Contents

Preface to the second edition page xi
Preface to the first edition xiv
List of Symbols xvii
PART I COMBINATORIAL ENUMERATION 1
1 Introduction 3
1.1 Generating functions and asymptotics 5
1.2 New multivariate methods 9
1.3 Outline of the remaining chapters 12
2 Generating functions 17
2.1 Power series 17
2.2 Rational operations on generating functions 20
2.3 Algebraic generating functions 30
2.4 D-finite generating functions and diagonals 40
2.5 Labeled classes 51
3 Univariate asymptotics 60
3.1 An explicit formula for rational functions 60
3.2 Meromorphic asymptotics 62
3.3 Darboux's method 67
3.4 Transfer theorems 70
3.5 The saddle point method 77
PART II MATHEMATICAL BACKGROUND 87
4 Fourier-Laplace integrals in one variable 89
4.1 Real integrands 91
4.2 Complex phase 97
4.3 Analytic versus smooth functions 105
5 Multivariate Fourier-Laplace integrals 114
5.1 Overview 114
5.2 Standard phase 118
5.3 Real part of phase has a strict minimum 121
5.4 General nondegenerate phase with finite critical set 125
5.5 Higher order terms in the expansions 129
6 Laurent series, amoebas, and convex geometry 134
6.1 Laurent series 135
6.2 Polynomial amoebas 141
6.3 Convex cones and exponential bounds 147
6.4 Singularities, amoeba boundaries, and minimal points 153
6.5 Additional constructions 162
PART III MULTIVARIATE ENUMERATION 167
7 Overview of analytic methods for multivariate GFs 169
7.1 Some illustrative examples 171
7.2 The smooth case 182
7.3 The general case via stratified Morse theory 196
7.4 Geometry 206
7.5 Deformations 214
8 Effective computations and ACSV 221
8.1 Techniques for polynomial systems 222
8.2 Computing critical points 226
8.3 Verifying minimal points 235
8.4 Further computations for asymptotics 238
9 Smooth point asymptotics 245
9.1 Finitely minimal points and the surgery method 253
9.2 The method of residue forms 257
9.3 Smooth bivariate functions 262
9.4 Additional formulae for asymptotics 279
10 Multiple point asymptotics 291
10.1 A taxonomy of multiple points 293
10.2 Main results on integrals 299
10.3 Main results on coefficient asymptotics 302
10.4 Classifying multiple points 322
10.5 Surgery, non-generic directions, and non-arrangement points 327
11 Cone point asymptotics 339
11.1 Results on cones and deformations 341
11.2 Proof of Theorem 11.1 347
11.3 Evaluating asymptotics 361
11.4 Examples and consequences 368
12 Combinatorial applications 381
12.1 Some classifications 381
12.2 Powers, quasi-powers, and Riordan arrays 385
12.3 Lagrange inversion 390
12.4 Transfer matrices 393
12.5 Higher order asymptotics 399
12.6 Algebraic generating functions 402
12.7 Additional worked examples 404
12.8 Limit laws from probability theory 412
13 Challenges and extensions 424
13.1 Contributing singularities and diagonals 424
13.2 Phase transitions 426
13.3 Degenerate phase 426
13.4 Critical points at infinity 429
13.5 Algebraic GFs 430
13.6 Asymptotic formulae 432
13.7 Symmetric functions 433
13.8 Conclusion 435
Appendix A Integration on manifolds 438
A. 1 Manifolds 438
A. 2 Vector fields and differential forms 443
A. 3 Integration of forms 452
A. 4 Complex manifolds and differential forms in \mathbb{C}^{n} 456
Appendix B Algebraic topology 462
B. 1 Chain complexes and homology theory 462
B. 2 Tools for homology 468
B. 3 Cohomology 475
B. 4 Topology of complex manifolds 477
Appendix C Residue forms and classical Morse theory 480
C. 1 Intersection classes 481
C. 2 Residue forms and the residue integral theorem 485
C. 3 Classical Morse theory 499
C. 4 Description at the level of homology 505
Appendix D Stratification and stratified Morse theory 513
D. 1 Whitney stratified spaces 513
D. 2 Critical points and the fundamental lemma 518
D. 3 Description of the attachments 523
D. 4 Stratified Morse theory for complex manifolds 527
References 533
Author Index 553
Subject Index 559

