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Abstract

In this work we consider the mean-field traveling salesman problem, where the
intercity distances are taken to be independent and identically distributed with some
distribution F . We consider the simplest approximation algorithm, namely, the nearest-
neighbor algorithm, where the rule is to move to the nearest nonvisited city. We show
that the limiting behavior of the total length of the nearest-neighbor tour depends on the
scaling properties of the density of F at 0 and derive the limits for all possible cases of
general F .
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1. Introduction

The traveling salesman problem (TSP) is one of the most well-known combinatorial opti-
mization problems that has attracted attention in various scientific fields. The aim is to find the
shortest tour, connecting a number of cities visited by a traveling salesman on his/her sales route,
such that he/she visits each city exactly once and finally returns to the starting city. Formally,
we are given a set of cities labeled {1, 2, . . . , n}, say, and, for each {i, j} pair of distinct cities,
distance Lij is assumed to be symmetric. The goal is to find a permutation π of the cities that
solves the minimization problem

min
π

n∑
i=1

Lπ(i),π(i+1),

where π(n + 1) = 1. This minimum value is called the optimal tour length which we denote
by T

opt
n .

It is well known in the literature on algorithms [4] that the TSP in general is an NP-complete
problem. So there are several approximate algorithms which try to approximate the optimal
tour with polynomial running time. Among them, one of the simplest is the nearest-neighbor
(NN) algorithm [1], which is also known as the next best method; see [3]. The algorithm starts at
one of the cities and then always adds to the tour the nearest not yet visited city, and terminates
when every city has been added. Since the NN algorithm is designed to move to the nearest
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The nearest-neighbor algorithm 107

nonvisited city, having starting from say the first city v1 = 1, we need to find the next city v2
by solving

arg min{L12, L13, . . . , L1n}.
Then from city v2 we find the next nonvisited nearest city v3 by solving

arg min{Lv2u | u ∈ {2, 3, . . . , n} \ {v2}}.
We continue the algorithm until all n cities have been visited and the last edge to be added to
the tour is the edge between the cities v1 and vn. Define T NN

n to be the length of the NN tour
among n cities in the TSP. Then

T NN
n =

n∑
i=1

Lvivi+1 ,

where v1 = 1 = vn+1.
There are several randomized versions of this problem where the distances are taken to be

random. We note that the version in which the distances between pairs of cities are assumed
to be independent and identically distributed (i.i.d.) random variables with a given distribution
F is of special interest in statistical physics. Such a model is known as the mean-field TSP;
see [6], [8], and [7]. Asymptotic results for the optimal solution of the mean-field TSP have
been obtained. Wästlund [8] proved that if (Lij )1≤i,j≤n are i.i.d. positively supported random
variables with limt→0+ P(Lij < t)/t = 1 then

T
opt
n

P−→ 1

2

∫ ∞

0
h(x) dx, (1)

where h is implicitly defined through the equation(
1 + x

2

)
e−x +

(
1 + h(x)

2

)
e−h(x) = 1.

Further generalizations of this can be found in [7] where the assumption has been relaxed to
include i.i.d. Weibull-distributed distances.

In this paper we study the limiting behavior of the total length of the tour, obtained by the NN
algorithm for the mean-field TSP. Our aim is to compare the apparent ‘loss’ accrued (that is, the
increased distance traversed) with respect to the optimal solution when using the NN algorithm.
Owing to (1), it is enough to consider the limiting behavior of T NN

n . Similar studies have been
conducted for the TSP when the distances are taken to be constant but defined through a metric.
For cities placed in a metric space, where the intercity distances are given by the metric, it was
been proved in [5] that

T NN
n

T
opt
n

≤ 1

2
log2 n + 1

2
.

We show that if F , the distribution of the distance between cities, has a density which is
continuous at 0 with F ′(0+) > 0, then the total length of the NN tour, for the mean field
TSP, scales as log n. This parallels the conclusions drawn in [5]. Moreover, we also consider a
general distribution functionF with nonnegative support and show that the asymptotic behaviors
for T NN

n depend on the scaling properties of the density near 0. It is worth noting that in [6]
the authors considered a similar study and derived asymptotic results for E[T NN

n ], under the
assumption that the intercity distances are i.i.d. with gamma distribution. Our work is more
general and includes the results derived in [6] as special cases.
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108 A. BANDYOPADHYAY AND F. SAJADI

The rest of the paper is organized as follows. In Section 2 we state our main results, whose
proofs are presented in Section 5. Section 3 is devoted to the asymptotic property of the first and
the last edges of the NN tour. In Section 4 we present three auxiliary results and their proofs.
Finally, in Section 6 we discuss the possible relaxation of the assumptions on the distribution F .

2. Main results

We will assume that the mean and the variance of F are finite, and that F has a density f .
Throughout this paper, we use the notation an ∼ bn if limn→∞ an/bn = 1. Our first result
shows that T NN

n is ‘close’ to its expected value.

Theorem 1. Assume that, as t → 0+, f (t)/tα → C, where C ∈ (0, ∞) is constant and
−1 < α < 1. Then, as n → ∞,

{T NN
n − E[T NN

n ]}n≥1 converges weakly.

The next three results address three different cases of the behavior of f near 0.

Theorem 2. Assume that, as t → 0+, f (t) → f (0), where f (0) ∈ (0, ∞). Then, as n → ∞,

T NN
n

log n

P−→ 1

f (0)
(2)

and

E[T NN
n ] ∼ 1

f (0)
log n. (3)

Moreover, the convergence in (2) happens in L2.

The following corollary is a finer result for i.i.d. exponential distances, which was also
observed in [6].

Corollary 1. In the mean-field TSP, suppose that F is the exponential distribution with mean 1.
Then T NN

n − log n converges weakly.

Theorem 3. Assume that, as t → 0+, f (t)/tα → C, where C > 0 is constant and 0 < α < 1.
Then, as n → ∞,

T NN
n

n1−1/(1+α)

P−→ Kα, (4)

where Kα := ((1 + α)/C)1/(1+α)(1/α)�(1/(1 + α)) and

E[T NN
n ] ∼ Kαn1−1/(1+α). (5)

Moreover, the convergence in (4) happens in L2.

In [6], (5) was derived with the same constant and for any α > 0.

Theorem 4. Let −1 < α < 0, and assume that, as t → 0+, f (t)/tα → C, where C > 0
is constant. Then the sequence {E[T NN

n ]}n≥1 is a convergent sequence and T NN
n converges

weakly.

The above results cover the cases where |α| < 1. Note that the case α ≤ −1 cannot happen,
since f is a density function. For α ≥ 1, we first consider the case when F is the Weibull
distribution with shape parameter 1 + α and scale parameter 1, which was also considered
in [7]. In this case we show that not only does E[T NN

n ] scale as n1−1/(1+α) but, in fact, after
centering and proper scaling, T NN

n converges weakly to a normal distribution.
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Theorem 5. Let α ≥ 1, and, for 1 ≤ i ≤ n − 1, let the intercity distances {Lij }i<j≤n, in the
mean-field TSP, be i.i.d. Weibull distributed with shape parameter 1 + α and scale parameter
1, that is, the density function is given by

f (t) = (1 + α)tαe−t (1+α)

1[t > 0].
Then, as n → ∞,

T NN
n

n1−1/(1+α)

P−→ 1

α
�

(
1

1 + α

)
(6)

and

E[T NN
n ] ∼ 1

α
�

(
1

1 + α

)
n1−1/(1+α). (7)

Furthermore, as n → ∞, for α > 1,

T NN
n − E[T NN

n ]
n1/2−1/(1+α)

d−→ N

(
0,

α + 1

α − 1
σ 2(α)

)
(8)

and, for α = 1,
T NN

n − E[T NN
n ]√

log n

d−→ N(0, σ 2(α)), (9)

where σ 2(α) = �(2/(1 + α) + 1) − �2(1 + 1/(1 + α)).

Finally, we have the following result for the general case α ≥ 1.

Theorem 6. Assume that, as t → 0+, f (t)/tα → C, where C > 0 is constant and α ≥ 1.
Then, as n → ∞, (4) holds.

3. The last and the first edges of the NN tour

Before we prove the main results, in this section we show that the first and the last edges
of the NN tour are asymptotically constant. Let the distances between cities be denoted
by {(Lij )i<j≤n}1≤i≤n−1, which are i.i.d. with distribution F supported on [0, ∞) and have
density f . Let Llast

n be the length of the last edge, which joins the last visited city to the first
city, and let Lfirst

n := min1<j≤n L1j be the length of the first edge. Then the length of the NN
tour, T NN

n , can be written as

T NN
n

d=
n−1∑
i=2

min
i<j≤n

Lij + Lfirst
n + Llast

n . (10)

The following proposition shows that the sum of the lengths of the last and first edges in the
NN tour do not play an important role.

Proposition 1. In the NN tour for the mean-field TSP, the distribution function of Lfirst
n + Llast

n

converges to F as n → ∞ and
∑n−1

i=2 mini<j≤n Lij is independent of Lfirst
n + Llast

n . Moreover,
as n → ∞,

E[Lfirst
n + Llast

n ] → μ and E[(Lfirst
n + Llast

n )2] → μ2 + σ 2,

where μ and σ 2 are the mean and the variance of F .
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110 A. BANDYOPADHYAY AND F. SAJADI

Proof. For k = 1, 2, . . . , n − 1, let Xk := L1k+1 and X(k) be the kth order statistic of
X1, X2, . . . , Xn−1. By construction, the successive vertices 1 = v1, v2, v3, . . . , vn have the
property that, for every 2 ≤ k ≤ n, given {v2, v3, . . . , vk−1}, the vertex vk is uniformly
distributed on the set {1, 2, . . . , n} \ {1, v2, v3, . . . , vk−1}. So, in particular, the last vertex
of the tour vn is also uniformly distributed on the set {2, 3, . . . , n} \ {v2}. Hence, given
X1, X2, . . . , Xn−1, the length of the last edge is uniform on {X(2), X(3), . . . , X(n−1)}. So,
for any bounded continuous function h, we have

E[h(Llast
n )] = 1

n − 2

n−1∑
k=2

E[h(X(k))] = n − 1

n − 2
E[h(X1)] − E[h(X(1))]

n − 2
.

Therefore,
lim

n→∞ E[h(Llast
n )] = E[h(X1)].

This proves that the distribution function of Llast
n converges to F as n → ∞. Now observe

that Lfirst
n → 0 almost surely (a.s.); therefore, by Slutsky’s theorem, the distribution function

of Lfirst
n + Llast

n converges to F as n → ∞.
Now observe that, by similar calculations as above,

E[Lfirst
n + Llast

n ] = n − 1

n − 2
E[X1] + n − 3

n − 2
E[X(1)] → μ.

The last limit follows from the dominated convergence theorem since X(1) → 0 a.s. and
0 ≤ X(1) ≤ X1.

Furthermore,

E[(Llast
n )2] = n − 1

n − 2
E[X2

1] − E[X2
(1)]

n − 2
→ μ2 + σ 2

and
E[(Lfirst

n )2] = E[X2
(1)] → 0.

Finally,

E[Lfirst
n Llast

n ] = n − 1

n − 2
E[X(1)X̄n−1] − E[X2

(1)]
n − 2

≤
√

E[X2
(1)]E[X̄2

n−1] − E[X2
(1)]

n − 2
→ 0,

where X̄n−1 := (1/(n − 1))
∑n−1

k=1 Xk and the inequality follows by the Cauchy–Schwarz in-
equality. Combining all these we have

E[(Lfirst
n + Llast

n )2] → μ2 + σ 2.

4. Auxiliary results

For the distribution function F , we define F−1 : (0, 1) → [0, ∞) by F−1(u) := inf{x ∈
R | F(x) ≥ u}, 0 < u < 1. It is then a standard fact that F−1(U) ∼ F when U ∼
uniform[0, 1]. We start with a lemma which will give a useful representation of T NN

n .

Lemma 1. Let the distances between cities, (Lij )i<j≤n for i = 1, . . . , n − 1, be i.i.d. with
F denoting its common distribution function. Define the random variable Wi := F−1(1 −
exp(−Yi/i)), where {Yi}1≤i≤n−1 are i.i.d. exponential random variables each with mean 1.
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Then

T NN
n

d=
n−2∑
i=1

Wi + Rn, (11)

where Rn
d= Lfirst

n + Llast
n and is independent of {Wi}n−2

i=1 .

The proof of the lemma is straightforward, so we omit it, but we note that this lemma translates
the problem of studying the asymptotic of T NN

n to the problem of studying the asymptotic of
the sum of successive minimums of independent sets of random variables. Our next result is
the most important result for deriving all the L2-convergences.

Lemma 2. Assume that F has density f and that, as t → 0+, f (t)/tα → C, where C ∈ (0, ∞)

is constant and −1 < α < 1. Then, as n → ∞, {∑n−2
i=1 (Wi − E[Wi])}n≥1 converges a.s. and

in L2.

Proof. By assumption, as t → 0+, f (t)/tα → C; therefore, given ε > 0, there exists
δ > 0, such that, for all 0 < t < δ, we have (C − ε)tα < f (t) < (C + ε)tα . Hence, for
0 < x < δ, ((C − ε)/(1 + α))x1+α < F(x) < ((C + ε)/(1 + α))x1+α . So

(
1 + α

C + ε

)1/(1+α)

x1/(1+α) < F−1(x) <

(
1 + α

C − ε

)1/(1+α)

x1/(1+α). (12)

Put δ1 := − ln(1 − δ). If Yi/i < δ1 (which ensures that 1 − exp(−Yi/i) < δ) then we have

Wi1
[
Yi

i
< δ1

]
<

(
1 + α

C − ε

)1/(1+α)(
1 − exp

(
−Yi

i

))1/(1+α)

1
[
Yi

i
< δ1

]
.

Observe that, for β > 0,

E

[(
1 − exp

(
−Yi

i

))β]
= i

∫ 1

0
uβ(1 − u)i−1 du = �(1 + β)�(i + 1)

�(i + 1 + β)
≤ �(2 + β)

(i + 1 + β)β
.

The last inequality follows from Wendel’s double inequality [9], which states that, for real
x > 0 and 0 < s < 1,

x

(x + s)1−s
�(x) ≤ �(x + s) ≤ xs�(x).

Therefore,

E

[
W 2

i 1
[
Yi

i
< δ1

]]
<

(
1 + α

C − ε

)2/(1+α)

�

(
2 + 2

1 + α

)
1

(i + 1 + 2/(1 + α))2/(1+α)
. (13)

Now, since E[Y1] < ∞, we have, as i → ∞, Yi/i → 0 a.s. Define

I0(ω) := min

{
i

∣∣∣∣ Yj (ω)

j
< δ1 for all j ≥ i

}
.

Fix m > 1. Then

[I0 = m] =
[
Yi

i
< δ1 for all i ≥ m and

Ym−1

m − 1
> δ1

]
.
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Hence,
P(I0 = m) ≤ e−(m−1)δ1 .

Now
∞∑
i=1

E[W 2
i ] =

∞∑
m=1

E

[m−1∑
i=1

W 2
i 1[I0 = m]

]
+

∞∑
m=1

E

[ ∞∑
i=m

W 2
i 1[I0 = m]

]
.

But,

E

[m−1∑
i=1

W 2
i 1[I0 = m]

]
= E

[m−2∑
i=1

W 2
i 1[I0 = m]

]
+ E[W 2

m−11[I0 = m]].

Since [I0 = m] depends on the random variables Ym−1, Ym, Ym+1, . . . , for 1 ≤ i ≤ m − 2, Wi

is independent of [I0 = m]. Hence,

E

[m−2∑
i=1

W 2
i 1[I0 = m]

]
≤ e−(m−1)δ1

m−2∑
i=1

E[W 2
i ].

Since E[W 2
i ] is a decreasing sequence, we have

∑m−2
i=1 E[W 2

i ] ≤ (m − 2)E[W 2
1 ]. Therefore,

E

[m−2∑
i=1

W 2
i 1[I0 = m]

]
≤ (m − 2)e−(m−1)δ1E[W 2

1 ]. (14)

Now,

E[W 2
m−11[I0 = m]] ≤

√
E[W 4

m−1]P(I0 = m) ≤ μ2e−(m−1)δ1/2, (15)

where the first inequality follows by the Cauchy–Schwarz inequality and the second follows
from E[W 4

m−1] ≤ E[W 4
4 ] ≤ μ4 for m > 4. From (14) and (15), we have

∞∑
m=1

E

[m−1∑
i=1

W 2
i 1[I0 = m]

]
< ∞. (16)

Now, by assumption, since|α| < 1, we have 2/(1 + α) > 1; therefore, for i ≥ m, from
inequality (13) we have

E

[ ∞∑
i=m

W 2
i 1[I0 = m]

]
< Ke−(m−1)δ1 , (17)

where K is a positive constant. Hence, from (16) and (17), we conclude that

∞∑
i=1

E[W 2
i ] < ∞.

Therefore, var[∑n
i=1 Wi] is bounded for all n. This shows that

∑n−2
i=1 (Wi − E[Wi]), as a

martingale, converges a.s. and in L2. This completes the proof.

Our next lemma gives an expression for the mean of T NN
n in terms of the distribution

function F . As the proof of this result is immediate from representation (11), we omit the
details.
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Lemma 3. Consider a mean-field TSP with i.i.d. edge weights with distribution F which is
supported on [0, ∞). Then

E[T NN
n ] =

∫ ∞

0

[F̄ (t)]2[1 − (F̄ (t))n−2]
F(t)

dt + E[Lfirst
n + Llast

n ].

5. Proofs of the main results

5.1. Proof of Theorem 1

From (10) we have

T NN
n − E[T NN

n ] d=
n−1∑
i=2

min
i<j≤n

Lij − E

[n−1∑
i=2

min
i<j≤n

Lij

]
+ Lfirst

n + Llast
n − E[Lfirst

n + Llast
n ].

But, by Lemma 2 and Lemma 1,

{ n−1∑
i=2

min
i<j≤n

Lij − E

[n−1∑
i=2

min
i<j≤n

Lij

]}
n>1

converges in L2 and, hence, by Proposition 1, {T NN
n − E[T NN

n ]}n>1 converges weakly.

5.2. Proofs of Theorem 2 and Theorem 3

By the assumptions of both of the theorems, f (t)/tα → C as t → 0+, where 0 ≤ α < 1.
Hence, using inequality (12) we have, as i → ∞,

(C/(1 + α))1/(1+α)Wi

(Yi/i)1/(1+α)
→ 1 a.s.,

where the Yi are i.i.d. exponential random variables each with mean 1 and Wi = F−1(1 −
exp(−Yi/i)). Therefore, as n → ∞,

(C/(1 + α))1/(1+α)
∑n−2

i=1 Wi∑n−2
i=1 (Yi/i)1/(1+α)

→ 1 a.s. (18)

Note that the above equation still holds when α ≥ 1.
Since 0 ≤ α < 1, we have 2/(1 + α) > 1; thus, var(

∑n−2
i=1 (Yi/i)1/(1+α)) is

uniformly bounded. Therefore, by the martingale convergence theorem,
∑n−2

i=1 (Yi/i)1/(1+α) −
E[∑n−2

i=1 (Yi/i)1/(1+α)] converges a.s. But,

E

[n−2∑
i=1

(
Yi

i

)1/(1+α)]
= �

(
1 + 1

1 + α

) n−2∑
i=1

(
1

i

)1/(1+α)

.

Thus, ∑n−2
i=1 Wi

(1/f (0)) log n
→ 1 a.s. when α = 0

and ∑n−2
i=1 Wi

Kαn1−1/(1+α)
→ 1 a.s. when 0 < α < 1, (19)
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where

Kα :=
(

1 + α

C

)1/(1+α) 1

α
�

(
1

1 + α

)
.

Let a(n, 0) := (1/f (0)) log n and a(n, α) := Kαn1−1/(1+α) when 0 < α < 1. Then

n−2∑
i=1

Wi − a(n, α) =
n−2∑
i=1

Wi − E

[n−2∑
i=1

Wi

]
+ E

[n−2∑
i=1

Wi

]
− a(n, α).

Recall that, by Lemma 2,
∑n−2

i=1 Wi − E[∑n−2
i=1 Wi] has an almost-sure limit, so, using (19),

we obtain, for 0 ≤ α < 1,

lim
n→∞

E[∑n−2
i=1 Wi]

a(n, α)
= 1

and, hence, by Lemma 2, Lemma 1, and (11),

E[T NN
n ] ∼ a(n, α),

proving (2) and (4). Finally,

E

[(
T NN

n

a(n, α)
− 1

)2]
= var[∑n−1

i=2 mini<j≤n Lij ]
(a(n, α))2 + var[Lfirst

n + Llast
n ]

(a(n, α))2 +
[

E[T NN
n ]

na(n,α)
− 1

]2

converges to 0 as n → ∞. Hence,
T NN

n

a(n, α)

P−→ 1

and in L2, proving (3) and (5). This completes the proofs of both Theorem 2 and Theorem 3.

5.3. Proof of Corollary 1

Since F has an exponential distribution with mean 1, from Lemma 1, we obtain

T NN
n

d=
n−2∑
i=1

Yi

i
+ Rn,

where Rn
d= Lfirst

n +Llast
n and is independent of the {Yi}n−2

i=1 which are i.i.d. exponential random
variables with mean 1. But then, by Réyni’s representation (see Theorem 6.5 of [2]) we have

T NN
n

d= max
1≤i≤n−2

Yi + Rn.

Thus, the proof follows from standard asymptotic theory for the maximum of n i.i.d. exponential
variables with mean 1 and using Proposition 1.

5.4. Proof of Theorem 4

As mentioned in the proof of Lemma 2, since 1/(1 + α) > 1, we have

sup
n≥1

var

( n−2∑
i=1

Wi

)
< ∞.

Therefore,
∑n−2

i=1 Wi − E[∑n−2
i=1 Wi], as a martingale, converges a.s. and in L2. So, by (11)

and Proposition 1, T NN
n − E[T NN

n ] converges weakly.
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Now, to complete the proof, it is enough to show that {E[T NN
n ]}n≥1 is a convergent sequence.

To this end, we apply Lemma 3 to obtain

E[T NN
n ] =

∫ ∞

0

[F̄ (t)]2[1 − (F̄ (t))n−2]
F(t)

dt + E[Lfirst
n + Llast

n ].

Now fix ε > 0 and choose δ > 0 such that the equations leading to the double inequality (12)
hold. Also, find M > 0 such that F(M) ≥ 1

2 . Consider the function G : [0, ∞) → [0, ∞)

defined by

G(t) := 1

F(t)
1[0 < t < δ] + 1

F(δ)
1[δ ≤ t ≤ M] + 2F̄ (t)1[t > M].

Then, for any n > 1 and t > 0, we have [F̄ (t)]2[1 − (F̄ (t))n−2]/F (t) ≤ G(t). Also, note that∫ ∞
M

G(t) dt ≤ 2
∫ ∞

0 F̄ (t) dt < ∞ since F is positively supported and has finite first moment.
Furthermore, by the choice of δ, the density f on (0, δ) is strictly positive and F is strictly
increasing. So

∫ δ

0
G(t) dt =

∫ δ

0

dt

F (t)
=

∫ F(δ)

0

dw

wf (F−1(w))
≤ κ

∫ 1

0

1

w1+α/(1+α)
dw < ∞

withκ > 0 some constant, where the penultimate inequality follows by using the double inequal-
ity (12) and the final inequality holds because −1 < α < 0. Thus, we have

∫ ∞
0 G(t) dt < ∞.

Therefore, by the dominated convergence theorem, we conclude that

lim
n→∞

∫ ∞

0

[F̄ (t)]2[1 − (F̄ (t))n−2]
F(t)

dt

exists. This along with Proposition 1 proves that {E[T NN
n ]}n≥1 is a convergent sequence, which

completes the proof of the theorem.

5.5. Proof of Theorem 5

By the assumption that F is a Weibull distribution with shape parameter 1 + α and scale
parameter 1, we have F(x) = 1 − e−x1+α

, x ≥ 0. Therefore, F−1(t) = [− log(1 − t)]1/(1+α),
where 0 < t < 1. Hence,

n−1∑
i=2

min
i<j≤n

Lij
d=

n−2∑
i=1

Wi =
n−2∑
i=1

[− log(e−Yi/i)]1/(1+α) =
n−2∑
i=1

(
Yi

i

)1/(1+α)

,

where the Yi are i.i.d. exponential random variables each with mean 1. Now, using Lemma 1,
we obtain

E[T NN
n ] = �

(
1 + 1

1 + α

) n−2∑
i=1

(
1

i

)1/(1+α)

+ E[Lfirst
n + Llast

n ].

This proves (7).
We define σ 2(α) := var[Y 1/(1+α)

i ] = �(2/(1 + α) + 1) − �2(1 + 1/(1 + α)). Let Zn(α) =∑n−2
i=1 Vi(α), where

Vi(α) := Y
1/(1+α)
i − E[Y 1/(1+α)

i ]
σ(α)i1/(1+α)

∑n−2
i=1 (1/i)2/(1+α))1/2

.

https://doi.org/10.1239/jap/1395771417 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1395771417


116 A. BANDYOPADHYAY AND F. SAJADI

Observe that E[Vi(α)] = 0 and
∑n−2

i=1 var[Vi(α)] = 1. Choose δ > α − 1 ≥ 0. So, for some
M > 0,

n−2∑
i=1

E[|Vi(α)|2+δ] ≤ M

σ(α)2+δ

1

[∑n−2
i=1 (1/i)2/(1+α)](2+δ)/2

n−2∑
i=1

(
1

i

)(2+δ)/(1+α)

.

Since 2/(1 + α) ≤ 1 and (2 + δ)/(1 + α) > 1, we have

lim
n→∞

n−2∑
i=1

E[|Vi(α)|2+δ] = 0.

Hence, Lyapunov’s condition is satisfied for α ≥ 1 and so Zn(α) converges in distribution to a
standard normal random variable. Now observe that, by Lemma 1 and Proposition 1,

T NN
n − E[T NN

n ]
σ(α)(

∑n−2
i=1 (1/i)2/(1+α))1/2

= Zn(α) + oP(1).

Thus, (8) and (9) hold because
∑n−2

i=1 (1/i)2/(1+α) ∼ ((α + 1)/(α − 1))n1/2−1/(1+α) when
α > 1 and

∑n−2
i=1 (1/i)2/(1+α) ∼ log n when α = 1.

Finally, we note that, for any α ≥ 1,

T NN
n − E[T NN

n ]
n1−1/(1+α)

P−→ 0.

So, using (7), we conclude that (6) also holds.

5.6. Proof of Theorem 6

From the above proof, it follows that, for (Yi)i≥1 i.i.d. exponential random variables with
mean 1 and α ≥ 1, we have∑n−2

i=1 (Yi/i)1/(1+α)

n1−1/(1+α)

P−→ 1

α
�

(
1

1 + α

)
.

So, using (18), we conclude that
∑n−2

i=1 Wi

n1−1/(1+α)

P−→ Kα.

Therefore, the proof of the theorem follows from Proposition 1.

6. Discussion

In our main results we have assumed that the second moment of F exists. This assumption is
not needed. The following lemma says that if F is a positively supported distribution with finite
βth moment then, for any k > 2/β, we must have E[(min1≤i≤k Zi)

2] < ∞, where Z1, Z2, . . .

are i.i.d. random variables with distribution F . The proof of this lemma follows easily from
Markov’s inequality, so we omit it.

Lemma 4. Suppose that Z is a nonnegative random variable such that, for some β > 0,
E[Zβ ] < ∞. Then, for any k > 2/β, we have∫ ∞

0
t{P(Z > t)}k dt < ∞.
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Now, as in Lemma 1, let random variable Wi = F−1(1 − exp(−Yi/i)), where the Yi are
exponential with mean 1. We have assumed that F has finite first moment, and so, by taking
k = 3 in Lemma 4, we can conclude that Wi has finite second moment for i ≥ 3. Thus, under the
assumptions of Lemma 2 and by following its proof, we can conclude that

∑n−2
i=3 (Wi − E[Wi])

converges a.s. and in L2. Thus, all the results stated in Section 2 hold except those on the L2
convergence.
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