CoMLUX process. The Transparent ML
Blueprint (Blueprint) copes with the opacity of ML, while the
ML Lifecycle Canvas (Canvas) addresses the growability of ML.
Traditional tools such as brainstorming and storyboards, as well
as prototyping tools such as Delft AI Toolkit and ML-Rapid Kit
can be used as a complement to these tools.

Transparent ML Blueprint for transparency
Blueprint contains a visualized ontology framework of design
concepts and a supportive handbook. Blueprint helps designers
learn about the key concepts of ML, particularly those related
to its opacity, and assists designers in defining design goals.
Blueprint is composed of seven modules, each representing a
key concept about the transparency of ML-enhanced products
(see Fig. 10). For each key concept, it contains several sub-
concepts. Designers can refer to the handbook for a detailed
introduction to each concept. These concepts might interact
with each other and are not mutually exclusive. The specific prio-
rities of concepts are case-dependent for any particular design
project and agent. In addition to the information related to the
opacity of ML, designers are free to complement other relevant
information about ML-enhanced products.

The ML lifecycle Canvas for growability
Canvas treats ML as a growable co-creator and guides designers to
represent the ML lifecycle and the relationships between
co-creators visually. With the help of Canvas, designers can clarify
the collaboration and constraints between co-creators, and ideate
growable conceptual design solutions.
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Canvas creates a visualized diagram containing ML, stake-
holders, and context. It consists of the canvas itself, Question
List, Persona, and Issue Card (see Fig. 11). The canvas contains
six sectors corresponding to the six steps of the ML lifecycle.
Designers collect information about the three co-creators at dif-
ferent steps of the lifecycle under the reminder of Question List,
which contains questions related to steps of the ML lifecycle
and different co-creators. Designers could collect and record
user feedback on specific issues in Persona. Details of Canvas
could refer to Appendix 2.

The core stages of conceptual design

Stage #1: capture
Stage #1 guides designers to gain an initial understanding of the
co-creators, capture potential design opportunities, and clarify
target specifications such as the UX value. The main activities
and usage of tools in stage #1 are shown in Figure 12.

Understand co-creators. A general understanding of co-creators is
the basis for identifying design opportunities. Designers could

Fig. 10. Overview of Blueprint.

Fig. 9. The CoMLUX design process.
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first read the handbook of Blueprint to understand relevant con-
cepts and their inter-relationships. For each concept, designers
could gather information through literature review, user research,
etc., and then record the information on sticky notes and paste
them into Blueprint. Designers can flexibly arrange the order of
information collection according to their actual project. The
“Other” option in each module is for additional related
information.

Designers need to identify the stakeholders involved in the
design project and understand their different dimensions. In par-
ticular, they should clarify the functional need and mental models
of end-users during conceptual design in order to identify
unsolved problems. Designers can collate the collected informa-
tion and fill it in the “Stakeholder” module.

In addition, designers need to understand the algorithm and
data dimensions of ML to support UX value creation. Designers
can collect design cases as a reference to explore design

opportunities. The collected information can be filled in the
“Algorithm” module.

Designers should also conduct research on the product’s con-
text, including the physical environment, type of task, etc.
Designers can fill most of the collected information in the
“Context” module, collate information such as laws and regula-
tions in the “Ethical Consideration” module, and record informa-
tion related to design goals in the “Design Goal” module.

Explore design opportunities. Designers can explore possible UX
values, general constraints, and broad design goals around stake-
holders and context. For example, designers can consider that:
(1) is the autonomy/auxiliary of products useful in the given con-
text? (2) how to apply ML to a particular context, or (3) which
stakeholders could gain better experiences? After that, designers
can broadly envision multiple opportunities through brainstorming.

Fig. 11. Overview of Canvas.

Fig. 12. Main activities and usage of tools in Stage #1.
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Screen design opportunities. Through comprehensively consider-
ing co-creators, designers can preliminarily determine whether a
design opportunity deserves in-depth investigation and eliminate
less valuable opportunities. The screening criteria could refer to
the “Design Goal” module. Designers need to pay particular
attention to (1) feasibility: whether ML is feasible to solve the
problem, whether there exists available datasets or algorithms,
etc. (2) uniqueness: whether ML could solve the problem in a
unique way and provide unique UX value.

Define target specifications. Considering the design opportunities,
designers should define clear and concise target specifications of a
product, which represent the expectations that need to be
achieved. At this time, designers only need to generally describe
the product’s core functions, main stakeholders, contexts, and
UX values instead of specific algorithms and data collection
methods.

The description of specifications should cover the needs of dif-
ferent stakeholders (Yang et al., 2016b). For example, in a news-
feed application, there is often a trade-off between the needs of
end-users (e.g., rapid access to information) and maintenance
personnel (e.g., end-user dwell time). Specifically, designers can
use the “Design Goal” module to define target specifications,
and ultimately keep only the most crucial information in
Blueprint and prioritize them.

Stage #2: co-create
This stage requires designers to conduct in-depth research into
ML, stakeholders, and contexts, so as to initially clarify the static
relationships between co-creators and lay the foundation for
building ML-enhanced products with growability and transpar-
ency (see Fig. 13).

Research co-creators. Based on the target specifications, designers
conduct further research with the help of Question list and
Persona, gaining insight into the co-creators of UX value.
Question list can be used as a checklist, and designers are free
to alter the list if necessary.

The first step is to learn more about the relevant dimensions of
ML based on the target specifications, and complement modules
of “Transparent Algorithm”, “Transparent Interface” and
“Transparent Content”. For example, in the “Transparent
Algorithm” module, designers can preliminarily describe the
data and computing power needed by different algorithms.

Secondly, designers could further understand the stakeholders
through methods such as interviews and focus groups. Designers
should especially clarify different stakeholders’ functional needs
and ethical preferences related to opacity and growability.
Designers can also identify the overall features of stakeholders
through the collected data. The obtained information could be
filled into Persona, and designers can supplement missing stake-
holders in the “Stakeholder” module of Blueprint.

As for context, designers should thoroughly consider the
dimensions of the physical environment, social environment,
and task type with the help of the Question List (see Appendix 2).
Designers can summarize different types of contexts and document
specific content in the “Context” module of Blueprint.

Finally, designers should review the research results to find the
missing co-creators and try to transform the documented infor-
mation into a machine-readable and analyzable format. For exam-
ple, designers could digitize information about the physical
environment and quantify stakeholders’ experiences/feelings.

Locate touchpoints. Touchpoints are the temporal or spatial loci
where connections such as data interchange and physical interac-
tion occur between co-creators. By locating the touchpoints,

Fig. 13. Main activities and usage of tools in Stage #2.
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designers can clarify the mechanisms of resource exchange
between co-creators at different steps within the ML lifecycle.

To build ML-enhanced products with transparency, designers
should: (1) check whether essential information could be
exchanged through existing touchpoints; (2) exchange only the
necessary information and details to avoid cognitive overload;
(3) remove touchpoints that might collect sensitive data or dis-
close privacy, and retain only the necessary private information.

To build ML-enhanced products with growability, designers
can: (1) check whether growability can be achieved by informa-
tion obtained from existing touchpoints; (2) remove biased touch-
points (e.g., annotators with bias) to avoid data ambiguity,
inconsistency, and other unfairness at the data collection step;
(3) construct datasets without missing critical data.

Identify co-creation relationships. Designers need to identify the
constraints and collaboration between co-creators and map out
the static relationships between them. For example, ML provides
prediction results to end-users at the step of task execution, and
end-users “teach” their preference to ML through interaction.
Designers could record these details in the relevant sector of
Canvas.

To initially build growable relationships, designers could: (1)
build a data-sharing loop, which consists of contributing data,
getting feedback, and contributing more data, to realize reciproc-
ity between stakeholders and context; (2) guide stakeholders to
share data through incentive strategies such as gratuities and
gamification strategies.

To initially build transparent relationships, designers could: (1)
provide stakeholders with information about ethical considera-
tions. For example, when a product tracks stakeholders’ behaviors,
stakeholders need to be informed; (2) provide access for stake-
holders to understand the working mechanisms of products.

Stage #3: conceptualize
With a full understanding of co-creators, the static relationships
between them could be developed into dynamic ones within the

ML lifecycle. At stage #3, designers are able to explore conceptual
design solutions with growability and transparency (Fig. 14).

Illustrate the lifecycle. Designers need to pay close attention to
how co-creators interact through touchpoints and evolve dynam-
ically as the ML lifecycle progresses. For example, continuously
monitoring stakeholders’ behaviors in different contexts.

To collect and organize all the changing information regarding
co-creators, designers can: (1) map the known properties of dif-
ferent co-creators and their relationships to different sectors of
Canvas; (2) explore the unknown areas of Canvas and consider
how to fill the blanks. For example, observing end-users’ behavior,
interviewing developers and maintenance personnel, etc. (3) inte-
grate the collected insights into the algorithm, allowing the algo-
rithm to grow by itself.

Explore design solutions. Based on the resulting Canvas, designers
are required to transform insights into conceptual design solu-
tions and continuously adapt them to the changing properties
of stakeholders and context (Barmer et al., 2021). In this process,
ML needs to meet the requirements of context and stakeholders,
but designers should make fewer restrictions on the solutions or
algorithms chosen. Designers need to anticipate the potential
problems caused by ML’s characteristics, come up with possible
design solutions, and record them on the Issue Card.

To ensure the growability of design solutions, designers can:
(1) describe long-term changes of different co-creators and envi-
sage how the changes in context will affect data, algorithms, etc.
(2) envision how to coordinate stakeholders and context in
response to potential changes; (3) predict the most favorable
and most undesirable performance of ML-enhanced products,
and ensure that the conceptual design solutions still meet the tar-
get specifications in these situations.

To ensure the transparency of design solutions, designers can:
(1) adopt more explainable algorithms; (2) explore the ways of
human-ML collaboration according to dimensions of context;
(3) adopt reasonable interaction methods (e.g., sound and text)

Fig. 14. Main activities and usage of tools in Stage #3.
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to explain the product’s behavior; (4) apply appropriate methods
to present information to avoid cognitive overload.

For the creation of UX values, designers need to balance the
potential conflicting properties of co-creators. For example, the
social environment may hinder the data collection process.
Designers can identify and resolve conflicting factors through
design methods such as the co-creation matrix and hierarchical
analysis (Saaty, 1987). Designers can fill out scattered conceptual
design solutions in the Issue Card, and then use Canvas to trade
off and integrate different design solutions.

Express design solutions. Designers can express conceptual design
solutions through texts or sketches for communication and evalu-
ation. Specifically, designers should describe the design solution
broadly in relation to the target specifications, including the
form of interaction and the working mechanism of the product.

Designers can express the dynamic change of co-creators
within the ML lifecycle with the help of Canvas: (1) Clarify the
working status of the ML-enhanced product at each step of the
ML lifecycle to minimize the ambiguity between humans and
ML. For example, enumerating all actions the ML-enhanced
product can take and their automation level; (2) Describe the
changes of co-creators and their relationship, envisioning possible
changes of touchpoints and coping strategies. For example, when
the automation level of a product changes from high autonoma-
tion to no automation, end-users need to be informed in time.

Select tested solutions. Based on the specifications listed in
Blueprint, designers may use methods such as majority voting
to rank design solutions and select the most promising solution
for testing. A team consensus should be established while select-
ing solutions. In some cases, the team may choose a relatively
low-rated but more practical solution rather than the
highest-rated but least practical one.

Stage #4: construct
To test and iterate the selected solutions, designers need to con-
struct functional prototypes and build an evaluation matrix.
After the evaluation of prototypes, one or more promising solu-
tions can be selected for further iteration (see Fig. 15).

Build functional prototypes. Convert one or more conceptual
solutions into functional prototypes for testing and iteration. To
detect unforeseen issues, the functional prototype should repre-
sent the majority of a product’s functions. Designers could
quickly construct prototypes based on real-world data with the
help of prototyping tools in Table 4.

Prepare the evaluation matrix. Prepare an evaluation matrix and
define evaluation criteria to assess the strengths and weaknesses of
solutions. To construct the matrix and comprehensively evaluate
the solutions, designers can: (1) combine the information in the
“Design Goal” and “Ethical Consideration” modules of
Blueprint; (2) provide a matrix with different weights for different
stakeholders; (3) examine the design solution’s positive/negative
impact on stakeholders; (4) expand the target specifications and
UX values into evaluation criteria; (5) optimize the matrix
dynamically with regard to ML’s growability.

Evaluate functional prototypes. Designers should verify whether
the current solution conforms to the target specifications, and
gain insights for iteration. Both subjective measures (e.g., the
expert group, A/B test, usability test), as well as biometric mea-
sures (e.g., electroencephalogram, eye-tracking, heart rate variabil-
ity) that are widely adopted by cognitive science research, could be
used (Borgianni and Maccioni, 2020). Designers should evaluate
the prototypes based on the evaluation matrix, and they may dis-
cover missed touchpoints or emerging issues in the functional
prototype.

Iterate design solutions. Designers could select a better solution
and iterate it based on the evaluation’s feedback. Specifically,
designers should further refine the relationship between
co-creators in the ML lifecycle. The activities in this step focus
on inspiring creative reflections and improvements. Designers
can improve a particular solution, integrate different solutions,
or ideate new solutions based on the insights obtained from the
evaluation. During the iteration, co-creators are constantly chang-
ing and could be influenced by UX values (Wynn and Eckert,
2017). Models such as the Define-Stimulate-Analyze-Improve-

Fig. 15. Main activities and usage of tools in Stage #4.
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Control (DSAC) cycle can be used to support complex and
ambiguous iterative processes within the ML lifecycle.

Stage #5: cultivate
At stage #5, designers clarify product specifications for the design
solution and make a plan to monitor the performance of the
ML-enhanced products (see Fig. 16). In this way, designers are
able to cultivate a growable and transparent product.

Clarify product specifications. The final product specifications
provide a scheme for the detailed design and guide subsequent
development. In the product specifications, designers should
detail issues and strategies regarding growability and transpar-
ency. Designers should consider the mental model of developers
and maintenance personnel in order to describe the product spe-
cifications in accordance with their perception. At the same time,
a preliminary plan is necessary for the subsequent development.
Designers can use Blueprint to document the specifications or
use a functional prototype to show the expected UX values pro-
vided by the product.

Monitor the product. With the help of Canvas, designers can con-
tinuously track the interaction between co-creators, and ensure
that the product does not deviate from the initial product specifi-
cations as it continues to grow. For example, in the “Algorithm
Update” sector, maintenance personnel monitors the perfor-
mance of the product regularly, and they will be prompted to
take contingency measures when the product does not perform
as expected.

To ensure the growability of the product, designers could: (1)
ensure long-term data collection and utilization; (2) regularly
monitor co-creators’ properties that will influence growability
and the key operating metrics of products, and actively intervene
when the product is not performing as expected.

To ensure the transparency of the product, designers can: (1)
collect stakeholders’ preference on transparency regularly; (2)
timely adjust design solutions related to transparency, such as
rearranging the way to present information and explain
algorithms.

Case study: Beelive intelligent beehive

The proposed design framework and process were applied to the
design of Beelive, an intelligent beehive for sightseeing, to validate
the effectiveness of our work.

The design of Beelive is inspired by the survival crisis of bees
and the agricultural transformation in China. The declining pop-
ulation of bees has impacted the food supply and biodiversity.
Meanwhile, scientific education-based tourism agriculture has
been advocated in many places, which can also be applied to
the bee industry to increase the income of bee farmers and pro-
mote tourism. However, at present, bees live in opaque and
dark hives that cannot be observed up close.

In this background, Beelive’s designers began to envision how
to enhance the bee industry. We will introduce the design of
Beelive based on the UX value framework and the CoMLUX
design process.

Stage #1: capture

To begin with, designers preliminarily identified co-creators.
Among the stakeholders are bee lovers and beekeepers as
end-users, visitors as bystanders, developers, maintenance per-
sonnel, and regulators. In the “Transparent Algorithm” module
of Blueprint, designers learned about various capabilities of algo-
rithms that can be used for beehives, including bee recognition,
pollen recognition, etc. As for the context, beehives are normally
located outdoors, so the functions of beehives can be easily
affected by noise, temperature, and humidity. According to the
description of timeliness and risk, the task performed by
Beelive is less risky, but the timeliness level is relatively high
due to the bees’ rapid movement. Additionally, bioethics should
be considered since the beehive cannot threaten the normal exis-
tence of bees.

Table 4. Different kinds of prototyping tools and their suitable products

Suitable
products Tools

Open-source
platforms

Software/
Hardware

TensorFlow

MLaaS platforms Software/
Hardware

IBM Watson

Non-programming
tools

Software/
Hardware

Delft AI Toolkit, Yale

Low-code toolkits Hardware Google AIY, ML-Rapid
toolkit

Open-source toolkits Hardware Raspberry Pi, Arduino

Fig. 16. Main activities and usage of tools in Stage #5.
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Based on the collected information, the intelligent beehive is
supposed to be: (1) observable: to allow tourists and bee lovers
to observe bees up close; (2) scientific: to help bee lovers know
more about bees; (3) professional: to ensure the survival of bees
and honey production; and (4) safe: to prevent issues like bee
stings. Designers wrote down the above information in the
“Design Goal” module.

Designers then ideated and screened possible design opportu-
nities through brainstorming according to the design goal.
Specifically, design opportunities include the domestic hive for
bee lovers and the outdoor sightseeing hive for beekeepers. For
the safety of bystanders, the domestic hive was excluded because
it could interfere with the neighbors. The idea of the outdoor
sightseeing hive was further refined in the following activities.

Then, designers initially defined the target specifications of
Beelive. The outdoor sightseeing hive should provide end-users
with: (1) affectivity: bee lovers can obtain long-term affective sus-
tenance from observing the activities of bees and honey produc-
tion. (2) interactivity: end-users can interact with the
recognition results and receive real-time feedback. (3) auxiliary:
end-users could gain professional knowledge about bees with
the assistance of the recognition results. (4) learnability: bee lovers
and beekeepers can help improve the performance of the beehive
by annotating different bee images, correcting wrong annotations,
and so forth. To achieve the above UX values, it is necessary to
use a variety of sensors and actuators. For example, capturing
bee images via a camera, and uploading them to the cloud via net-
work or recognizing them through a local computing device. As
for software, the beehive should present the recognition results
in a graphical interface for bee lovers.

Stage #2: co-create

In order to refine the design opportunity, designers conducted
in-depth research on co-creators. In terms of ML, since there
are no publicly available high-quality datasets, designers collected
images by themselves. In terms of computing power, the cloud-
based server that required less local hardware was selected. As
for the supporting technology, designers chose Raspberry Pi as
a miniature host. To gain a deeper understanding of stakeholders,

designers conducted a field study on a bee farm in the suburbs.
They observed the behavior of tourists and then interviewed bee-
keepers. Designers found that some tourists (especially children)
have an intense interest in bees. Therefore, tourists can also be
considered as end-users. Moreover, children prefer an interesting
way of conveying information but they know little about ML, so
the information presented in the interface should be simple but
vivid. In terms of context, the activity of bees and the functioning
of hardware would mutually interfere with each other. In this
regard, it is preferable to separate the hardware components
from the living area of bees. Based on the in-depth research,
designers located touchpoints and identified static co-creation
relationships (see Fig. 17).

Stage #3: conceptualize

According to Question List, designers outlined relationships
between co-creators during the ML lifecycle in Canvas. (1) Data
collection: developers or end-users collect and annotate bee
images for training. (2) Algorithm construction: developers deter-
mine whether the capability and performance of algorithms can
meet the needs of end-users, and then construct algorithms. (3)
Algorithm training: developers train algorithms with collected
data and exclude unsuitable algorithms. (4) Algorithm inference:
developers run the algorithm to make inferences based on real-
time images from the beehive, and the algorithm displays the rec-
ognition results to developers. (5) Task execution: ML presents
recognition results for end-users in an interesting way and
encourages end-users (especially bee lovers and beekeepers) to
provide feedback on the accuracy of the recognition. The algo-
rithm and supporting technology should adapt to different cli-
mates and environments. (6) Algorithm update: developers
retrain the algorithm based on feedback from bee lovers and tour-
ists. Maintenance personnel should continuously monitor the
algorithm’s performance and decide whether to update it.
Considering the above information, designers explored design
solutions regarding the shape of the beehive, ways of observation,
and ways of presenting results (see Table 5).

The selected solution is shown in Figure 18a. Because bees are
afraid of light and noise, designers excluded the transparent

Fig. 17. The static co-creation relationships between co-creators.
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appearance and the loudspeaker in order to preserve the normal
existence of bees.

Stage #4: construct

As the next stage of the design process, designers constructed a
functional prototype in accordance with the design solution (see
Fig. 18b). Designers collected 200 bee images, annotated them,
and trained the algorithm on an MLaaS platform called Easy
DL. Designers redesigned a traditional beehive with rails, a
Raspberry Pi, a camera, and other supporting technology.
Additionally, designers developed a mobile application, allowing
end-users to see the images inside the beehive.

Next, designers prepare an evaluation matrix to iterate the bee-
hive. The main evaluation metrics and results are shown in
Table 6. According to the feedback, designers made the following
iterations: (1) Added a transparent tiny hive and updated the algo-
rithm using color bee images (images from the infrared camera are
monochrome). In this way, end-users can observe bees directly, and
the mobile application is able to recognize photos of bees taken by

end-users’ phones. (2) Added a gravity sensor and utilized the
regression algorithm to predict the progress of honey production
based on the weight of the beehive. By visualizing the honey-making
progress, the beehive became more interesting for kids. (3) Applied
local computing power to overcome poor network connectivity in
the field. (4) Adopted solar cells to improve endurance and applied
Zigbee to reduce energy consumption.

Stage #5: cultivate

Designers finally clarified the product specifications in Blueprint
(see Fig. 19). In particular, designers clarified the specifications
about the growability and opacity of ML. To ensure growability,
the beehive should: (1) continuously collect bee images in various
environmental conditions to improve accuracy. (2) allow
end-users to upload new data by taking photos. In order to pro-
mote transparency, the beehive should: (1) provide a user guide
for tourists (especially children) to explain the main functions
and use methods of the beehive. (2) document the source and
usage of data in detail, allowing regulators to check whether the
intelligent beehive complies with ethical norms.

In order to monitor the changes in the intelligent beehive,
designers completed Canvas to ensure growability (see Fig. 20).
Designers additionally proposed the following strategies: (1) pay
particular attention to breakdowns in recognition. For example,
if the beehive fails to recognize bees because of network failures
or extreme weather conditions, it could inform end-users in an
interesting way and encourage them to notify maintenance per-
sonnel. (2) create an interface for feedback, allowing end-users
to report errors timely and increase the trust of end-users. (3)

Table 5. Scattered design solutions of Beelive

Potential solutions

Shape Hexagonal; quadrilateral.

Observation Transparent appearance; wood appearance with
an infrared camera.

Result
presentation

Digital screen; loudspeaker; transferring to
end-users’ personal device.

Fig. 18. (a) Sketch of the selected solution. (b) A part of Beelive’s functional prototype.

Table 6. The evaluation matrix and feedback from stakeholders

Affectivity Interactivity Learnability Feasibility Ethics

Kids Not interesting enough Limited interaction Good / /

Bee lovers Good Limited interaction Good / Good

Developers / / / Poor network Good

Maintenance personnel / / / High energy consumption Good

Regulators / / / / Good
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Fig. 19. The completed Blueprint.

Fig. 20. The completed Canvas.
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require the maintenance personnel to check the beehive on a reg-
ular basis and intervene when it not performing as expected.

Discussion

Guidelines for practically using the framework and process

To facilitate the use of the framework and process in practical
design projects, we further clarify the roles of our work in the
design of ML-enhanced products and summarize our suggestions
for using our work.

The UX value framework works like an index and a dictionary,
in which designers could search for design concepts concerning
the design of ML-enhanced products. However, since the frame-
work only encompasses generally applicable concepts, it is highly
recommended to combine this framework with other field-
specific technologies, stakeholders, and contexts. As an example,
for the design of medical products, designers are required to pos-
sess knowledge of medical ethics, bioimaging technology, etc. The
case study (see Section “Case study: Beelive intelligent beehive”)
shows an example, in which designers complemented the frame-
work with further research about the bee industry.

The CoMLUX design process provides a step-by-step guide-
book, with which designers could go through the entire concep-
tual design process. It is necessary for designers to flexibly
adapt the CoMLUX process according to their projects and
extend/delete some activities when needed. For instance, in the
case study (see Section “Case study: Beelive intelligent beehive”),
designers conducted an additional field study to gain information
about beekeepers, tourists, and the bee industry. Apart from that,
Blueprint and Canvas echo the characteristics of ML well, but they
are not the only available tools. Designers could supplement other
tools such as the Business Model Canvas. Meanwhile, designers
could refer to the Munich Procedural model (Lindemann, 2006)
to further improve the flexibility of the CoMLUX process, so as
to transform between different stages.

Last but not least, the UX value framework and the CoMLUX
process mutually support the conceptual design of ML-enhanced
products. If designers get stuck at a certain stage of the process,
they could refer to the framework and think about whether
there are any ignored co-creators or any misunderstood properties
for the co-creators.

Inspiration from our work

Through methods including bibliometric analysis and integrative
literature review, our work clarifies several ill-defined problems
during the conceptual design of ML-enhanced products: (1) We
identify ML’s characteristics from the perspective of conceptual
design. Existing research has investigated ML’s characteristics
reflected in the process of algorithm development (Hancox-Li,
2020), prototyping (Yang et al., 2020), etc. Based on their find-
ings, we clarify the growability and opacity of ML to help
designers cope with the concomitant challenges. (2) We conclude
typical UX values of ML-enhanced products. Prior work has sum-
marized different types of UX in general settings (Berni and
Borgianni, 2021) or based on a certain technology (Jenson,
2017). However, the unique UX values brought by ML have not
been systematically clarified. The UX values proposed in this
paper could help designers to envision design opportunities in
relation to ML’s characteristics. (3) We identify the co-creators
(i.e., ML, stakeholders, and context) of ML-enhanced UX values

and distill the methods to create UX values around ML’s grow-
ability and transparency, guiding designers to manage factors
that might influence UX values and overcome design challenges.

Our research brings the following values to the conceptual
design of ML-enhanced products: (1) The UX value framework
helps designers to systematically understand concepts related to
the conceptual design of ML-enhanced products. According to
the findings of cognitive science research, humans could not
easily grasp systematic field knowledge without external support
(Jonassen, 2003; Richmond, 1993). To this end, our framework
functions as an external support that assists designers in compre-
hending the dimensions and properties of co-creators, as well as
different UX values. (2) The CoMLUX process bridges the gap
between theory and practice. It enables designers to take part in
the ML lifecycle, coordinate the complex relationships among
co-creators, and explore conceptual design solutions with grow-
ability and transparency.

Differences between our work and the existing ones

Though prior work proposed frameworks or processes to help
designers work with AI or ML, there are several crucial differences
between our work and the existing ones.

The UX value framework not only describes the holistic rela-
tionship between co-creators as prior work did but also intro-
duces the dimensions and properties of each co-creator.
Existing frameworks such as XU’s HAI framework (Xu, 2019)
and two-dimensional HAI framework (Shneiderman, 2020)
mostly illustrated the macro relationship between AI, human,
and ethical aspects, but did not detail the inner factors of each
aspect. Grounded on prior work, the UX value framework elabo-
rates on the properties of all the concepts and how these proper-
ties influence the UX value of ML-enhanced products. In this way,
designers can have an in-depth understanding of the co-creators
and their intertwined relationships.

As for the CoMLUX design process, it is customized for the
conceptual design of ML-enhanced products instead of following
the traditional design process. Existing design processes about ML
or AI (e.g., Blue Journey for AI) are mostly similar to the tradi-
tional design process. However, prior work pointed out that an
ideal design process should be adjusted to the unique characteris-
tics and lifecycle of ML (Sun et al., 2022). To this end, CoMLUX
process is tailored to the growability and opacity of ML, covering
all essential stages of conceptual design and providing compre-
hensive support for the design of ML-enhanced products.

Apart from that, our framework and process adopt cognitive
theories to avoid the cognitive overload of designers. First, by
applying schema acquisition to the UX value framework, we
represent knowledge as several concepts and link them into hier-
archical structures, so as to reduce the difficulty of acquiring new
knowledge (Kalyuga, 2010). Second, the framework ranks the
concepts in terms of Know, Understand, and Apply, instead of
simply listing all concepts or guidelines as prior work did
(Amershi et al., 2019). Taking advantage of the knowledge level
(Kolarić et al., 2020), the ranked framework helps designers
focus on critical concepts and reduce cognitive loading difficul-
ties. Third, following the contiguity principle, we integrate the
usage of tools into the design process. Previously, different design
tools stood alone to support the conceptual design, which some-
what brought the cognitive burden onto designers. Our process
promotes the combination of multiple forms of design research,
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guiding designers to apply different tools systematically and ulti-
mately create UX values.

In addition to proposing relatively universal frameworks and
processes for ML-enhanced products like we did, some related
work focused on a specific type of ML-enhanced products. For
example, Morrow et al. (2021) proposed a framework for the
design of conversational agents to support the elders. These two
kinds of work bare their own advantages and disadvantages.
The UX value framework and the CoMLUX design process
could be suitable for various ML-enhanced products, and
designers could follow the same framework and process in differ-
ent projects. However, the general work does not contain domain-
specific information, and designers have to collect domain infor-
mation through additional surveys. By contrast, domain-specific
frameworks and processes could help designers efficiently gain
knowledge about an unfamiliar domain, but it is challenging to
extend them to other projects.

Limitations and future work

Our research provides support for the conceptual design of
ML-enhanced products, but may still have several limitations. In
this section, we discuss the potential limitations and highlight
possible future work.

First, the inherent complexity of ML-enhanced products
makes it difficult to enumerate all the relevant concepts in the
UX value framework. Although we distilled concepts through
both quantitative and qualitative methods, a few concepts might
be omitted. It is beyond the scope of one paper to list all the con-
cepts related to ML-enhanced products, but we believe the current
framework has included the majority of the relevant concepts.
Besides, we only introduced the most valuable and representative
types of stakeholders and contexts given the length of the paper.
The less critical stakeholders (e.g., data annotators) and contexts
(e.g., different climates) were excluded. Furthermore, the
fast-growing researches in ML-enhanced products make it neces-
sary to continuously pay attention to the latest progress in this
field, so as to enrich the current framework.

Second, practical design experience was not fully integrated into
the early construction of the UX value framework. The applied bib-
liometric analysis provides us with an overview of academic research
about ML-enhanced products, but the bibliometric method is not
suitable for analyzing design cases. Although some design cases
and laws/regulations were collected in the second round of search,
they did not constitute the main body of material analysis. In the
future, this framework could be enriched by introducing more prac-
tical insights from design cases.

Third, the proposed framework and process were validated
through a case study rather than a quantitative evaluation. It is
because we are concerned more about whether our work can sup-
port designers throughout the conceptual design process, which is
difficult to quantify. Besides, the framework and process have
been iteratively evaluated and refined according to design experts’
opinions (see Section “Methodology”). Therefore, referring to
prior work (Bryan-Kinns et al., 2022), we applied the framework
and process to an actual design project and elaborated on how
they worked through a case study. In future work, we may con-
duct a more rigorous evaluation to provide more comprehensive
feedback on the framework and process.

Besides, the current framework and process primarily focus on
the conceptual design phase but do not cover activities related to
the phases of production, commerce, etc. During conceptual

design, designers establish initial ideas, preliminarily create UX
values, and describe how the final ML-enhanced product would
be. However, in actual design practice, factors such as production
and commerce could also impact the design of products. To this
end, future work could incorporate factors such as production and
commerce to extend the design framework and process to other
phases, or focus on a particular field and propose targeted design
processes and frameworks.

Lastly, the effectiveness of our design framework and process
still depends on designers’ individual differences in cognitive
styles and ML knowledge background. Design is actually a cog-
nitive activity (Cross, 2001), which involves lots of personal and
subjective factors (Hubka et al., 2015). Although we ranked the
concepts within the framework to different knowledge levels, it
is still challenging for designers who are not familiar with
ML-enhanced products to comprehend and apply them.
Therefore, how to popularize ML-related design knowledge is
an issue that should be addressed. Future research could refer
to literature about design cognition (Lu, 2015) and investigate
designers’ cognitive process of learning emerging technologies.
This would enable us to tailor the framework and design process
to a more comprehensible format. Besides, researchers may also
apply electroencephalography (EEG)-based evaluation methods
to the design of ML-enhanced products (Frey et al., 2018), provid-
ing objective, instant, and non-disruptive metrics that facilitate
data-driven design outcomes through quantitative analysis.

Conclusion

In this paper, we propose the UX value framework and the
CoMLUX design process for the conceptual design of
ML-enhanced products. We first applied bibliometric analysis and
integrative literature review to extract concepts and integrated
them into the UX value framework. The framework identifies
ML, stakeholders, and context as co-creators of UX values, and
clarifies their dimensions and properties respectively. To construct
the design process, we identified the key stages and activities
based on MLT, human-centered design methods, and practical
design experience. Consisting of stages including Capture,
Co-create, Conceptualize, Construct, and Cultivate, the design pro-
cess assists designers to participate in the ML lifecycle, coming up
with growable and transparent design solutions. By organizing con-
cepts hierarchically and taking advantage of the contiguity principle,
our work attempted to avoid designers’ cognitive overload during
conceptual design. The framework and process were validated to
be effective in a case study. Although future work is required to inte-
grate more design practice and cross-disciplinary insights, we believe
that our work provides a promising foothold for the conceptual
design of ML-enhanced products. We encourage researchers to
apply, critique, and refine our work in their projects and research.
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Appendix 1

Table A1

Table A1. The universal taxonomy for ML-enhanced products

Level Description

0 No automation

1 Assistance (a single automated agent like cruise control system
of a vehicle)

2 Partial automation (agents operate autonomously, but human
monitors environment and can take control at any time)

3 Conditional automation (agents monitor the environment,
operate autonomously, but human must be available to take
over)

4 High automation (the agent is fully automatic, human’s
takeover is an option in other circumstances)

5 Full automation (no human interaction required; takeover may
be disabled)
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Appendix 2

Figure A1, Figure A2, Figure A3 and Table A2

Fig. A1. The main body of Canvas.

Fig. A2. Issue cards of Canvas.
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Fig. A3. Persona of Canvas.
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Table A2. Question list of Canvas

Lifecycle stage Co-creator Description

Data Collection ML What kind of data do we need for training (Consider this with the first question in Algorithm Construct)? for example,
gesture images with corresponding category labels, etc.

Is there any existing dataset available for training?

Context How can we drive users to annotate data if there is no existing dataset? How can we make it easy to annotate?

Can the context be used for collecting data because of privacy, laws, and social rules? If not, how can we generate
useful data?

Algorithm
Construct

ML What kind of task do we expect the ML to complete? Is there any ML model feasible for completing the required tasks?

Is there any ML model suitable for the platform on which the application will run? Does the model need to work with
external resource like the internet, GPU, etc.?

Is there any ML model suitable for the available dataset? If not, should we seek for new ML models or new datasets?

Context What kind of appearance do we prefer? for example, human-like, robot-like, etc. Is it related to social impact and task
types, etc.?

Algorithm
Training

ML Does the available computing resource support real-time feedback？If not, how can we get extra computing resource?
for example, internet.

How can we ensure that user will continue using the product even when the model is not specially trained for current
context (correct rate and UX will be not suitable enough)？

Context How can we deal with delay when the feedback is not real-time?

How can we get stable input for prediction in current context? How can we deal with noise, etc.?

Task Execution ML Does the ML system need to act like a human? Is it related to appearance, social impact, and task types, etc.?

Context What is the relationship between the ML system and user? Is the prediction result directly used for the performance？
Should it get the permission of the user in advance?

Can the user co-control the system and make their own decision？How can we achieve this？

How can we embody the user interaction into the data collection process？

Algorithm
Update

ML Do the current ML model, dataset, computing resource support the iterative training？If not，how can we conduct the
retraining？for example, in another server.

What kind of strategy should we follow to retrain the model? (When to start training? When to quit the training?)

Context Will the user choose the appropriate data for further training? If not, then who? What is the strategy to select the data?

What kind of strategy should we follow to update current ML model？for example, real time, step by step, set by user?
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