Boundedness from Below of Composition Operators on α-Bloch Spaces

Huaihui Chen and Paul Gauthier

Abstract. We give a necessary and sufficient condition for a composition operator on an α-Bloch space with $\alpha \geq 1$ to be bounded below. This extends a known result for the Bloch space due to P. Ghatage, J. Yan, D. Zheng, and H. Chen.

1 Introduction

Let D be the unit disk in the complex plane \mathbb{C}, and $H(D)$ the space of all holomorphic functions on D. For $\alpha>0$, a function $f \in H(D)$ is called an α-Bloch function if

$$
\|f\|_{\alpha}=\sup \left\{\left(1-|z|^{2}\right)^{\alpha}\left|f^{\prime}(z)\right|: z \in D\right\}<\infty
$$

For fixed α, the family of all α-Bloch functions with the norm $\|f\|_{\mathcal{B}^{a}}=|f(0)|+\|f\|_{\alpha}$ forms a complex Banach space, which is called α-Bloch space and denoted by \mathcal{B}^{α}. When $\alpha=1$ we obtain the Bloch functions and corresponding Bloch space, which is denoted by \mathcal{B}. For the general theory of Bloch functions and α-Bloch functions, see $[2,6]$.

The pseudo distance on the unit disk is defined by

$$
\rho(z, w)=\left|\frac{z-w}{1-\bar{w} z}\right| \quad \text { for } z, w \in D
$$

A subset E of D is called a pseudo r-net, $0<r<1$, if for every $w \in D$, there exists a $z \in E$ such that $\rho(z, w) \leq r$. If we define $\rho(z, E)=\inf \{\rho(z, w): w \in E\}$ for a set $E \subset D$, then a relatively closed subset E of D is an r-net if and only if $\rho(z, E) \leq r$.

In this paper, ϕ always denotes a holomorphic self-mapping of the unit disk D. Let

$$
\tau_{\phi}(z)=\frac{\left(1-|z|^{2}\right)\left|\phi^{\prime}(z)\right|}{1-|\phi(z)|^{2}} \quad \text { for } z \in D
$$

The Schwarz-Pick lemma [1] says that

$$
\begin{equation*}
\tau_{\phi}(z) \leq 1 \quad \text { for } z \in D \tag{1.1}
\end{equation*}
$$

For $\epsilon>0$, let

$$
\Omega_{e}=\left\{z \in D: \tau_{\phi}(z) \geq \epsilon\right\}, \quad G_{\epsilon}=\phi\left(\Omega_{\epsilon}\right)
$$

[^0]The composition operator C_{ϕ} on $H(D)$, induced by ϕ, is defined by

$$
C_{\phi}(f)=f \circ \phi \quad \text { for } f \in H(D)
$$

It follows from (1.1) that C_{ϕ} is always a bounded operator on \mathcal{B}. For the boundedness from below, the following result is known:

In order that C_{ϕ} be bounded below on \mathcal{B}, it is sufficient and necessary that there exist $\epsilon>0$ and $0<r<1$ such that G_{ϵ} is a pseudo r-net.

We recall that a bounded linear operator T of a Banach space \mathcal{S}_{1} into another one \mathcal{S}_{2} is said to be bounded below if $\|T(s)\|_{S_{2}} \geq k\|s\|_{S_{1}}$ for $s \in \mathcal{S}_{1}$ with a $k>0$ independent of s. P. Ghatage, P. Yan and D. Zheng [4] proved the necessity of the condition as well as the sufficiency with the restriction $r<1 / 4$. Shortly after, H. Chen [3] showed that the condition is sufficient without any restriction on the value of r. Recently, P. Ghatage, D. Zheng and N. Zorboska proved the sufficiency of the condition for a univalent ϕ [5].

The purpose of this short paper is to generalize the above result to the case of α-Bloch spaces with $\alpha \geq 1$. To this end, instead of $\tau_{\phi}, \Omega_{\epsilon}$ and G_{ϵ}, we should consider $\tau_{\phi}^{\alpha}, \Omega_{\epsilon}^{\alpha}$ and G_{ϵ}^{α}, respectively, which are defined by

$$
\tau_{\phi}^{\alpha}(z)=\frac{\left(1-|z|^{2}\right)^{\alpha}\left|\phi^{\prime}(z)\right|}{\left(1-|\phi(z)|^{2}\right)^{\alpha}} \quad \text { for } z \in D
$$

and

$$
\Omega_{e}^{\alpha}=\left\{z \in D: \tau_{\phi}^{\alpha}(z) \geq \epsilon\right\}, \quad G_{\epsilon}^{\alpha}=\phi\left(\Omega_{\epsilon}^{\alpha}\right)
$$

Our main result is that C_{ϕ} is bounded below on \mathcal{B}^{α} with $\alpha \geq 1$ if and only if there exist $\epsilon>0$ and $r \in(0,1)$ such that G_{ϵ}^{α} is a pseudo r-net.

2 Preliminaries

Let $\operatorname{Aut}(D)$ denote the group of all Möbius mappings of D. If $\phi \in \operatorname{Aut}(D)$, it is easy to verify that

$$
\begin{equation*}
\frac{\left|\phi^{\prime}(z)\right|}{1-|\phi(z)|^{2}}=\frac{1}{1-|z|^{2}}, \quad \text { for } z \in D \tag{2.1}
\end{equation*}
$$

and, consequently,

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|(f \circ \phi)^{\prime}(z)\right|=\left(1-|\phi(z)|^{2}\right)\left|f^{\prime}(\phi(z))\right| \tag{2.2}
\end{equation*}
$$

holds for $f \in H(D)$ and $z \in D$. For $w \in D$, by ϕ_{w} we denote the mapping in $\operatorname{Aut}(D)$ that exchanges 0 and w. The following identity is easy to verify:

$$
\begin{equation*}
1-\left|\phi_{w}(z)\right|^{2}=\frac{\left(1-|z|^{2}\right)\left(1-|w|^{2}\right)}{|1-\bar{w} z|^{2}} \quad \text { for } z \in D \tag{2.3}
\end{equation*}
$$

Let $a=\phi(0)$. By (2.1) and a direct calculation, if $\phi \in \operatorname{Aut}(D)$, we have

$$
\begin{equation*}
\frac{1-|a|}{1+|a|} \leq \frac{1-|\phi(z)|^{2}}{1-|z|^{2}}=\left|\phi^{\prime}(z)\right| \leq \frac{1+|a|}{1-|a|} \quad \text { for } z \in D \tag{2.4}
\end{equation*}
$$

In general, if ϕ is a holomorphic self-mapping of D, letting σ be the holomorphic self-mapping of D such that $\sigma(0)=0$ and $\phi=\phi_{a} \circ \sigma$, we have by the Schwarz lemma and (2.4),

$$
\begin{equation*}
\frac{1-|z|^{2}}{1-|\phi(z)|^{2}}=\frac{1-|z|^{2}}{1-|\sigma(z)|^{2}} \frac{1-|\sigma(z)|^{2}}{1-\left|\phi_{a}(\sigma(z))\right|^{2}} \leq \frac{1+|a|}{1-|a|} \quad \text { for } z \in D \tag{2.5}
\end{equation*}
$$

It is easy to prove that C_{ϕ} is a bounded operator of \mathcal{B}^{α} into \mathcal{B}^{β} if and only if $\left\|C_{\phi}(f)\right\|_{\beta} \leq M\|f\|_{\alpha}$ for $f \in \mathcal{B}^{\alpha}$ with $M \geq 0$ independent of f and that a bounded composition operator C_{ϕ} of \mathcal{B}^{α} into \mathcal{B}^{β} is bounded below if and only if $\left\|C_{\phi}(f)\right\|_{\beta} \geq$ $m\|f\|_{\alpha}$ for $f \in \mathcal{B}^{\alpha}$ with $m>0$ independent of f.

For $\alpha>0, w \in D$, we define

$$
f_{w}(z)=\frac{1}{\alpha \bar{w}} \frac{\left(1-|w|^{2}\right)}{(1-\bar{w} z)^{\alpha}} \quad \text { for } z \in D
$$

Then for $z \in D$,

$$
\begin{aligned}
\left(1-|z|^{2}\right)^{\alpha}\left|f_{w}^{\prime}(z)\right| & =\frac{\left(1-|z|^{2}\right)^{\alpha}\left(1-|w|^{2}\right)}{|1-\bar{w} z|^{\alpha+1}} \\
& \leq \frac{\left(1-|z|^{2}\right)^{\alpha}}{(1-|z|)^{\alpha}} \frac{1-|w|^{2}}{1-|w|} \leq 2^{\alpha+1}
\end{aligned}
$$

On the other hand, $\left(1-|w|^{2}\right)^{\alpha}\left|f^{\prime}(w)\right|=1$. Thus,

$$
\begin{equation*}
1 \leq\left\|f_{w}\right\|_{\alpha} \leq 2^{\alpha+1} \tag{2.6}
\end{equation*}
$$

It is easy to see that f_{w} converges to 0 , locally uniformly in D, as $w \rightarrow \partial D$.
Theorem 2.1 Let $\beta \geq 1$ and $\alpha \leq \beta$. Then C_{ϕ} is a bounded operator of \mathcal{B}^{α} into \mathcal{B}^{β}, while it is not bounded below if $\alpha<\beta$.

Proof First we prove the boundedness of C_{ϕ}. Let $f \in \mathcal{B}^{\alpha}$. We have, for $z \in D$,

$$
\begin{aligned}
\left(1-|z|^{2}\right)^{\beta}\left|(f \circ \phi)^{\prime}(z)\right|= & \left(1-|z|^{2}\right)^{\beta}\left|f^{\prime}(\phi(z))\right|\left|\phi^{\prime}(z)\right| \\
= & \frac{\left(1-|z|^{2}\right)^{\alpha-1}}{\left(1-|\phi(z)|^{2}\right)^{\alpha-1}}\left(1-|z|^{2}\right)^{\beta-\alpha}\left(1-|\phi(z)|^{2}\right)^{\alpha} \\
& \quad \times\left|f^{\prime}(\phi(z))\right| \tau_{\phi}(z) .
\end{aligned}
$$

Thus, by (1.1) and (2.5),

$$
\left\|C_{\phi}(f)\right\|_{\beta}=\sup \left\{\left(1-|z|^{2}\right)^{\beta}\left|(f \circ \phi)^{\prime}(z)\right|: z \in D\right\} \leq \frac{(1+|a|)^{\alpha-1}}{(1-|a|)^{\alpha-1}} \cdot\|f\|_{\alpha}
$$

and C_{ϕ} is a bounded operator of \mathcal{B}^{α} into B^{β}.
Let $w_{n} \rightarrow \partial D$ and $f_{n}=f_{w_{n}}$ be the function defined above for $w=w_{n}$. Assume $\beta>\alpha \geq 1$ first. Then for $z \in D$ and $n=1,2, \ldots$,

$$
\begin{aligned}
\left(1-|z|^{2}\right)^{\beta}\left|\left(f_{n} \circ \phi\right)^{\prime}(z)\right| & =\left(1-|z|^{2}\right)^{\beta}\left|f_{n}^{\prime}(\phi(z))\right|\left|\phi^{\prime}(z)\right| \\
& =\left(1-|z|^{2}\right)^{\beta-1}\left(1-|\phi(z)|^{2}\right)\left|f_{n}^{\prime}(\phi(z))\right| \tau_{\phi}(z)
\end{aligned}
$$

Thus, we have by (1.1),

$$
\begin{equation*}
\left(1-|z|^{2}\right)^{\beta}\left|\left(f_{n} \circ \phi\right)^{\prime}(z)\right| \leq\left|f_{n}^{\prime}(\phi(z))\right| \tag{2.7}
\end{equation*}
$$

and by (1.1), (2.5) and (2.6),

$$
\begin{align*}
\left(1-|z|^{2}\right)^{\beta}\left|\left(f_{n} \circ \phi\right)^{\prime}(z)\right|= & \frac{\left(1-|z|^{2}\right)^{\alpha-1}}{\left(1-|\phi(z)|^{2}\right)^{\alpha-1}}\left(1-|z|^{2}\right)^{\beta-\alpha}\left(1-|\phi(z)|^{2}\right)^{\alpha} \tag{2.8}\\
& \times\left|f_{n}^{\prime}(\phi(z))\right| \tau_{\phi}(z) \\
\leq & 2^{\alpha+1}\left(1-|z|^{2}\right)^{\beta-\alpha} \cdot \frac{(1+|a|)^{\alpha-1}}{(1-|a|)^{\alpha-1}}
\end{align*}
$$

For $\epsilon>0$ by (2.8), there exists an $r<1$ such that

$$
\begin{equation*}
\left(1-|z|^{2}\right)^{\beta}\left|\left(f_{n} \circ \phi\right)^{\prime}(z)\right|<\epsilon \tag{2.9}
\end{equation*}
$$

for $n=1,2, \ldots$ and $|z|>r$. Since $f_{n}^{\prime} \rightarrow 0$ locally uniformly in D by (2.7), there exists an N such that (2.9) holds also for $n>N$ and $|z| \leq r$. This shows that $\left\|C_{\phi}\left(f_{n}\right)\right\|_{\beta} \rightarrow 0$ as $n \rightarrow \infty$. However, $\left\|f_{n}\right\|_{\alpha} \geq 1$ by (2.6). Thus, C_{ϕ} is not bounded below. The proof for the case $\beta \geq 1>\alpha$ is similar to the above. This time, (2.8) is replaced by

$$
\left(1-|z|^{2}\right)^{\beta}\left|\left(f_{n} \circ \phi\right)^{\prime}(z)\right| \leq 2^{\alpha+1}\left(1-|\phi(z)|^{2}\right)^{\beta-\alpha} \cdot \frac{(1+|a|)^{\beta-1}}{(1-|a|)^{\beta-1}}
$$

The proof is complete.

3 Sampling Sets and Pseudo r-Nets

Recently, Ghatage, Zheng and Zorboska [5] introduced the notion of sampling sets for the Bloch space. It can be generalized to α-Bloch spaces automatically. For $\alpha>0$, a subset H of D is called a sampling set for \mathcal{B}^{α} if there exists $k>0$ such that

$$
\|f\|_{\alpha} \leq k \sup \left\{\left(1-|z|^{2}\right)^{\alpha}\left|f^{\prime}(z)\right|: z \in H\right\}
$$

holds for $f \in \mathcal{B}^{\alpha}$. They proved the following theorem in the special case $\alpha=1$, and it can be proved generally in a similar way. From now on, we suppose that $\alpha \geq 1$.

Theorem 3.1 C_{ϕ} is bounded below on \mathcal{B}^{α} if and only if there exists $\epsilon>0$ such that G_{ϵ}^{α} is a sampling set for \mathcal{B}^{α}.

Proof Assume that C_{ϕ} is bounded below on \mathcal{B}^{α}, i.e., $\left\|C_{\phi}(f)\right\|_{\alpha} \geq m\|f\|_{\alpha}$ for $f \in$ \mathcal{B}^{α} with $m>0$ independent of f. Then for $f \in \mathcal{B}^{\alpha}$ with $\|f\|_{\alpha}>0$, there is a $z_{f} \in D$ such that

$$
\tau_{\phi}^{\alpha}\left(z_{f}\right)\left(1-\left|\phi\left(z_{f}\right)\right|^{2}\right)^{\alpha}\left|f^{\prime}\left(\phi\left(z_{f}\right)\right)\right|=\left(1-\left|z_{f}\right|^{2}\right)^{\alpha}\left|\left(C_{\phi}(f)\right)^{\prime}\left(z_{f}\right)\right| \geq(m / 2)\|f\|_{\alpha}
$$

Thus,

$$
\begin{equation*}
\tau_{\phi}^{\alpha}\left(z_{f}\right) \geq m / 2 \quad \text { and } \quad\left(1-\left|\phi\left(z_{f}\right)\right|^{2}\right)^{\alpha}\left|f^{\prime}\left(\phi\left(z_{f}\right)\right)\right| \geq \frac{m(1-|a|)^{\alpha-1}}{2(1+|a|)^{\alpha-1}}\|f\|_{\alpha} \tag{3.1}
\end{equation*}
$$

since $\left(1-\left|\phi\left(z_{f}\right)\right|^{2}\right)^{\alpha}\left|f^{\prime}\left(\phi\left(z_{f}\right)\right)\right| \leq\|f\|_{\alpha}$ and, by (1.1) and (2.5),

$$
\tau_{\phi}^{\alpha}\left(z_{f}\right)=\frac{\left(1-\left|z_{f}\right|^{2}\right)^{\alpha-1} \tau_{\phi}\left(z_{f}\right)}{\left(1-\left|\phi\left(z_{f}\right)\right|^{2}\right)^{\alpha-1}} \leq\left(\frac{1+|a|}{1-|a|}\right)^{\alpha-1}
$$

If we take $\epsilon=m / 2$, by (3.1) G_{ϵ}^{α} contains all $\phi\left(z_{f}\right)$ and is a sampling set for \mathcal{B}^{α}.
Now assume that G_{ϵ}^{α} with some $\epsilon>0$ is a sampling set for \mathcal{B}^{α}. Then, for $f \in \mathcal{B}^{\alpha}$, we have $z_{f} \in D$ such that $\phi\left(z_{f}\right) \in G_{\epsilon}^{\alpha}, \tau_{\phi}\left(z_{f}\right) \geq \epsilon$ and

$$
\|f\|_{\alpha} \leq k \sup \left\{\left(1-|w|^{2}\right)^{\alpha}\left|f^{\prime}(w)\right|: w \in G_{\epsilon}^{\alpha}\right\} \leq 2 k\left(1-\left|\phi\left(z_{f}\right)\right|^{2}\right)^{\alpha}\left|f^{\prime}\left(\phi\left(z_{f}\right)\right)\right|
$$

where $k>0$ is independent of f. Thus,

$$
\begin{aligned}
\left\|C_{\phi}(f)\right\|_{\alpha} & \geq\left(1-\left|z_{f}\right|^{2}\right)^{\alpha}\left|f^{\prime}\left(\phi\left(z_{f}\right)\right) \| \phi^{\prime}\left(z_{f}\right)\right| \\
& =\tau_{\phi}^{\alpha}\left(z_{f}\right)\left(1-\left|\phi\left(z_{f}\right)\right|^{2}\right)^{\alpha}\left|f^{\prime}\left(\phi\left(z_{f}\right)\right)\right| \geq \frac{\epsilon\|f\|_{\alpha}}{2 k}
\end{aligned}
$$

This shows that C_{ϕ} is bounded below on \mathcal{B}^{α}. The theorem is proved.
For $w \in \mathbb{C}$ and $r>0$, we denote by $D(w, r)$ the disk with radius r and centered at w, while for $w \in D$ and $0<r<1$, we denote by $\Delta(w, r)$ the pseudo disk $\Delta(w, r)=$ $\{z \in D: \rho(z, w)<r\}$. Let $\bar{\Delta}(w, r)$ and $\bar{D}(w, r)$ denote their closures respectively.

Theorem 3.2 A sampling set for \mathcal{B}^{α} is a pseudo r-net and, conversely, if E is a pseudo r-net, then for any $\delta>0$, the set $E_{\delta}=\bigcup_{z \in E} \bar{\Delta}(z, \delta)$ is a sampling set for \mathcal{B}^{α}.
Proof First we assume that H is a sampling set for \mathcal{B}^{α}, i.e., there exists a $k>0$ such that

$$
\begin{equation*}
\|f\|_{\alpha} \leq k \sup \left\{\left(1-|z|^{2}\right)^{\alpha}\left|f^{\prime}(z)\right|: z \in H\right\} \quad \text { for } f \in \mathcal{B}^{\alpha} \tag{3.2}
\end{equation*}
$$

Let $w \in D$ and f_{w} be the function defined above. Then by (3.2), there exists a $z \in H$ such that $\left\|f_{w}\right\|_{\alpha} \leq 2 k\left(1-|z|^{2}\right)^{\alpha} \mid f_{w}^{\prime}(z)$, and by (2.6) and (2.3),

$$
\begin{aligned}
1 & \leq 2 k\left(1-|z|^{2}\right)^{\alpha} \left\lvert\, f_{w}^{\prime}(z)=\frac{2 k\left(1-|z|^{2}\right)^{\alpha}\left(1-|w|^{2}\right)}{|1-\bar{w} z|^{\alpha+1}}\right. \\
& =\frac{2 k\left(1-|z|^{2}\right)^{\alpha-1}}{|1-\bar{w} z|^{\alpha-1}} \frac{\left(1-|z|^{2}\right)\left(1-|w|^{2}\right)}{|1-\bar{w} z|^{2}} \leq 2^{\alpha} k\left(1-\left|\phi_{w}(z)\right|^{2}\right)
\end{aligned}
$$

Thus, $\rho(z, w)=\left|\phi_{w}(z)\right| \leq r=\sqrt{1-1 /\left(2^{\alpha} k\right)}$, and H is a pseudo r-net.
Now, we assume that E is a pseudo r-net. We want to prove that E_{δ}, for any δ, is a sampling set for \mathcal{B}^{α}. Suppose on the contrary that there are a $\delta>0$ and a sequence $f_{n} \in \mathcal{B}$ such that

$$
\begin{equation*}
\left\|f_{n}\right\|_{\alpha}=1 \quad \text { for } n=1,2, \ldots \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup \left\{\left(1-|z|^{2}\right)^{\alpha}\left|f_{n}^{\prime}(z)\right|: z \in E_{\delta}\right\}=\epsilon_{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{3.4}
\end{equation*}
$$

For $n=1,2, \ldots$, let $z_{n} \in D$ be such that

$$
\begin{equation*}
\left(1-\left|z_{n}\right|^{2}\right)^{\alpha}\left|f_{n}^{\prime}\left(z_{n}\right)\right| \geq 1 / 2 \tag{3.5}
\end{equation*}
$$

Since E is a pseudo r-net, we have a sequence $z_{n}^{\prime} \in E$ such that $\rho\left(z_{n}^{\prime}, z_{n}\right) \leq r$ for $n=1,2, \ldots$ Let $w_{n}=\phi_{z_{n}^{\prime}}\left(z_{n}\right)$ and $g_{n}=f_{n} \circ \phi_{z_{n}^{\prime}}$ for $n=1,2, \ldots$

Let $n \geq 1$ be fixed. We have

$$
\begin{equation*}
\left|w_{n}\right|=\rho\left(z_{n}^{\prime}, z_{n}\right) \leq r \tag{3.6}
\end{equation*}
$$

and by (2.2), for $w \in D$,

$$
\begin{align*}
\left(1-|w|^{2}\right)^{\alpha}\left|g_{n}^{\prime}(w)\right| & =\left(1-|w|^{2}\right)^{\alpha-1}\left(1-|w|^{2}\right)\left|g_{n}^{\prime}(w)\right| \tag{3.7}\\
& =\left(1-|w|^{2}\right)^{\alpha-1}\left(1-\left|\phi_{z_{n}^{\prime}}(w)\right|^{2}\right)\left|f_{n}^{\prime}\left(\phi_{z_{n}^{\prime}}(w)\right)\right| \\
& =\frac{\left(1-|w|^{2}\right)^{\alpha-1}}{\left(1-\left|\phi_{z_{n}^{\prime}}(w)\right|^{2}\right)^{\alpha-1}} \cdot\left(1-\left|\phi_{z_{n}^{\prime}}(w)\right|^{2}\right)^{\alpha}\left|f_{n}^{\prime}\left(\phi_{z_{n}^{\prime}}(w)\right)\right|
\end{align*}
$$

It follows from (3.7), (2.4) and (3.3) that

$$
\begin{equation*}
\left(1-|w|^{2}\right)^{\alpha}\left|g_{n}^{\prime}(w)\right| \leq \frac{\left(1+\left|z_{n}^{\prime}\right|\right)^{\alpha-1}}{\left(1-\left|z_{n}^{\prime}\right|\right)^{\alpha-1}} \leq \frac{4^{\alpha-1}}{\left(1-\left|z_{n}^{\prime}\right|^{2}\right)^{\alpha-1}} \quad \text { for } w \in D \tag{3.8}
\end{equation*}
$$

In particular, letting $w=w_{n}$ in (3.7) and by (2.1), (3.5) and (3.6), we have

$$
\begin{align*}
\left(1-\left|w_{n}\right|^{2}\right)^{\alpha}\left|g_{n}^{\prime}\left(w_{n}\right)\right| & =\frac{\left(1-\left|w_{n}\right|^{2}\right)^{\alpha-1}}{\left(1-\left|\phi_{z_{n}^{\prime}}\left(w_{n}\right)\right|^{2}\right)^{\alpha-1}} \cdot\left(1-\left|\phi_{z_{n}^{\prime}}\left(w_{n}\right)\right|^{2}\right)^{\alpha}\left|f_{n}^{\prime}\left(\phi_{z_{n}^{\prime}}\left(w_{n}\right)\right)\right| \tag{3.9}\\
& =\frac{\left(1-\left|w_{n}\right|^{2}\right)^{\alpha-1}}{\left(1-\left|z_{n}\right|^{2}\right)^{\alpha-1}} \cdot\left(1-\left|z_{n}\right|^{2}\right)^{\alpha}\left|f_{n}^{\prime}\left(z_{n}\right)\right| \\
& \geq \frac{1}{2\left|\phi_{z_{n}^{\prime}}^{\prime}\left(w_{n}\right)\right|^{\alpha-1}} \\
& =\frac{\left|1-\bar{z}_{n}^{\prime} w_{n}\right|^{2}}{2\left(1-\left|z_{n}^{\prime}\right|^{2}\right)} \geq \frac{(1-r)^{2}}{2\left(1-\left|z_{n}^{\prime}\right|^{2}\right)}
\end{align*}
$$

If $|w| \leq \delta$, then $\rho\left(\phi_{z_{n}^{\prime}}(w), z_{n}^{\prime}\right)=\rho\left(\phi_{z_{n}^{\prime}}(w), \phi_{z_{n}^{\prime}}(0)\right)=\rho(w, 0)=|w| \leq \delta$ and consequently, $\phi_{z_{n}^{\prime}}(w) \in E_{\delta}$. Thus, by (3.4), $\left(1-\left|\phi_{z_{n}^{\prime}}(w)\right|^{2}\right)^{\alpha}\left|f_{n}^{\prime}\left(\phi_{z_{n}^{\prime}}(w)\right)\right| \leq \epsilon_{n}$, and by (3.7) and (2.4),

$$
\begin{equation*}
\left(1-|w|^{2}\right)^{\alpha}\left|g_{n}^{\prime}(w)\right| \leq \frac{\epsilon_{n}\left(1+\left|z_{n}^{\prime}\right|\right)^{\alpha-1}}{\left(1-\left|z_{n}^{\prime}\right|\right)^{\alpha-1}} \leq \frac{4^{\alpha-1} \epsilon_{n}}{\left(1-\left|z_{n}^{\prime}\right|^{2}\right)^{\alpha-1}} \quad \text { for }|w| \leq \delta \tag{3.10}
\end{equation*}
$$

For $n=1,2, \ldots$, let $h_{n}(w)=\left(1-\left|z_{n}^{\prime}\right|^{2}\right)^{\alpha-1} g_{n}^{\prime}(w)$ for $w \in D$. By (3.8), h_{n} is bounded locally uniformly in D. Using Montel's theorem and choosing a subsequence if necessary, we may assume that h_{n} converges to a holomorphic function h, locally uniformly in D, and $w_{n} \rightarrow w_{0}$ with $\left|w_{0}\right| \leq r$ because of (3.6). Letting $n \rightarrow \infty$ in (3.9) and (3.10), we obtain $\left|h\left(w_{0}\right)\right| \geq(1-r)^{2} /\left(2\left(1-\left|w_{0}\right|^{2}\right)^{\alpha}\right)$ and $h(w)=0$ for $|w| \leq \delta$. We arrive at a contradiction and it is proved that E_{δ} is a sampling set for any δ. The theorem is proved.

4 The Main Result and Its Proof

Lemma 4.1 Let h be a holomorphic self-mapping of D such that $h(0)=0$. If $\left|h^{\prime}(0)\right| \geq \epsilon>0$, then there exist $\delta_{1}, \delta_{2}>0$, depending only on ϵ, such that
(i) $\left|h^{\prime}(z)\right| \geq \epsilon / 2$ for $z \in D\left(0, \delta_{1}\right)$,
(ii) $\bar{D}\left(0, \delta_{2}\right) \subset h\left(D\left(0, \delta_{1}\right)\right)$.

Proof First we want to prove that there exists a $\delta_{1}>0$ with property (i). Suppose on the contrary that there exists a sequence of functions h_{n} which satisfies the assumption for h in the lemma, and a sequence $z_{n} \rightarrow 0$, such that $h_{n}^{\prime}\left(z_{n}\right)<\epsilon / 2$ for $n=1,2, \ldots$ Using Montel's theorem, we may assume that h_{n} converges to h_{0} locally uniformly in D. Then $h_{0}^{\prime}(0)=\lim h_{n}^{\prime}(0) \geq \epsilon$. On the other hand, since $z_{n} \rightarrow 0$ and $h_{n}^{\prime}\left(z_{n}\right)<\epsilon / 2$ for $n=1,2, \ldots$, we have $h_{0}^{\prime}(0)=\lim h_{n}^{\prime}\left(z_{n}\right) \leq \epsilon / 2$, a contradiction. The existence of δ_{1} satisfying (i) is proved.

Now we fix $\delta_{1}>0$ that satisfies (i). To prove the existence of δ_{2}, suppose that there exists a sequence of functions h_{n} which satisfies the assumption for h in the lemma and a sequence $w_{n} \rightarrow 0$ such that h_{n} does not assume w_{n} in $D\left(0, \delta_{1}\right)$ for $n=1,2, \ldots$ Using Montel's theorem again, we may assume that h_{n} converges to h_{0} locally uniformly in D. Then $h_{0}(0)=0,\left|h_{0}^{\prime}(0)\right| \geq \epsilon$, and h_{0} is not a constant. Thus, by using Rouché's theorem, a usual argument shows that there exist a $\delta^{\prime}>0$ and a positive integer N such that h_{n} assumes every $w \in D\left(0, \delta^{\prime}\right)$ in $D\left(0, \delta_{1}\right)$ if $n>N$. We arrive at a contradiction again and the lemma is proved.

Lemma 4.2 For $\epsilon>0$, there exist $\delta, \epsilon^{\prime}>0$, which depend on $|\phi(0)|, \epsilon$ and α only, such that

$$
\left(G_{\epsilon}^{\alpha}\right)_{\delta}=\bigcup_{w^{\prime} \in G_{\epsilon}^{\alpha}} \bar{\Delta}\left(w^{\prime}, \delta\right) \subset G_{\epsilon^{\prime}}^{\alpha}
$$

Proof Let $w^{\prime}=\phi\left(z^{\prime}\right) \in G_{\epsilon}^{\alpha}$ and $\tau_{\phi}^{\alpha}\left(z^{\prime}\right) \geq \epsilon$, and let $h=\phi_{w^{\prime}} \circ \phi \circ \phi_{z^{\prime}}$. It follows from

$$
\epsilon \leq \tau_{\phi}^{\alpha}\left(z^{\prime}\right)=\frac{\left(1-\left|z^{\prime}\right|^{2}\right)^{\alpha-1} \tau_{\phi}\left(z^{\prime}\right)}{\left(1-\left|w^{\prime}\right|^{2}\right)^{\alpha-1}}
$$

and $\tau_{\phi}\left(z^{\prime}\right) \leq 1$ that

$$
\begin{equation*}
\frac{\left(1-\left|z^{\prime}\right|^{2}\right)^{\alpha-1}}{\left(1-\left|w^{\prime}\right|^{2}\right)^{\alpha-1}} \geq \epsilon \tag{4.1}
\end{equation*}
$$

We have by (2.5),

$$
\left|h^{\prime}(0)\right|=\frac{\left(1-\left|z^{\prime}\right|^{2}\right)\left|\phi^{\prime}\left(z^{\prime}\right)\right|}{1-\left|w^{\prime}\right|^{2}}=\frac{\left(1-\left|w^{\prime}\right|^{2}\right)^{\alpha-1} \tau_{\phi}^{\alpha}\left(z^{\prime}\right)}{\left(1-\left|z^{\prime}\right|^{2}\right)^{\alpha-1}} \geq \frac{(1-|a|)^{\alpha-1} \epsilon}{(1+|a|)^{\alpha-1}}=\epsilon_{1}
$$

By the above lemma, there exist $\delta_{1}, \delta_{2}>0$ satisfying (i) and (ii) with ϵ replaced by ϵ_{1}.
For $w \in \bar{\Delta}\left(w^{\prime}, \delta_{2}\right)$, let $\omega=\phi_{w^{\prime}}(w) \in \bar{D}\left(0, \delta_{2}\right)$. Then by (i) and (ii), there exists a $\zeta \in D\left(0, \delta_{1}\right)$ such that $h(\zeta)=\omega$ and $h^{\prime}(\zeta) \geq \epsilon_{1} / 2$. Let $z=\phi_{z^{\prime}}(\zeta)$. Then $\phi(z)=w$ and by (2.1) and (4.1),

$$
\begin{aligned}
\tau_{\phi}^{\alpha}(z) & =\frac{\left(1-|z|^{2}\right)^{\alpha}\left|\phi^{\prime}(z)\right|}{\left(1-|w|^{2}\right)^{\alpha}} \\
& =\frac{\left(1-|z|^{2}\right)^{\alpha}}{\left(1-|\zeta|^{2}\right)^{\alpha}} \frac{\left(1-|\zeta|^{2}\right)^{\alpha}}{\left(1-|\omega|^{2}\right)^{\alpha}} \frac{\left(1-|\omega|^{2}\right)^{\alpha}}{\left(1-|w|^{2}\right)^{\alpha}} \cdot\left|\phi_{w^{\prime}}^{\prime}(\omega) h^{\prime}(\zeta) \phi_{z^{\prime}}(z)\right| \\
& \geq \frac{\epsilon_{1}}{2} \frac{\left|\phi_{z^{\prime}}^{\prime}(\zeta)\right|^{\alpha-1}}{\left|\phi_{w^{\prime}}^{\prime}(\omega)\right|^{\alpha-1}} \frac{\left(1-|\zeta|^{2}\right)^{\alpha}}{\left(1-|\omega|^{2}\right)^{\alpha}} \geq \frac{\epsilon_{1}}{2} \frac{\left(1-\delta_{2}\right)^{2(\alpha-1)}\left(1-\delta_{1}^{2}\right)^{\alpha}}{\left(1+\delta_{1}\right)^{2(\alpha-1)}} \frac{\left(1-\left|z^{\prime}\right|^{2}\right)^{\alpha-1}}{\left(1-\left|w^{\prime}\right|^{2}\right)^{\alpha-1}} \\
& \geq \frac{\epsilon_{1} \epsilon}{2} \frac{\left(1-\delta_{2}\right)^{2(\alpha-1)}\left(1-\delta_{1}^{2}\right)^{\alpha}}{\left(1+\delta_{1}\right)^{2(\alpha-1)}}=\epsilon^{\prime}
\end{aligned}
$$

This shows that $\bar{\Delta}\left(w^{\prime}, \delta_{2}\right) \subset G_{\epsilon^{\prime}}^{\alpha}$ for $w^{\prime} \in G_{\epsilon}^{\alpha}$. The lemma is proved.
Now our main result follows directly from Lemma 4.2 and Theorems 3.1 and 3.2.
Theorem 4.3 C_{ϕ} is bounded below on \mathcal{B}^{α} if and only if there exist an $\epsilon>0$ and an r with $0<r<1$ such that G_{ϵ}^{α} is a pseudo r-net.

Proof If C_{ϕ} is bounded below, by using Theorem 3.1, there exists an $\epsilon>0$ such that G_{ϵ}^{α} is a sampling set for \mathcal{B}^{α} and, consequently, is a pseudo r-net with $0<r<1$ by Theorem 3.2. Conversely, assume that there exist an $\epsilon>0$ and an r with $0<r<1$ such that G_{ϵ}^{α} is a pseudo r-net. Then by Lemma 4.2, there exist $\delta, \epsilon^{\prime}>0$ such that $\left(G_{\epsilon}^{\alpha}\right)_{\delta} \subset G_{\epsilon^{\prime}}^{\alpha}$. Using Theorem 3.2, we see that $\left(G_{\epsilon}^{\alpha}\right)_{\delta}$ is a sampling set for \mathcal{B}^{a} and, consequently, so is $G_{\epsilon^{\prime}}^{\alpha}$, since $\left(G_{\epsilon}^{\alpha}\right)_{\delta} \subset G_{\epsilon^{\prime}}^{\alpha}$. The theorem is proved.

We proved our main result by using Theorems 3.1 and 3.2, in which the notion of sample set is involved. In fact, it can be proved in a more direct way, without making use of the notion of sample set, as in [3] for $\alpha=1$.

Remark If $\alpha>1$, by (1.1) and (2.5), $\tau_{\phi}^{\alpha}(z) \geq \epsilon$ implies

$$
\frac{1-|z|^{2}}{1-|\phi(z)|^{2}} \geq \epsilon^{1 /(\alpha-1)} \quad \text { and } \quad \tau_{\phi}(z) \geq \frac{(1-|a|)^{\alpha-1} \epsilon}{(1+|a|)^{\alpha-1}}
$$

Conversely, $\tau_{\phi}^{\alpha}(z) \geq \epsilon^{\alpha+1}$ if

$$
\frac{1-|z|^{2}}{1-|\phi(z)|^{2}} \geq \epsilon \quad \text { and } \quad \tau_{\phi}(z) \geq \epsilon
$$

So, if we define

$$
\Omega_{\epsilon}^{\prime}=\left\{z: \tau_{\phi}(z) \geq \epsilon, \frac{1-|z|^{2}}{1-|\phi(z)|^{2}} \geq \epsilon\right\}, \quad G_{\epsilon}^{\prime}=\phi\left(\Omega_{\epsilon}^{\prime}\right)
$$

then G_{ϵ}^{α} can be replaced by G_{ϵ}^{\prime} in Theorem 4.3 in the case $\alpha>1$. As a consequence, if C_{ϕ} is bounded below on \mathcal{B}^{α} for some $\alpha>1$, then so is C_{ϕ} for all $\alpha \geq 1$. In the following section, we will give an example of the function ϕ to show that it is really possible that C_{ϕ} is bounded below on \mathcal{B}, but not on \mathcal{B}^{α} with $\alpha>1$.

5 An example

Let ϕ be the conformal mapping of D to the domain

$$
\Lambda=\{w: 0<|w|<1,0<\arg w<2 \pi\}
$$

which is the unit disk with the positive radius l (including the origin) deleted, such that $\phi(1)=0$ and $\phi(\pm i)=1$. Define $U=\bigcup_{w^{\prime} \in l} \Delta\left(w^{\prime}, 1 / 2\right)$. We claim that $E=D \backslash U \subset G_{1 / 2}$. In fact, if $w=\phi(z) \in E$, then $\Delta(w, 1 / 2) \subset \Lambda, \lambda=\phi_{z} \circ \phi^{-1} \circ \phi_{w}$ is holomorphic on the disk $D(0,1 / 2)$ and $\lambda(0)=0$. Thus, by the Schwarz lemma,

$$
2 \geq\left|\lambda^{\prime}(0)\right|=\frac{1-|w|^{2}}{\left(1-|z|^{2}\right)\left|\phi^{\prime}(z)\right|}=\tau_{\phi}(z)^{-1}
$$

To show that E is a pseudo r-net with $r<1$, we fix a pseudo disk $\Delta\left(w^{\prime}, 1 / 2\right)$ with $w^{\prime} \in l$. Then $\phi_{w^{\prime}}(i / 2)$ is a point in $\partial \Delta\left(w^{\prime}, 1 / 2\right)$ and has a pseudo distance greater than $1 / 2$ to points in l other than w^{\prime}. So $\phi_{w^{\prime}}(i / 2) \in E$ and $\rho\left(w, \phi_{w^{\prime}}(i / 2)\right)<r$ for $w \in \Delta\left(w^{\prime}, 1 / 2\right)$ with $r=4 / 5$. Since w^{\prime} may be an arbitrary point, it is proved that E is a pseudo $4 / 5$-net and, consequently, $G_{1 / 2}$ is also. Thus, C_{ϕ} is bounded below on \mathcal{B}.

It follows from the general theory of conformal mappings that $\left(\phi^{-1}\right)^{\prime}(w) \rightarrow 0$ as $w \rightarrow 1$. In fact, it is easy to verify, since in our special case,

$$
\psi^{-1}\left(\phi^{-1}(\psi(\omega))\right)=-i \sqrt{1+\omega^{2}}
$$

where $\psi(\omega)=-(\omega-1) /(\omega+1)$. Thus,

$$
\frac{1-|z|^{2}}{1-|w|^{2}} \rightarrow 0 \quad \text { as } w \rightarrow 1
$$

since

$$
\tau_{\phi}(z)^{-1}=\frac{\left(1-|w|^{2}\right)\left|\left(\phi^{-1}\right)^{\prime}(w)\right|}{1-|z|^{2}} \geq 1 \quad \text { for } w \in \Lambda
$$

For $\epsilon>0$, there exists a $\delta>0$ such that $\left(1-|z|^{2}\right) /\left(1-|w|^{2}\right)<\epsilon$ for $w \in \Lambda \cap D(1, \delta)$, i.e., $(D \cap D(1, \delta)) \cap G_{\epsilon}^{\prime}=\varnothing$. Since $D \cap D(1, \delta)$ contains a pseudo disk with pseudo radius sufficiently close to 1 , we see that G_{ϵ}^{\prime} cannot be a pseudo r-net for any $r<1$. By Theorem 4.3 and the remark, we assert that C_{ϕ} is not bounded below on \mathcal{B}^{α} with $\alpha>1$.

References

[1] L. V. Ahlfors, Conformal Invariants Topics in Geometric Function Theory. McGraw-Hill, New York, 1973.
[2] J. M. Anderson, J. Clunie, and C. Pommerenke, On Bloch functions and normal functions. J. Reine Angew. Math. 240(1974), 12-37.
[3] H. Chen, Boundedness from below of composition operators on the Bloch spaces, Science in China, Ser. A 46 (2003), no. 6, 838-946.
[4] P. Ghatage, J. Yan, and D. Zheng, Composition operators with closed range on the Bloch space. Proc. Amer. Math. Soc. 129(2000), no. 6, 2039-2044.
[5] P. Ghatage, D. Zheng, and N. Zorboska, Sampling sets and closed range composition operators on the Bloch space. Proc. Amer. Math. Soc. 133(2005), 1371-1377.
[6] K. Zhu, Bloch type spaces of analytic functions. Rocky Mountain J. Math. 23(1993), 1143-1177.

Department of Mathematics, Nanjing Normal University, Nanjing 210097, P. R. China
e-mail: hhchen@njnu.edu.cn
Mathématiques et Statistique, CP-6128 Centre Ville, Université de Montréal, Montréal, PQ, H3C3J7
e-mail: gauthier@dms.umontreal.ca

[^0]: Received by the editors November 29, 2005.
 The authors' research was supported by NSFC(China) and NSERC(Canada)
 AMS subject classification: Primary: 32A18; secondary: 30 H 05 .
 Keywords: Bloch functions, composition operators.
 (c)Canadian Mathematical Society 2008.

