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Abstract

Modeling complex dynamical systems with only partial knowledge of their physical mechanisms is a crucial problem
across all scientific and engineering disciplines. Purely data-driven approaches, which only make use of an artificial
neural network and data, often fail to accurately simulate the evolution of the system dynamics over a sufficiently long
time and in a physically consistent manner. Therefore, we propose a hybrid approach that uses a neural network model
in combination with an incomplete partial differential equations (PDEs) solver that provides known, but incomplete
physical information. In this study, we demonstrate that the results obtained from the incomplete PDEs can be
efficiently corrected at every time step by the proposed hybrid neural network—PDE solver model, so that the effect of
the unknown physics present in the system is correctly accounted for. For validation purposes, the obtained simulations
of the hybridmodel are successfully compared against results coming from the complete set of PDEs describing the full
physics of the considered system. We demonstrate the validity of the proposed approach on a reactive flow, an
archetypal multi-physics system that combines fluid mechanics and chemistry, the latter being the physics considered
unknown. Experiments are made on planar and Bunsen-type flames at various operating conditions. The hybrid neural
network—PDE approach correctly models the flame evolution of the cases under study for significantly long time
windows, yields improved generalization and allows for larger simulation time steps.

Impact Statement

Integrating physical models with machine learning has many applications in prediction and forecasting tasks. In
this work, we analyze a hybrid framework that combines neural network models with an incomplete partial
differential equation (PDE) solver to account for the effects of unknown physics present in the system. We
demonstrate the applicability of this approach to complex and practical simulations of reactive flows with
unknown chemistry. Our experimental evaluation demonstrates the diverse possibilities this hybrid system entails
such as performing accurate long-term predictions, generalization to unseen operating conditions, robustness to
incorrect PDEparameters, and enabling flame shape control. This approach for hybrid simulationmethods has the
potential to be adapted to more complex, multi-physics problems for parameter identification and control.
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1. Introduction

Modeling and forecasting of complex physical systems described by nonlinear partial differential
equations (PDEs) are central to various domains with applications ranging from weather forecasting
(Kalnay, 2003), design of airplane wings (Rhie and Chow, 1983; Zafar et al., 2021), to material science
(Wheeler et al., 1992). Typically, a chosen set of PDEs is solved iteratively until convergence of the
solution. Modeling complex physical dynamics requires a good understanding of the underlying physical
phenomena. For cases where the complete information on the physics of the system is missing, deep
learning models can be employed to complete the physical description when additional data of the system
is available. Deep learningmethods have shown promise to account for these unknown components of the
system (Um et al., 2020; Yin et al., 2021). We consider a set of PDEs with partially unknown physics
represented. The corresponding PDE model for a general state ϕ is given by
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ϕ= h, in Ω× ð0Þ,

(1)

where Pc represents the physical system with complete information. ℱ represents a potentially simple
function that combines the known but incomplete PDE description,P i, and unknown physics represented
by Pu to match the solutions of complete PDE system. We take G and h to be known functions
appropriately defining the boundary and initial conditions respectively. Ω is the spatial domain over
which we solve the PDE system and ∂Ω its boundary. The term Pu can take the form of closure terms,
source terms, higher order coupling terms between state variables or terms resulting from a set of
unknown ODEs/PDEs depending on the physical system under investigation.

A commonly targeted case is when the governing equations of the complete PDE description are
computationally too expensive to solve, with turbulence modeling in computational fluid dynamics (CFD)
being a good example (Chen, 1997; Pope, 2000). In CFD, a spatial filtering is performed on the original
governing PDEs in the context of large eddy simulations (LES). This step introduces unclosed terms in
the model equations that correspond to unrepresented physics in equation (1), due to the effects of the
filtered scales. Figure 1A shows instances of normalized vorticity for isotropic decaying turbulence. The
solutions of a fully resolved direct numerical simulation (DNS) could be achieved by increasing the spatial
resolution of LES. This is a widely studied problem, where the use of deep learning models is currently
being explored (Lapeyre et al., 2019; Kochkov et al., 2021; List et al., 2022; Stachenfeld et al., 2022).

Figure 1. (A) The normalized vorticity solutions of complete/DNS (bottom) solver can be reached by
increasing the spatial resolution of the incomplete/LES (top) solver (List et al., 2022). (B) We consider the
problem of the incomplete/nonreactive (top) and complete/reactive (bottom) PDE solvers which can yield

fundamentally different evolutions, as shown here for a sample temperature field over time.
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Several of these methods train a neural network with LES as the incomplete system to model the effects of
the filtered scales and obtain the solutions of the complete DNS (Kochkov et al., 2021; List et al., 2022).
Instead, we consider a different, more challenging problem related to multi-physics, coupled systems
containing dependent variables which describe different physical phenomena. In equation (1),Pu contains
all the terms corresponding to different physical phenomena that are not included in the PDEs represented
by P i. This formulation could describe fluid–structure interactions which couple fluid mechanics with
structural mechanics with Pu representing the unknown coupling terms, or aeroacoustics problems which
couple fluid dynamics and acoustics (Benra et al., 2011; Liu and Liu, 2018).

However, in this work, we will focus on reactive flow simulation as the complete PDE description,
while a nonreactive flow simulation will represent the incomplete PDE basis. It collects the chemical
kinetic mechanisms in the unknown physics term of equation (1). In this system,Pu could take the form of
the source terms from unknown chemistry in the Navier–Stokes equations. A reactive flow refers to a fluid
flow with chemical reactions occurring within a reacting fluid, such as combustion-related flows.
A reacting fluid is a mixture of two or more species such as hydrocarbons, oxygen, water, carbon dioxide,
and so forth, which undergo chemical reactions (Poinsot and Veynante, 2005). In contrast, a nonreactive
flow refers to a fluid flow where no chemical reactions take place. Figure 1B shows a visual example of a
nonreactive and reactive flow simulations which can be considered as an incomplete and complete PDE
systems, respectively. Starting from the same initial condition, the influence of Pu in this multi-physics
system leads to fundamentally different solutions as reacting fluid (shown by blue color in Figure 1B)
advances through the domain without reacting for the nonreactive flow simulation or forms a Λ shaped
flame with higher temperature of burned products (shown by dark red color) for the reactive flow
simulation. Therefore, we are targeting a more challenging problem than those tackled in (Lapeyre
et al., 2019; Kochkov et al., 2021; List et al., 2022; Stachenfeld et al., 2022), where increasing spatial
resolution and/or reducing time-scales of the incomplete PDE solver does not lead to a converged full
solution. Rather, the complete and incomplete PDEs produce drastically different solutions due to the
unknown physics. The central learning objective is to correct this behavior and retrieve the evolution that
would be obtained with the complete PDE description.

Our work expands on the combination of incomplete PDE solvers and neural networks (NNs) (Takeishi
and Kalousis, 2021; Yin et al., 2021) to account for the effects of an incomplete physics model. The NN
aims to complete the PDE description,where the differences in complete and incomplete PDE solutions are
beyond the effects of spatial and temporal scales.We showcase that combining the trainedNNmodelwith a
differentiable solver for the incomplete PDE can accurately reproduce the physical solutions of the
complete, multi-physics PDE solver with stable long-term rollouts.

Reactive flow modeling has applications in numerous domains such as combustion processes in gas
turbines (Lieuwen, 2012;Gruber et al., 2018), climatemodeling (Jacobson, 1999;Rolnick et al., 2022), and
astrophysics simulations (Gamezo et al., 2003). Resolving the Navier–Stokes equations lies at the core of
these problems, where additionally the transport of different species of relevance must also be accounted
for, together with their production or consumption often following complex reaction mechanisms (Poinsot
andVeynante, 2005). For chemically reacting flows, the generation or consumption ofmultiple species via
some chemical reaction is modeled using a net source term. It is a well-known fact that the incorporation of
a detailed chemical kinetic mechanism in a reacting flow model can result in a stiff system of governing
equations (Wanner and Hairer, 1996; Najm et al., 1998; Knio et al., 1999).

We showcase the effectiveness of our approach for different cases of planar 2D premixed methane-air
flames, and the varying transient evolution of Bunsen-type flames. We show that the proposed approach
can handle large domainswith highly resolved flames, which are closer to the practical flame domains used
in many industrial applications. Specifically, we concentrate on training a NNmodel to correct the spatio-
temporal effects of energy and species transport source terms. We show that in addition to recovering the
desired solutions, this approach overcomes inherent problems of temporal stiffness due to the complex
reaction mechanism. Lastly, we show that the resulting hybrid solver provides a flexible building block for
adjacent tasks. Specifically, we demonstrate this for controlling the evolution of flame shapes via
continuous control. The hybrid solvers can efficiently predict the states of the reactive flows and readily
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enable the control of the flow inlet velocities to arrive at a desired flame shape. Therefore, we employ a pre-
trained hybrid solver to train a second controller network that learns to steer the flame simulation such that
the observed states are matched.

This article is organized as follows. We discuss the relevant literature in Section 2. Section 3 describes
the problem statement, the mathematical formulation, details of the differentiable PDE solver, and the
neural network model. Discussion on data generation process is provided in Section 4. Section 5 shows
the results obtained on different planar and Bunsen flame scenarios considered. Section 6 demonstrates
the robustness of the proposed approach. Finally, in Section 7, we apply the proposed hybrid approach to
arrive at the desired flame shape by solving an optimization problem. Section 8 concludes this articlewith a
summary of the results and outlines future work.

2. Related work

Deep learning methods have been widely used to model the solutions of PDEs (Lagaris et al., 1998; Han
et al., 2018; Long et al., 2018; Bar-Sinai et al., 2019) and in particular, the Navier–Stokes equations (Guo
et al., 2016; Bhatnagar et al., 2019).

2.1. Purely data-driven models

A simple approach in modeling any physical system consists of training a deep learning model using data
coming from either experiments or numerical simulation (Fukami et al., 2019; Thuerey et al., 2020). These
models solely use deep learning techniques with appropriate data to make predictions and hence are called
as purely data-driven (PDD) models. Thuerey et al. (2020) applied a convolutional neural network (CNN)
to learn Reynolds-Averaged Navier–Stokes (RANS) solutions of airfoil flows. The proposed approach is
very generic and applicable to a wide range of PDE boundary value problems on Cartesian grids.
Stachenfeld et al. (2022) demonstrate that a generic CNN-based models may predict turbulent dynamics
on coarse grids more accurately than classical numerical solvers. The proposed approach is effectively
applied on a wide range of physical domains which can be represented as grids. These classical neural
networks map between finite-dimensional spaces and can only learn solutions tied to a specific discret-
ization which can be excessively limiting. Therefore, approaches based on learning operators are receiving
increased attention. Lu et al. (2021) proposed a novel architecture based on fully connected neural
networks called DeepONets to learn diverse linear or nonlinear explicit and implicit operators. Neural
operators (Li et al., 2020B; Bhattacharya et al., 2021; Patel et al., 2021), specifically, the Fourier neural
operator (FNO) of Li et al. (2020A) introduce an interesting line of work by learning mesh-free, infinite-
dimensional operators with neural networks, but do not necessarily offer advantages for longer-term
predictions. We compare the proposed approach with such data-driven models as baselines. PDD models
can be very fast andmay not suffer from the time-step stability issues associated with traditional numerical
solvers. Nevertheless, as these PDD approaches lack the physical understanding of the system being
modeled, they generally fail in generalizing to other operating conditions (Kim et al., 2019; Lapeyre et al.,
2019). To leverage the potential of deep learning in physical simulations, it is therefore necessary to
incorporate some physical information within the deep learning framework.

2.2. Physics-informed deep learning models

Deep learning models can enforce physical constraints partially through the loss function (Bar-Sinai et al.,
2019; Raissi et al., 2019; Yadav et al., 2022) or changes in neural network architecture (Greydanus et al.,
2019). A well-known framework called Physics-Informed Neural Network (PINN) (Raissi et al., 2019)
uses neural networks as methods for solving PDEs. It minimizes the residual of the underlying governing
laws by taking advantage of automatic differentiation to compute exact, mesh-free derivatives. However,
these approaches struggle to enforce physical constraints such as boundary conditions or predict the strong
unsteadiness and chaotic nature of flows (Dwivedi and Srinivasan, 2020; Fuks and Tchelepi, 2020).
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PINN only learns the solution function of a single PDE instance and needs reoptimization for other
instances or PDEs. To alleviate this issue, Wang et al. (2021) extended the DeepONet framework by
imposing the underlying physical laws via soft penalty constraints during training. Although physics-
informed DeepONet imposes PDE losses on operator learning, they are not discretization invariant. To
tackle this issue, physics-informed neural operator (PINO) frameworkwas proposed byLi et al. (2021) that
uses available data and physics constraints to learn the solution operator of parametric PDEs. However, all
these approaches require the explicit knowledge of the underlying PDEs to accurately train the network.
For the physical systems described in equation (1) where only partial knowledge of their physical
mechanism is known, these approaches may fail to converge to the solutions of the complete PDE solver.
Minimizing the residual of only the known but incomplete PDEs will not lead to an accurate prediction of
the solutions of a complete PDE system. Additionally, these approaches would need some further
modifications to be implemented for the problem considered. Therefore, they are not considered as a
baseline method for the present work.

2.3. Neural networks with differentiable PDE solvers

In recent years, the development of differentiable PDE solvers has led to an interesting line of research.
Thuerey et al. (2021) have developed an open-source physics simulation toolkit called PhiFlow for
optimization andmachine-learning applications. SU2 (Economon et al., 2016) is an open-source collection
of software tools for analyzing PDEs and PDE-constrained optimization problems on unstructuredmeshes
with state-of-the-art numericalmethods. SciML (Rackauckas et al., 2020) is a collection of tools for solving
equations and modeling systems. These tools provide differentiable functions for physical simulations,
which enable close integrationwith deep learning frameworks by leveraging their automatic differentiation
functionality. Hybrid approaches that combine machine learning techniques with numerical PDE solvers
(Wang et al., 2020; Illarramendi et al., 2022), have attracted a significant amount of interest due to their
capabilities for generalization (Chen et al., 2018). In this context, neural networks are typically used to
model or replace a part of the conventional PDE solver to improve aspects of the solving process. For
example, Tompson et al. (2017), Ajuria Illarramendi et al. (2020), and Özbay et al. (2021) proposed a
convolutional neural network-based approach to solve the Poisson equation in CFD simulation. In recent
years, a number of deep learning-based models have been introduced to accurately model turbulent flows
(Pathak et al., 2020; Dresdner et al., 2022; Stachenfeld et al., 2022). Belbute-Peres et al. (2020) and Um
et al. (2020) showed the advantages of training neural networks with differentiable physics to correct the
numerical errors that arise in the discretization of PDEs. Sirignano et al. (2020) introduced a deep learning
PDE augmentation method. Large eddy simulation of turbulence is augmented with a deep neural network
to model unresolved physics to obtain direct numerical simulation solutions. Kochkov et al. (2021) correct
for closure error by integrating a neural network with a differentiable CFD simulator. These approaches
demonstrate the capabilities of neural networks to correct errors in a fast, under-resolved simulation. The
unresolved physics in turbulence modeling is attributed to spatial filtering. Given additional compute
resources, one can arrive at accurate solutions by running the knownPDEs at higher resolution.Note that in
this work we investigate a more challenging case of unknown physics in multi-physics system, where
increasing the spatial or temporal resolution of the known but incomplete PDEswill not lead to the accurate
solution of the complete PDEs.

Similar to the goals of our work, Takeishi and Kalousis (2021) and Yin et al. (2021) have introduced
frameworks of augmenting incomplete physical dynamics with neural network models. These approaches
demonstrate the applicability on ODE/PDE systems, which are weakly nonlinear and the unknown
dynamics are linear combinations of the underlying flow fields. We expand on these works to explore
the significantly more challenging scenario of reactive flows. These are characterized by a multi-physics
system with nonlinear advective terms which models the transport of a flow state by the velocity of the
flow, and strongly nonlinear dynamics, described by exponential source terms that exhibit nonlinear
combinations of the flow fields. Compared to the work by Yin et al. (2021), we do not use an additive
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approach to learn the solutions of the complete PDE system. Instead, we use the output of an incomplete
PDE solver as an input to the neural network model to correct for the effects of unknown terms.

3. Methodology

We consider two different sets of PDEs with their associated numerical solver, which we denote as the
incomplete PDE P i and the complete PDE Pc. By evaluating Pc on an input state ϕt at time t, we can
compute the points of the phase space sequences; ϕtþΔt =Pc ϕtð Þ. Without loss of generality, we assume a
fixed time-step Δt and denote a state ϕtþΔt at next time instance as ϕtþ1. Let X be a Banach space of
functions taking values in a spatial domainΩ⊂ℝ2. Furthermore, letC† :X !X be a nonlinear map from
ϕt to ϕtþ1, defined over a finite time interval 0,T½ � and an input flow state ϕ. The learning objective is to
find the best possible correction function

C ϕ;θð Þ :X !X , θ∈Θ (2)

for some finite-dimensional parameter space Θ by choosing θ† such that C :;θ†
� �

≈C†. The neural
networkmodels can be employed to learn suchmapping as shown in Figure 2. Themodel parameters θ are
estimated from the complete PDE solution trajectories ϕ0,ϕ1, ::,ϕTð Þ. The learned predictions obtained
after repeatedly applying the corrector C and invoking P i are denoted by ~ϕ0,~ϕ1, ::,~ϕT

� �
.

3.1. PDEs for reactive flows

In this section, we present the basics of reactive flow simulation and underlying conservation equations.
A reactive flow involves multiple species reacting through one or more chemical reactions. Different
species, such as hydrocarbons (fuel), oxygen (oxidizer), water, carbon dioxide (products), are characterized
through their mass fraction Yk . The primary variables for two-dimensional (2-D) reacting flow involve
density (ρ), 2-D velocity field (u), temperature Tð Þ, and the mass fraction Yk of the N reacting species.

In a premixed combustor, fuel (YF) and oxidizer (YO) are mixed before they enter the combustion
chamber. The computation of premixed flames with complex chemistry is possible but we consider a
simplified approach. We assume that chemistry proceeds only through one irreversible reaction, that is,
one-step chemistry. If υ0F and υ

0
O are the coefficients corresponding to fuel and oxidizer when considering a

one-step reaction of type υ0FFþυ0OO! products, the mass fractions of fuel and oxidizer correspond to
stoichiometric conditions. It is defined as,

Figure 2. (A) Multi-step training framework helps to learn the dynamics of complete PDE solver over
longer rollouts. (B1) Details of the input flow state and predictor block used in a purely data-driven

approach and (B2) the hybrid NN-PDE approach, where S denotes the concatenation of different fields to
obtain the complete flow state ~ϕ at next time step.
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YO

YF

� �
st

=
υ0OWO

υ0FWF
= φ: (3)

This ratio φ is called the mass stoichiometric ratio.WF andWO represent the molecular weights of the fuel
and oxidizer, respectively. The equivalence ratio of a given mixture is then,

E = φ
YF

YO

� �
: (4)

A common example of such reaction is CH4þ2O2 !CO2þ2H2O, where υ0F = 1,υ
0
O = 2,

WF = 0:016kg=mol,WO = 0:032kg=mol and thereforeφ= 4.The equivalence ratio is an important parameter
in the design of a premixed combustion system. Rich combustion is observed for E > 1 (the fuel is in excess)
and lean regimes are achieved when (E < 1) (the oxidizer is in excess) (Poinsot and Veynante, 2005). Most
practical premixed combustors operate at or below stoichiometry (Lieuwen and Yang, 2005).

The physical system we investigate is a laminar premixed methane-air flame with one-step chemistry.
It is governed by the following Navier–Stokes equations (Poinsot and Veynante, 2005)

∂ρ
∂t
þ∇: ρuð Þ = 0 in Ω× 0,T½ �

∂

∂t
ρuð Þþ∇: ρu⊗ uð Þ = �∇pþ∇:τ in Ω× 0,T½ �

ρCp
∂T
∂t

þ∇: u⊗ Tð Þ
� �

= _ω0
Lþ λ∇2T in Ω× 0,T½ �

∂ρYk

∂t
þ∇: ρu⊗ Ykð Þ = _ωkþρDk∇2Yk in Ω × 0,T½ �,

(5)

where τ,Dk, and λ are the strain rate tensor, the diffusion coefficient of species k, and the mixture thermal
conductivity. In addition,Cp denotes themixture specific heat capacity. _ωk and _ω0

T are the species reaction
rate and heat release rate, respectively. Boundary conditions of each flow state vary depending on the
applications and are provided in detail in Section 4. Ω⊂ℝ2 represents the spatial domain.

The reaction rate _ωk for each species is linked to the progress rate Q1 at which the single reaction
proceeds, as: _ωk =WkυkQ1. The simplifications proposed byMitani (1980) andWilliams (1985) are used
tomodel the reaction rates _ωk for each species. The progress rateQ1 is assumed to have theArrhenius form
and is given by,

Q1 =B1T
β1

ρYF

WF

� �nF ρYO

WO

� �nO

exp � Ea

RT

� �
:

_ωF = υ0FWFQ1; _ωO = υ0OWOQ1,

(6)

where _ωF and _ωO are the reaction rates of fuel and oxidizer, respectively. _ω0
T is the heat release due to

combustion and is formulated as, _ω0
T = �PN

k = 1Δh
o
f ,k _ωk . The formation enthalpy hof ,k is the enthalpy

needed to form 1 kg of species k at the reference temperature T0 = 298:15K. The formulation for _ω0
T can be

further simplified as,

_ω0
T = �

XN
k = 1

Δhof ,kWkυkQ1 = �
XN
k = 1

Δhof ,k
Wkυk
WFυF

WFυFQ1 = �
XN
k = 1

Δhof ,k
Wkυk
WFυF

_ωF = �Q _ωF: (7)

Therefore, the heat release source term _ω0
T and the fuel source term _ωF are linked by the Q, which is

the heat of reaction per unit mass. Following Poinsot and Veynante (2005), parameters corresponding
to a real-world methane-air flame are chosen as: B1 = 1:08107uSI; β1 = 0; Ea = 83600 J=mole;
nF = 1; nO = 0:5; Q = 50100 kJ=kg; Cp = 1450 J=ðkgKÞ. Taken together, the system of equations
above is a challenging scenario even for classical solvers, and due to its practical relevance likewise a
highly interesting environment for deep learning methods.
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3.2. Problem formulation

The incomplete PDE solver solves the set of equation (5) without the source terms and reaction rates _ωk

and _ω0
T , while the complete PDE solver solves the full set of equation (5). The neural network model,

denoted by C P i ϕð Þjθð Þ, corrects the incomplete/nonreacting flow states P i ϕð Þ to obtain the complete/
reacting states Pc ϕð Þ as shown in Figure 2B2. The neural network is trained to model the effects of the
unknown chemistry using parameters θ given an input flow state, ϕ= ui,p,T ,Yf ,Yo

� �
. As seen from

equations (5)–(7), the temperature and species mass fraction fields are strongly coupled, which signifi-
cantly increases the prediction problem complexity. A slight error in one of the fields will quickly
propagate into the other fields, making the predictions diverge. In the following, a subscript Cs ∘ð Þ will
denote that the neural network C generates the field s, for example, CT generating the temperature

field. The update can be written as, ~ϕtþ1 = ui,tþ1,ptþ1,CT P i
~ϕt
� �jθ� �

,CYf P i
~ϕt
� �jθ� �

,CYo P i
~ϕt
� �jθ� �� �

where ~� indicates a corrected state. ui,tþ1 and ptþ1 are the time-advanced velocity and pressure field,
respectively, predicted using the incomplete PDE solver.

3.3. Training methodology

3.3.1. Hybrid NN-PDE approach
We employ a hybrid NN-PDE approach that augments a neural network model with a PDE solver
(Um et al., 2020; Kochkov et al., 2021). In contrast to previouswork, we use the incomplete PDE solver as
a basis, and hence the solver does not converge to the desired solutions under refinement, as explained in
Section 1. The neural network is integrated and trained in a loop with the incomplete PDE solver using
stochastic gradient descent for m time steps, as shown in Figure 2A, B2. Here, the number of temporal
look-ahead steps, m, is an important hyper-parameter of the training process. Higher m provides the
network with longer-term feedback at training time through the gradient roll-outs. This gives the model
improved feedback on how the time dynamics of the incomplete PDE solver affect the input states, and
hence which corrections need to be inferred by the model. In our framework, if an incomplete PDE solver
is very close to the complete PDE solver for the given data, the NNmodel would learn a correction which
is closer to an identity. The skip connections in the used convolutional neural network architectures
(Figure 3) would readily enable such an identity operation. In contrast, when the incomplete solver
contributes very little, the proposed approach would start to represent a PDD approach.

3.3.2. Differentiable PDE solver
A central component of the hybrid NN-PDE model is the differentiable solver, which allows us to embed
the solver for the incomplete PDE system in the training of a neural network. The differentiable solver acts
as additional nontrainable layers in the network. They provide derivatives of the outputs of the simulation
with respect to its inputs and parameters. Finite differences can be used to compute the gradients of the
PDE solver, but they are computationally very expensive for high-dimensional PDEs. Differentiable
solvers resolve this issue by solving the adjoint problem (Pontryagin, 1987) via analytic derivatives. Here,

Figure 3. Schematic of the convolutional neural networks used. Left: ResNet with 5 ResBlocks, Right:
UNet32 with 2 layers.
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we use the differentiable PDE solver from the phiflow framework of Thuerey et al. (2021) in combination
with Tensorflow to obtain the nonreactive flow solver and reactive flow solver solutions. Themarker-and-
cell method (Harlow and Welch, 1965) is adopted to represent temperature, pressure, density, species
mass fraction fields in a centered grid, and velocities in a staggered grid. Basic differential operators such
as gradient, divergence, curl, and Laplace operators are implemented in TensorFlow using basic
mathematical tensor operations (Holl et al., 2020). These differential operators act on a 9-point stencil
of grid points and the corresponding derivatives are straight-forward to compute. Advection is imple-
mented with a semi-Lagrangian step, while the Poisson problem for the pressure and its gradient is solved
implicitly. Efficient derivatives for all these operations are then combined via back-propagation (Werbos,
1990).

3.3.3. PDD approach
A PDD model is used as a baseline. It employs a neural network model to learn the complete flow states
Pc ϕð Þ given an input flow state ϕS where ϕS = T ,Yf ,Yo

� �
, as shown in Figure 2B1. The new state predicted

by the trained neural network model is ~ϕ
S
tþ1 =C ~ϕ

S
t jθ

� 	
. For the hybrid NN-PDE as well as PDD, the

neural network part of the predictor block in Figure 2 consists of a fully convolutional neural network
model.

We additionally compare against theFourier neural operator (FNO) of Li et al. (2020A) as an example
of a state-of-the-art neural operator method. The new state predicted by the trained model is given by
~ϕ
S
tþ1 =C ~ϕ

S
t jθ

� 	
where ~ϕ

S
= T ,Yf ,Yo
� �

and C ∘ð Þ represents the Fourier neural operator.

3.4. Training details

All three approaches use an L2 based loss that is evaluated for m steps as

L θð Þ=
Xtþm

n= tþ1

X
ϕ= T,Yf ,Yof g

~ϕn,Pc ϕnð Þ

 


2: (8)

The network receives the input states as shown in Figure 2. The output of the neural networkmodel is used
to obtain the corrected state ~ϕtþ1 as specified above. We constrain the mass fraction fields Yk to contain
physical values in the range Yf ∈ 0,0:05½ � and Yo ∈ 0,1½ �. All models are trained for 100 epochs with a
batch size of 3 and a learning rate of 0.0001. We have used a small batch size of 3 due to the memory
requirements as we unroll the NN-PDE framework over long timesteps. Our training procedure uses the
Adam optimizer (Kingma and Ba, 2015). For all our computations, a Nvidia Quadro RTX 8000 GPU is
used. Figure 4 shows the typical training loss curve over 100 epochs.

For PDD and the hybrid NN-PDE approach, we experimented with both the ResNet (He et al., 2016)
and theUNet (Ronneberger et al., 2015) architectures. Figure 3 shows the schematic of the neural network
models used. We found that the ResNet performed the best for the PDD setting, while for the hybrid
NN-PDE approach, the UNet performed consistently better. Hence, the following results will use a
ResNet for PDD models, and a UNet for the NN-PDE hybrids. Additional details of the neural network
architectures are provided in Section A.1 of the Supplementary Material as well as results comparing the
UNet and ResNet architectures.

4. Numerical experiments

We consider a case of planar 2D premixedmethane-air flame propagating in a quiescent mixture (Planar-
v0) and two cases of the transient evolution of an initially planar laminar premixed flame into a Bunsen-
type flame under different inlet velocity conditions (uniform-Bunsen, nonUniform-Bunsen). We obtain
the target data by considering the source terms as defined by equations (6) and (7) with the parameters
mentioned in Section 3.1.
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4.1. Planar-v0

For the most basic case, the planar 2D flame model setup, we consider the reacting Navier–Stokes
equations described in Section 3.1 with zero inlet velocity, that is, ux = 0, uy = 0. We consider a square
domain of size 0.05 m × 0.05 m with 32 × 32 resolution and closed boundary conditions, as shown in
Figure 5. The simulation is initialized using a steep transition between a premixed methane-air mixture
and burnt gases. Our training data consists of six simulations of 300 steps created by varying the
equivalence ratio E. It represents the stoichiometric mixture (φ) of fuel Yf and oxidizer Yo mass

fractions, that is, E = φ Yf

Yo
and thus fundamentally influences the dynamics of the chemical reaction.

For the training data we use Etrain = 1:0,0:9,0:8,0:7,0:6f g, while the test dataset contains Etest = 0:95,f
0:85,0:75,0:65g.

4.2. uniform-Bunsen

In contrast to the planar case, the premixed methane-air mixture is now fed with a constant inlet velocity.
The boundary conditions upstream, at y= 0, are ux,uy

� �
x,y = 0 = 0,κð Þ where κ is a n-dimensional vector

with constant amplitude. The target simulation contains a heat release rate term, and in this case, the initial
temperature field evolves into different Λ-shaped flames at the end of the 300th time step. Training and
testing datasets are created by varying the equivalence ratio and inlet velocity amplitude U:
Etrain = 1:0,0:9,0:8f g and Utrain = 0:45,0:4,0:3f g. The test dataset uses Etest = 0:95,0:85f g
Utest = 0:43,0:375,0:325f g. The length and temperature of the flame significantly vary depending on
the inlet velocity and equivalence ratio provided. Figure 6A shows the temperature field evolution of the
incomplete PDE solver at different time instances for 3 different operating conditions for the uniform-
Bunsen case. Figure 6B shows the corresponding target training data for the uniform-Bunsen case. All the

Figure 4.TypicalL2 based training loss as defined in equation (8) over 100 epochs. The inset figure shows
zoomed-in loss function curve for last 40 epochs.

Figure 5. Details of the boundary condition for—left: Planar flame; right: a Bunsen-type flame. n
represents resolution of the domain.
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simulations are run for 300 steps. It shows the difference between nonreactive and reactive flow solver
simulations for different operating conditions over 300 time-steps. Figure 6C shows the last snapshot
(t = 300) of nine training simulations and six testing datasets with operating parameters interpolated
between the training data parameters for uniform-Bunsen case. These datasets are obtained by varying the
equivalence ratio and the magnitude of the uniform inlet velocity. The flame temperature depends on the
equivalence ratio used and the flame height depends on the inlet velocity amplitude and equivalence ratio.

4.3. nonUniform-Bunsen

As a third case, we consider the transient evolution of a premixedmethane-air flamewith nonuniform inlet
velocity. The boundary conditions upstream, at y = 0, are ux,uy

� �
x,y= 0 = 0,κð Þwhere κ is a n-dimensional

vector whose elements are each sampled from a uniform distribution from [0.2, 0.65].We experiment with
two different domain sizes, 32 × 32 (nonUniform-Bunsen32) and 100 × 100 (nonUniform-Bun-
sen100). The larger domain size used is closer to the practical reactive flow domain utilized in CFD
applications (Jaensch et al., 2017) with a highly resolved flame. These inlet velocity conditions generate
complex flame shapes, which increase the difficulty of the prediction problem. We consider simulation
sequences with 500 steps, as it takes longer time for the flame to reach the steady-state solution. Figure 6D
showcases the snapshots of training and testing dataset at t = 500 for nonUniform-Bunsen32 case.
Nonuniform variations in inlet velocity profile leads to different complex flame shapes.Weuse 12 datasets
with 500 simulation steps to train the models and test it on 12 test cases shown in Figure 6D. For the
nonUniform-Bunsen32 case with 32 unrolling steps (m= 32), training requires approximately 60 hours
with approximately 1 GB of GPU memory.

To generate input and target data for training, we simulate the temperature T , mass fractions Yf , Yo and
velocity ux,uy fields of all flames under study. Table 1 summarizes the boundary conditions applied for the
planar and Bunsen-type flame cases discussed above. No-slip boundary conditions are used for the
velocity field uy to obtain the Λ-shaped flames.

The training and test datasets are split using different initial conditions. This ensures that varied
(training) and unseen (test) data are provided. For example, in the case of Planar-v0 scenario, the training

Figure 6. Instances of temporal evolution of (A) incomplete PDE solver; (B) complete PDE solver for
different operating conditions. (C) Snapshot of complete PDE solver at t = 300 for all training and testing
datasets of the uniform-Bunsen case. (D) Snapshot of complete PDE solver at t = 500 for all training and

testing datasets of the nonUniform-Bunsen32 case.
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data consists of five simulations of planar flame with different equivalence ratios, evolving over
300 simulation steps. During test time, only the initial state of the flow field (ϕ0) and unseen boundary
conditions (i.e., other equivalence ratios than those in the training datasets) are specified and the trained
hybrid NN-PDE model is used to make predictions over 300 time steps. A similar setup is used for the
baseline approaches. Multi-step training framework shown in Figure 2 demonstrates the training setup for
the baseline and hybrid NN-PDE approaches. Continuous time-slices are used during training. As shown
in Figure 2A, during training, the Predictor Block is unrolled for m steps, that is, the network is trained
using multiple “sequences” of m consecutive snapshots (selected from the cases in the training datasets).
During testing, only ϕ0 (the initial flow state) alongwith unseen boundary conditions are provided and the
trained predictor block is evaluated 300 times to obtain predictions from t = 1,2…,300.

5. Results

We demonstrate the capabilities of the proposed learning approach to represent the complete PDE
description with the aforementioned cases of increasing difficulty. We also study its ability to generalize
to unseen operating conditions such as equivalence ratios, simultaneous variations in constant inlet
velocity and equivalence ratio, and nonuniform inlet velocity profiles. As baselines, we compare against a
PDD approach; a neural network model with exactly the same look-ahead steps, and the Fourier neural
operator of Li et al. (2020A) that likewise includesm look-ahead steps as discussed in Section 3.3. All the
qualitative and quantitative evaluations shown in the article are performed on test datasets with unseen
initial conditions.

5.1. Planar-v0

Table 2 compares the mean absolute percentage errors (MAPE) and mean squared errors (MSE) of
temperature field for all the cases discussed in Section 4. For Planar-v0, the FNO and PDD approaches
yield large errors with aMAPE of 8.27% and 6.33%, respectively. On the other hand, the hybrid NN-PDE
model trained with 32 look-ahead steps reduces the error to 1.4% and thus performs significantly better
than the two baselines. This behavior is visualized in Figure 7 with a 1D transverse cut of the simulation
domain over 300 time-steps. The hybrid NN-PDE approach successfully captures the propagation of the
flame.

In Figure 8, we also compare two important physical quantities: the flame temperature and relative
displacement of the flame front, across different equivalence ratios. It can be seen that the hybrid NN-PDE
model (green circles) accurately predicts the flame temperature for different test cases (solid green line).
The relative displacement of the flame front is computed as ∣~xt�~x0∣=∣xt� x0∣, where xt is the position along
the flame normal at time t on the 1,200K isotherm of the ground truth simulation, and ~x denotes the

Table 1. Details of the boundary conditions used for the planar flame case and various cases of
Bunsen-type flames.

Planar flame Bunsen-type flame

Field Inlet Left and right wall Field Inlet Left and right wall

T 400 K Neumann BC T 800 K Neumann BC
uy 0 — uy κ No-slip
ux 0 — ux 0 Slip
p 101,325 Neumann BC p 101,325 Neumann BC
Y f

1

1þφ
E 1þ3:76

WN2
WO2

� 	 Slip Y f
1

1þφ
E 1þ3:76

WN2
WO2

� 	 Slip

Note. The uniform-Bunsen case is obtained with κ = constant and nonUniform-Bunsen case is obtained with κ∈ℝn as discussed in Section 4.
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predicted position. For all test cases, the hybrid approach accurately predicts the flame displacement over t
=300 steps, while the other approaches yield significant errors. Figure 9A shows the 2Dvisualization of the
temperature field predictions for Planar-v0 case. As seen from the ground truth images, methane-air
mixture (black color) converts into the burned products (yellow color) due to the chemical reaction at the
flat flame surface (red color). The dotted, horizontal red line helps to compare the transition of the flame
interface, that is, the displacement of the flame front. Due to the chemical reaction, fuel-air mixture is

Table 2. Mean and standard deviation of errors over all time steps of all testsets.

Baseline Baseline Hybrid Hybrid

FNO PDD NN-PDE NN-PDE-dt
MAPE Planar-v0 8.27 ± 5.51% 6.33 ± 3.05% 1.40 ± 0.65% 1.21 ± 0.39%

uniform-Bunsen 15.57 ± 8.72% 7.58 ± 3.73% 0.72 ± 0.37% 1.11 ± 0.47%
nonUniform-
Bunsen32

12.30 ± 7.98% 12.48 ± 11.31% 2.04 ± 1.39% 2.46 ± 1.61%

nonUniform-
Bunsen100

— — 3.23 ± 3.76% 4.14 ± 4.99%

MSE Planar-v0 88,316 ± 124,394 34,491 ± 43,966 1,122 ± 1,300 292 ± 296
uniform-Bunsen 220,817 ± 167,024 72,563 ± 56,919 721 ± 1,007 1,267 ± 1,622
nonUniform-
Bunsen32

184,860 ± 185,694 130,219 ± 142,094 9,647 ± 13,903 17,569 ± 24,392

nonUniform-
Bunsen100

— — 23,293 ± 37,451 26,862 ± 47,639

Note. The Hybrid NN-PDE approach outperforms all other baselines considered.

Figure 7. 1D cut of the planar flame simulation over 300 steps. The initial state is plotted in red, target
state in green. Hybrid NN-PDE approach predicts physically accurate results over longer rollouts.

Figure 8.Hybrid NN-PDE approach predicts physically accurate results with correct flame temperature
and relative displacement of flame front across different equivalence ratios.
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consumed and turns into burned product as the simulation progresses. The FNO approach completely fails
to predict the propagation of the flame for the given test case. Its output does not show any evolution from
the initial temperature profile for the given operating condition. The PDD approach fails to capture the
flame front displacement correctly, thus leading to an inaccurate prediction with large errors. The hybrid
NN-PDE model accurately captures this evolution of planar methane-air flame in a quiescent mixture.
Figure 9B shows the instantaneousMAPEw.r.t. ground truth data for predictions shown in Figure 9A. The
absolute error shown in Figure 9B exceeds 1,100 K for the FNO and PDD approaches as these do not
predict the flame temperature and flame front displacement correctly.We use the upper limit of 1,100K for
colorbar to highlight the errors in the hybridNN-PDE approachmore clearly. Large errors in FNOandPDD
results stem from their inability to reliably predict the flame temperature and flame front displacement.

5.2. Bunsen-type flame

For the uniform-Bunsen case, the PDD baseline with an error of 7.58% performs better than the FNO
model which yields an error of 15.57%. However, a neural network model combined with an incomplete
PDE solver for 32 look-ahead steps yields a significantly lower error of 0.72% as shown in Table 2. This
means that the hybrid approach reduces the errors by a factor of 10 over the baselines considered.
Figure 10A shows the temporal evolution of the hybrid NN-PDE approach predicted over 300 time steps
for the uniform-Bunsen case. It shows the results for a test case withU = 0:4375 and E = 0:95. It predicts a
symmetric flame with accurate flame height and achieves very low instantaneous MAPE of 0.73% at
t=300, when compared with the ground truth data.

Next, we study a complex scenario of nonUniform-Bunsen flame with 32 × 32 resolution. The hybrid
NN-PDE approach outperforms the PDD approach and FNO with an improvement of � 80%. We also
include variant of the PDD approach (PDD-5) which is trained to predict all quantities
(ϕS = T ,Yf ,Yo,u,p

� �
) of the flow state (details in Section A.2 of the Supplementary Material). The hybrid

NN-PDE model achieves a low MAPE of 2.04% compared to the higher errors of 23.45% and 12.48%
predicted by the PDD-5 and the PDD approach, respectively. TheMSE values show this trend even more
clearly. The large standard deviations of the MSE numbers indicate that the predictions made by the
baseline approaches contain substantial deviations from the target values. It is important to highlight that
despite using the same training data and a similar neural network architecture with same number of look-
ahead steps, the hybrid approach outperforms the PDD approach due to its learned collaboration with the

Figure 9. Planar-v0 flame case with E = 0.95. (A) Temperature field predictions; (B) Absolute error
between ground truth (Pc Ttð Þ) and the output predicted—from top to bottom top—by: FNO, purely data-

driven approach and hybrid NN-PDE. The numbers represent instantaneous MAPE.
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incomplete PDE solver. It accurately reproduces the complete PDE behavior. Figure 10B highlights this
with a visualization of the hybrid NN-PDE model predictions for nonUniform-Bunsen32 case. The
trained model accurately predicts the flame simulation over long roll-outs of 500 steps and achieves the
complex flame shape with a low, instantaneous MAPE of 2.38%.

Finally, we showcase the ability of the hybrid approach to predict the temporal evolution of highly
resolved flameswith the nonUniform-Bunsen100 scenario. Despite the increased complexity of the larger
resolution, it achieves a very good overall MAPE of 3.23% over 12 test cases of 500 simulation steps.
Figure 10C shows an example of physically accurate predictions made by the hybrid NN-PDEmodel.We
omit the evaluation of baselines for high-resolution cases as they do not succeed to model the flame
dynamics for low-resolution cases.

In the following subsections, we present additional visualizations and a detailed comparison of the
hybrid NN-PDE model against baseline approaches for different scenarios of Bunsen-type flames.

5.2.1. uniform-Bunsen
Figure 11 shows an example of the uniform-Bunsen case: a test case with uy = 0:375 and E = 0:95. The
constant inlet velocity results in a symmetric, Λ-shaped flame. Vertical, dotted, red line in Figure 11A
helps to assess the symmetric nature of the flame. The PDD model predicts a thicker flame (t = 50) or a
flame with a spurious tip (t = 172) or an asymmetric flame (t = 225). Snapshots of the hybrid NN-PDE
model predictions in Figure 11A show that it adapts to this scenario very well and succeeds in obtaining
the correct results for long-term forecasts of the temperature field. Furthermore, the flame shape and
height are also better predicted, as shown in Figure 11A. Very low error levels in Figure 11B, such as
ϵ= 1:26 at t = 300, indicate that the hybrid model recovers the temperature field well.

5.2.2. nonUniform-Bunsen
Figure 12 compares the temporal predictions made by FNO, PDD, and the hybrid NN-PDE model with
ground truth data for nonUniform-Bunsen32 case. Compared to Planar-v0 and uniform-Bunsen case,
FNO predicts qualitatively better results for this case. Although still highly inaccurate, it predicts shapes
that come closer to the target flame shapes for the later part of the simulation (for t > 300). This
improvement might be due to the larger training dataset used for this scenario compared to the previous

Figure 10. Left: Inlet velocity profile used. (a–d) Temperature field prediction by hybrid NN-PDE
approach over different steps given the inlet velocity profile. (e) Ground truth data. Right: Difference
between ground truth data and hybrid NN-PDEoutput at last snapshot. Top to bottom: 32 × 32 resolution
cases of (A) uniform-Bunsen, (B) nonUniform-Bunsen32, and (C) 100 × 100 testcase nonUniform-

Bunsen100. ε represents the instantaneous MAPE.
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two scenarios. However, it fails to predict accurate temporal predictions over the entire simulation. The
hybrid NN-PDE approach predicts the accurate flame evolution well. Additionally, we showcase the
performance of the hybrid NN-PDE approach on two different test cases with complex flame shapes in
Figure 13. The neural networkmodel alongwith incomplete PDE solver reconstructs these complex flame
shapes in an accurate manner.

For the nonUniform-Bunsen100 case, Figure 14 compares the predictions made by hybrid NN-PDE
over 0,100,200,250,300,325,350,400,450,500f g simulation steps with the ground truth data. It also
shows the absolute difference between them. As the simulation progresses, higher errors are observed
around the flame front. However, the hybrid NN-PDE approach captures the flame shape very accurately
for longer roll-outs of 500 simulation steps. Currently, this approach uses training dataset similar to
nonUniform-Bunsen32. Further improvements in accuracy can be achieved by increasing the training
dataset size or training the hybrid model with longer look-ahead steps.

Figure 11. uniform-Bunsen case with constant inlet velocity U = 0.375 and E = 0.95. (A) Temperature
field predictions; (B) Absolute error between ground truth (Pc Ttð Þ) and the output predicted—from top to

bottom top—by: FNO, purely data-driven approach and hybrid NN-PDE. Hybrid NN-PDE model
predicts physically accurate evolution of the flame cases under study.

Figure 12. nonUniform-Bunsen32: Comparison between different approaches—from top to bottom—
FNO, PDD, hybrid NN-PDE for a test case. Hybrid approach predictions accurately match with the

ground truth data over long-rollouts of 500 time steps.

e27-16 Nilam N. Tathawadekar et al.

https://doi.org/10.1017/dce.2023.20 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2023.20


6. Discussion

In this section, we study the effect of temporal coarsening, incorrect PDE parameters, and longer look-
ahead steps on predictions made by the hybrid NN-PDE solver.

6.1. Relaxing temporal stiffness in the PDE solver

Traditionally, the source terms and reaction rate terms involved in modeling the fast chemistry of reacting
flows require the use of very small time-steps in simulations due to the stiffness of the chemical
mechanisms. The incomplete PDE solver used in the hybrid NN-PDE approach, does not contain the
source terms and reaction rate terms. Therefore, the time scales associated with the chemical reactions
play a less important role in maintaining numerical stability, and it becomes possible for the solver to
employ larger time steps. To illustrate this advantage, we train the neural network model with a time-step
that is twice as large as the largest time-step Δtc required for the complete PDE solver to yield a
numerically stable result.

We mimic the setup described in Section 4, but now the incomplete PDE solver uses a time-step of
2Δtc, which is too large for the complete PDE solver by itself to converge to a solution. Figure 15 shows
the results obtained from the models trained with a larger time-step are in good agreement with the target
data for four different scenarios considered. The flame dynamics are predicted accurately while using less
simulation steps. For the uniform-Bunsen case, the hybrid approach takes 8:23 ± 0:011s to infer one
simulation run, whereas the complete PDE solver requires 15:21 ± 0:003s. Similar performance gains are
observed across the other cases studied. Note that for the previous caseswith a timestep size of oneΔtc, the
trained model incurs a negligible runtime overhead. Even though incomplete PDE solvers are cheaper to

Figure 13. nonUniform-Bunsen32: Visualization of reactive flow trajectories predicted by the hybrid
approach for different test case.

Figure 14. nonUniform-Bunsen100: Comparison between ground truth data (Pc Ttð Þ) and hybrid
NN-PDE approach predictions (~Tt) for a different test case of complex, high-resolution scenario.
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Figure 15. Predictions made by hybrid NN-PDE model (~Tt) with an incomplete PDE solver at twice the
time-step of 2Δtc, are compared with the ground truth solutions coming from the complete PDE solver at
time-step of Δtc. We showcase the effectiveness of hybrid approach in relaxing temporal stiffness of the

complete PDE solver on reactive flow cases of—from top to bottom—Planar-v0, uniform-Bunsen,
nonUniform-Bunsen32 and nonUniform-Bunsen100 for different test cases.
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run, as mentioned in Section 1, increasing the spatial or temporal resolution of the incomplete PDE solver
would not converge to the solutions of the complete description.

The last column of Table 2 (Hybrid NN-PDE-dt) summarizes the errors of the large time-step approach
for all four reactive cases considered. Despite an effectively doubled computational performance, this
model achieves similar errors to the hybrid NN-PDE approach. This highlights the capabilities of learned,
hybrid PDE solvers, which can produce these solutions without the stability problems exhibited by the
complete PDE solver, while at the same time being more accurate than pure data-driven predictions.

6.2. Robustness of the hybrid solver

6.2.1. Generalization to incorrect PDE parameters
In real-world scenarios, even if the incomplete PDE system is observable, one may have only an
approximate understanding of the physics behind it. This may lead to incorrect estimation of the parameters
in the incomplete PDE solver. The proposed hybrid NN-PDE model is capable of completing the PDE
description even if the underlying incomplete PDE solver has incorrect parameters. We refer to the
incomplete solver with incorrect parameters as “incomplete, incorrect PDE.” We experiment with a
modified hybrid NN-PDE approach wherein we combine an incomplete, incorrect PDE solver with a
neural networkmodel.We assume that the known values of the incomplete PDE parameters in equation (5),
strain rate tensor (τ), the diffusion coefficient of species k (Dk), and mixture thermal conductivity
(λ), are incorrect. Figure 16A shows the difference between the temperature field evolution of the
incomplete PDE solver with correct parameters ( τ,Dk,λ½ �= 0:1,0:1,0:1½ �) and incorrect parameters
( τ,Dk,λ½ �= 0:05,0:05,0:05½ �) at different time-steps. The hybrid NN-PDE combines this incomplete,
incorrect PDE solver with the neural network model to obtain the solutions of the complete PDE solver
with correct parameters. Figure 16B compares the flame dynamics predicted by this hybrid NN-PDEmodel
with that of the complete, correct PDE solver. A goodmatch is observed over various test cases. The hybrid
model with incomplete, incorrect solver achieves an overall MAPE of 2.48 ± 1.20%, compared to the
MAPE of 2.04 ± 1.39% for hybrid model with incomplete, correct PDE.

6.2.2. Effect of longer look-ahead steps
We evaluate the effect of varying look-ahead steps on the performance of the hybrid model. We show the
comparison of models trained with m = 2,4,8,16,32f g for different cases in Figure 17. Models with
smaller m 2ð Þ do not learn to accurately correct the fields over long time and quickly diverge from the
target simulation. Using larger m improves the quality of prediction drastically as the model learns the
correction via the gradients over longer simulation steps. For Planar-v0 and uniform-Bunsen cases,
iterating the NN and PDE solver for 32 time-steps improves the accuracy by 81.7% and 94%, respectively

Figure 16. Generalization to incorrect PDE parameters (A) visualization of differences in temperature
fields due to incorrect parameters in incomplete PDE description. (B) Modified hybrid NN-PDE model,
which combines the incomplete, incorrect PDE solver with neural network model is able to recover

solutions of complete, correct PDE.
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compared to the m = 2 model. For nonUniform-Bunsen32 and nonUniform-Bunsen100, the model
performance improves by 84.2% and 70.9%, respectively, by using m= 32 instead of m = 2 model.

For some of error curves in Figure 17, significant error fluctuations are observed for lower simulation
steps followed by recovery as the simulation progresses (e.g., Figure 17C, m = 4). The evolution of the
flame dynamics over time is highly nonlinear owing to the strong nonlinearity of the system where the
premixed fuel and air mixture reacts to form the products. During the initial steps of this transient
behavior, the distribution of flame temperature and flame interface varies rapidly. This leads to steep
temperature gradients across the computational domain. As the simulation approaches toward the steady-
state flame shape, the temperatures across the domain are in a similar range across different datasets.
Therefore, small errors in flame temperature predictions and flame velocity predictions may lead to larger
errors during the transient phase of the flame before it reaches a steady state.

6.2.3. Effect of training dataset size
We study the effect of training dataset size on the accuracy of PDDpredictions.We train PDDmodels with
different numbers of simulations in the training dataset. Each simulation contains 500 time-steps.
Figure 18A shows the MAPE of PDD models trained with 4,8,12,16,24,32f g training datasets, over a
fixed testset. We compare the performance of these PDD models with an equivalent (trained with same
look-ahead steps m = 2) hybrid NN-PDE model, trained with 12 simulation sets. Figure 18A shows
increasing the number of training sets has little or no effect on the prediction capabilities of the PDD
models for nonUniform-Bunsen32 case. The hybrid model with 12 training sets achieves a MAPE of
12.49 ± 4.17%, an improvement of 38% over the PDD model with 32 training sets. The PDD models
cannot achieve the same level of accuracy even in the presence of large amounts of data. This result
strengthens the hypothesis that integrating the incomplete PDE solver into the neural network training
yields a learning signal that fundamentally differs from that produced by training with precomputed data.
The PDDmodels cannot achieve the same level of accuracy even in the presence of large amounts of data.

Figure 17. Effect of longer look-ahead steps. MAPE of temperature field predictions by hybrid NN-PDE
model, over all testsets. Models trained with higher look-ahead steps m accurately predict the temporal

evolution of dynamics for longer duration across all cases considered.

Figure 18. (A) The effect of increasing training dataset size for the PDD approach, over fixed testsets, is
compared with equivalent (trained with same look-ahead steps m = 2) hybrid NN-PDE model. (B) Effect

of temporal coarsening on PDD models trained with m= 32 look-ahead steps.
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6.2.4. Effect of temporal coarsening
Table 2 compares the MAPE of temperature field predictions at time-step Δtc, for all three scenarios. The
hybrid NN-PDE approach consistently performs better than both the baselines for all three scenarios
considered. Higher standard deviations in Table 2 indicate the large differences in the prediction of flame
temperatures for baseline approaches. The multi-physics systems we study provide a substantially more
difficult environment than regular fluids: the chemical reactions are numerically very stiff, and the
resulting dynamic interactions are difficult to capture by numerical solvers. To further illustrate the
temporal behavior of the simulations, we perform additional experiments with the baseline approaches
using twice the time-step size of the complete solver (2Δtc). As shown in Figure 19, for the Planar-v0 and
uniform-Bunsen case, PDD catches up with the hybrid approach whereas the PDD approach completely
fails to predict the dynamics of the nonUniform-Bunsen32 case.We further investigate the performance of
the PDD approach on the nonUniform-Bunsen32 case with larger time-steps (2 times, 4 times, and
8 times) as shown in Figure 18B. PDD achieves higher MAPE of 22.44% for 8Δtc setup as compared to
the MAPE of 12.48% for Δtc setup. The PDD approach does not predict the dynamics accurately for any
of the larger time-steps considered. We cannot showcase the performance of the hybrid NN-PDE solver
for time steps greater than 2Δtc as it is restricted by the underlying incomplete PDE solver. Figure 20
visualizes these results over different time-steps for one of the test cases. The predictions made by FNO,
PDD, and hybrid NN-PDE model for nonUniform-Bunsen32 case at twice the time-step of 2Δtc, are
compared with the ground truth solutions coming from the complete PDE solver at time-step of Δtc. FNO
and PDD (upper two rows) fail to recover the correct flame shapes over 250 simulation steps. The hybrid
NN-PDE model (second row from below) predicts the flame shape accurately, thus relaxing the temporal
stiffness of the complete PDE solver.

7. Flame shape control

To demonstrate the flexibility of the hybrid NN-PDE solver of the previous sections we consider a multi-
physics system control problem. We test the joint applicability of a neural network with a pre-trained
hybrid reactive flow solver to obtain a desired flame shape. We integrate the hybrid solver as a layer into
the neural networkmodel to enable the training of a flame shape controller. As a result, physics knowledge

Figure 19. Bar plot of MAPE of temperature field predictions by FNO, PDD, and hybrid NN-PDE model
at time-step 2Δtc, for different testcases.
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from the hybrid solver can be embedded into the optimization problem, bymatching observations coming
from the solver. The hybrid solver provides the agent with feedback of how interactions at any point in
time affect the flame shape. We consider a physical system of reactive flows where the agent can interact
with the system by controlling the inlet velocity of fuel-air flow.

We use a predictor–corrector approach (Holl et al., 2020) with a supervised loss function and control
sequence refinement for the nonUniform-Bunsen case with 32 × 32 resolution. A pre-trained hybrid
solver from Section 5.2.2 is used as a reactive flow solver. This hybrid model consists of incomplete PDE
solver along with an UNet model detailed in Sections 3.3 and 3.4 and Figures 2 and 3. It is first trained
using training instances of the uniform-Bunsen32 case described in Section 4. Additionally, it is further
trained on the training data of flame shape transitions from an arbitrary flame shape to any other arbitrary
flame shape. Once trained, the weights of the hybrid solver are frozen and used as a layer into the
predictor–corrector approach. It is differentiable by construction, when combined with the deep neural
networks is shown to learn a policy to control flame shapes. The learning objective is to arrive at a target

Figure 20. Comparison between different approaches at time-step 2Δtc—from top to bottom—FNO,
PDD, hybrid NN-PDE for nonUniform-Bunsen32 test case. Hybrid approach predictions accurately

match with the ground truth data over long roll-outs.

Figure 21. Details of the OP-CFE prediction sequence.
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temperature field (T∗) with the desired flame shape from an arbitrary, given initial configuration (T0) by
controlling the velocity field (uci ). We consider a real-world setting where only few states of the reactive
flow system are observable and controllable: the temperature andmass-fraction fields are observable, and
only the inlet of the velocity field is controllable. The predictor–corrector approach consists of two neural
network models. First, an observation predictor network (OP), predicts the intermediate states of the
observable quantity, that is, temperature in this case (Tp

i ). The corrector (CFE) network predicts the
control force (uci ) required to follow the trajectory predicted by OP network. The inlet velocity field
predicted by the CFE network is used by the pre-trained hybrid solver to compute the corrected
temperature field (Tc

i ). Figure 21 shows the sequence of OP-CFE network used to control the flame
shape T∗ given the initial flame shape T0, over the trajectory of four time-steps. The OP network is
modeled as a temporal hierarchical process to incorporate the knowledge about longer time spans.
Therefore, OP networks are trained to predict the optimal center point between two time-steps instead
of predicting the state of the next time step. The recursive call to the OP network enables the prediction of
observable quantities at every time step (Tp

i ). Using Ti�1 and OP prediction at step i, that is, Tp
i , CFE

network predicts the control force at step i, uci . Once u
c
i is predicted, learned hybrid solver can be used to

advance the simulation to next time step and obtain the actual state Tc
i . Using this sequence of OP-CFE

network, we can obtain Tc
n with n CFE evaluations, which matches target flame shape T∗ very closely.

This sequence can be generalized to any arbitrarily long length of sequences. OP-CFE networks are
trained using the supervised loss function on the target temperature field achieved and inlet velocity
predicted, respectively. The loss function formulations for OP and CFE networks are,

Lop = OP Ti,Tj
� ��TGT iþ j

j

� �����
����
2

LCFE =
Xn
i = 1

uci �u∗i
�� ��2, (9)

where TGT and u∗ indicate the ground truth temperature field and inlet velocity, respectively. The simplest
technique to obtain the optimal trajectory, given an initial state is to use the chain of CFE networks followed
by the solver. CFE, modeled using deep neural network, predicts the control force required to predict the
transition to next observable state. Therefore, as a baseline model, we consider the CFE only approach. All
neural networks used in this work are modified UNet architectures (Ronneberger et al., 2015).

Figure 22b–E shows examples of the transition achieved and compares the target flame shape obtained
using the neural networkmodel with the target flame shape (T∗). All three cases are test cases, that is, were
not seen at training time, and have a sequence length of 64 simulation steps. It is visible that the neural

Figure 22. Temperature field predictions are achieved by the neural networkmodel ~T
NN
∗ from given initial

flame shape T0 to achieve target flame shape ~T∗ by controlling flow velocity.
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network model succeeds at controlling the inlet velocity of fuel-air mixture flow to obtain the desired
flame shapes. To quantify these results, the learned model achieves MAPE of 1.34 ± 0.41% over 50 test
cases considered. It achieves an improvement of 65.7% compared to a baseline model of the CFE only
approach, without a predictor network for the long-term prediction of temperature fields. This baseline
model has a MAPE of 3.91 ± 2.19%. This case highlights the capabilities of differentiable hybrid
NN-PDE multi-physics solvers. Specifically, the hybrid solver helps the OP-CFE networks to yield
controllers that steer the complex physics of the reactive flow over long time spans.

8. Conclusion

In this work, we proposed a hybrid NN-PDE solver which learns to complete an incomplete PDE solver in
the context of a multi-physics system, namely the case of a reacting flow. The trained neural networkmodel
works alongside an incomplete solver to accurately account for and predict the effects of unknown physics.
We compare its performance with two baselines—a PDD approach and state-of-the-art FNO approach.
We test it on the cases of reacting flows of increasing complexity. The qualitative and quantitative
performance of the presented hybrid NN-PDE approach is found to be superior compared to these baselines
to predict the long-term temporal evolution of the reactive flows. The incomplete PDE description helps the
neural network model recover the target simulation with a significantly improved accuracy. This hybrid
NN-PDEmodel is able to predict the correct evolution of the important features of the multi-physics system
(in our case, the flame interface and flame shape) for longer simulation steps in all scenarios and is able to
generalize to other (initial and boundary) conditions of the system. This is demonstrated by variations in the
equivalence ratio and inlet velocity forcing. We also show that such hybrid approach may have the added
benefits of allowing to relax numerical constraints linked to the potential stiffness of the unknown physics.
The learned hybridNN-PDE solver is successfully adapted to enable flame shape control by combiningwith
deep neural networks.

Ourwork represents a stepping stone for numerous avenues of future work.While we demonstrated the
applicability of the proposed approach to the complex case of a reacting flow (with strong nonlinear
interactions between chemistry and velocity), the proposed hybrid NN-PDE solver could be further
utilized to predict and control the dynamics of other tightly coupled multi-physics systems (Levy, 1999;
Dowell and Hall, 2001). In addition, applying the proposed approach to other cases, where a limited
amount of real data is available would be a very interesting step. Especially if the data is very sparse and
contains noise, learning meaningful corrections could become excessively challenging. Performing such
an assessment will be explored in future work. We note that the proposed approach does not seek to
replace the classical physical simulation approaches. However, it is an important step in the direction of
harnessing the capabilities of neural network models using the knowledge of PDEs for complex multi-
physical systems.
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