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We study the topology and the temporal dynamics of turbulent Rayleigh–Bénard
convection in a liquid metal with a Prandtl number of 0.03 located inside a box with a
square base area and an aspect ratio of Γ = 5. Experiments and numerical simulations
are focused on the Rayleigh number range 6.7 × 104 � Ra � 3.5 × 105, where a new
cellular flow regime has been reported previously (Akashi et al., Phys. Rev. Fluids, vol. 4,
2019, 033501). This flow structure shows symmetries with respect to the vertical planes
crossing at the centre of the container. The dynamic behaviour is dominated by strong
three-dimensional oscillations with a period length that corresponds to the turnover time.
Our analysis reveals that the flow structure in the Γ = 5 box corresponds in key features
to the jump rope vortex structure, which has recently been discovered in a Γ = 2 cylinder
(Vogt et al., Proc. Natl Acad. Sci. USA, vol. 115, 2018, pp. 12674–12679). While in the
Γ = 2 cylinder a single jump rope vortex occurs, the coexistence of four recirculating
swirls is detected in this study. Their approach to the lid or the bottom of the convection
box causes a temporal deceleration of both the horizontal velocity at the respective
boundary and the vertical velocity in the bulk, which in turn is reflected in Nusselt
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number oscillations. The cellular flow regime shows remarkable similarities to properties
commonly attributed to turbulent superstructures.

Key words: Bénard convection, thermal turbulence, low Prandtl number

1. Introduction

Rayleigh–Bénard convection (RBC) is a classical problem in fluid dynamics that has been
studied for more than 100 years and serves as a model system for thermally driven flows in
nature and engineering (Bénard 1900; Chandrasekhar 1961; Ahlers, Grossmann & Lohse
2009; Chillà & Schumacher 2012). The RBC configuration considers a fluid exposed
to a destabilizing vertical temperature gradient between two plane-parallel plates and is
described by the Rayleigh number, the Prandtl number and the aspect ratio of the fluid
volume:

Ra = αg�TH3

κν
, Pr = ν

κ
, Γ = L

H
, (1.1a–c)

where α, κ and ν stand for the thermal expansion coefficient, thermal diffusivity
and kinematic viscosity of the fluid. The symbols g and �T denote the gravitational
acceleration and the vertical temperature difference in a fluid layer of thickness H and
characteristic horizontal dimension L. Convection occurs when the fluid is sufficiently
heated from below and cooled from above. Warm fluid rises towards the lid and cold fluid
sinks to the bottom. This leads to large-scale flows with a spatial extent of the order of the
height of the container H.

The flow fields show manifold patterns and can become quite complex. A large-scale
circulation (LSC), which is also called the ‘wind of turbulence’ (Krishnamurti & Howard
1981; Niemela et al. 2001; Ahlers et al. 2009; Xi et al. 2009), can be observed in a wide
range of parameters. There are opposing opinions in the literature as to whether the LSC
at large Ra develops directly from the steady flow patterns at small Ra (Busse, Zaks
& Brausch 2003; Hartlep, Tilgner & Busse 2003) or whether this is a turbulent mode
independent of it (Krishnamurti & Howard 1981). The vast majority of studies to date
have focused on the generic configuration of a cylinder with aspect ratio unity (Ahlers et al.
2009). Here, the LSC exists in the form of a single circulation roll. To a first approximation
one can assume that the single-roll LSC has a vertical planar structure where the fluid
elements mainly follow an approximately circular or elliptical path (Villermaux 1995;
Funfschilling & Ahlers 2004; Brown & Ahlers 2009; Xi et al. 2009; Zhou et al. 2009).
This structure usually exhibits distinct oscillations, which are attributed to torsional and
sloshing modes (Funfschilling & Ahlers 2004; Sun, Xia & Tong 2005b; Brown & Ahlers
2009; Xi et al. 2009; Zhou et al. 2009; Stevens, Clercx & Lohse 2011). Torsion means
that the transverse flow on both horizontal walls performs azimuthal oscillations, whereby
a phase shift of 180◦ can usually be observed between the upper half and the lower
half (Brown & Ahlers 2009; Zürner et al. 2019). This is connected with the sloshing
mode which describes a gradual horizontal displacement of the circulation roll (Brown &
Ahlers 2009). The periodicity of both oscillation modes coincides with the turnover time
τto = LLSC/vLSC ≈ πH/vLSC, where vLSC and LLSC are the typical velocity magnitude
and path length of the LSC, respectively (Zürner et al. 2019). Reorientations of the LSC
occur on longer time scales, which can be caused by a rotation of the LSC plane or a
cessation of the flow structure (Brown, Nikolaenko & Ahlers 2005). Azimuthal rotations
of the LSC occur preferably in cylindrical geometries, because the LSC plane becomes
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very likely locked in a predominant orientation in the convection cell with rectangular
or square cross-sections (Ahlers et al. 2009). In these geometries, the LSC preferentially
aligns along one or the other diagonal. Orientation changes between the two diagonal
planes are also observed, which result from a lateral rotation of the LSC (Bai, Ji & Brown
2016). During this, the LSC spends some finite time in a transition state in which the LSC
plane is temporarily oriented parallel to a set of sidewalls (Foroozani et al. 2017).

Variations of the geometry of convection cell, in particular the aspect ratio, have a
substantial impact on the large-scale structure of the flow. It turns out that the single-roll
LSC represents only the special case of a large-scale flow for a cylinder with aspect
ratio unity and the flow pattern becomes more complex the greater the distance from
configurations with Γ = 1. Two or more rolls one above the other can exist in tall cylinders
(Γ < 1) (Verzicco & Camussi 2003; Amati et al. 2005; Tsuji et al. 2005; Sun, Xi & Xia
2005a; Stringano & Verzicco 2006; Xi & Xia 2008), while in flat containers (Γ > 1)
multiple rolls occur side by side or combinations of rolls and cell structures are observed
(Hartlep et al. 2003; von Hardenberg et al. 2008; Bailon-Cuba, Emran & Schumacher
2010; Yanagisawa et al. 2010; Emran & Schumacher 2015; Pandey, Scheel & Schumacher
2018; Schneide et al. 2018; Stevens et al. 2018; Sakievich, Peet & Adrian 2016, 2020;
Krug, Lohse & Stevens 2020). Recent studies in shallow fluid layers at very large aspect
ratios up to Γ = 128 revealed the existence of coherent flow structures that are not affected
by the lateral boundary conditions. These structures survive against the background of
high-frequency turbulent fluctuations for time scales being considerably longer than the
turnover time during which a fluid package covers a complete circulation within the
structure (Emran & Schumacher 2015; Pandey et al. 2018; Schneide et al. 2018; Stevens
et al. 2018; Krug et al. 2020). The horizontal extent of these turbulent superstructures
exceeds the height of the fluid layer by several times. Pandey et al. (2018) suggested
that these turbulent superstructures can be retraced up to flow patterns that are formed
immediately after the onset of convection.

Compared with the large number of studies dealing with convection in the generic aspect
ratio unity or for the case of Γ � 1, the region of moderate aspect ratios has been sparsely
studied so far. Thus, it is still an open question as to how the transition from a single-roll
LSC to turbulent superstructures proceeds with increasing Γ . In experiments performed in
air (Pr = 0.7), du Puits, Resagk & Thess (2007) observed the breakdown of the single-roll
LSC to an oscillatory two-roll structure when the aspect ratio exceeds a critical value of
1.68. Further increase of Γ beyond 3.66 causes the emergence of an unstable multi-roll
regime. Both thresholds are not necessarily universal, since a dependence on Ra and Pr
must also be taken into account. The authors suggest the second value of Γ as a lower
limit above which the turbulent convection reaches a state which becomes unaffected by
the influence of the lateral walls.

Turbulent RBC in moderate aspect ratios has also been addressed by a few studies using
direct numerical simulations. Bailon-Cuba et al. (2010) investigated thermal turbulence
in an air layer (Pr = 0.7) in a cylindrical geometry as a function of the aspect ratio in
the range 0.5 � Γ � 12 for Ra between 107 and 109. The authors evaluated the heat
transport in connection with transitions in flow patterns. The observed large-scale flow
consists of multiple rolls or cellular structures with a pentagonal or hexagonal symmetry.
These patterns appear to be similar to those observed at slightly supercritical conditions
close to the onset of convection for sufficiently large aspect ratios. Sakievich et al. (2016)
reported the formation of hub-and-spoke structures as long-living coherent structures in
a cylindrical domain at Γ = 6.3 for Pr = 6.7 and Ra = 9.6 × 107. The flow patterns,
which persist over about 600 free-fall times, appear to be similar to those obtained by
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Bailon-Cuba et al. (2010). The authors suggest an analogy to the ‘wind of turbulence’
occurring in RBC at low aspect ratios. A further study by Sakievich et al. (2020)
provides a continuation of the characterization of this particular regime by Fourier modal
decomposition and by an extension of the total run time of the simulations covering more
than 3000 free-fall times. The authors showed that compared to the standard case at Γ = 1,
the flow dynamics covers much longer time scales of the order of hundreds to thousands
of free-fall times. This is explained by the fact that coherent structures with larger length
scales can establish themselves in increasing-aspect-ratio domains.

A recent experiment conducted by Vogt et al. (2018a) in a cylinder with aspect ratio
Γ = 2 revealed a completely new, and until then unexpected feature of the LSC. Their
measurements in liquid gallium (Pr = 0.027) detected a strong fluctuating flow along
a measuring line that was not within the plane of the LSC. This observation cannot
be reconciled with the conventional image of a quasi-two-dimensional LSC plane that
only performs torsional and sloshing oscillations. Accompanying numerical simulations
in Γ = 2 and Γ = √

2 revealed a complex three-dimensional flow structure resembling
a twirling jump rope. Since the existence of this jump rope vortex (JRV) has not yet
been demonstrated in any other geometry, it raises the question as to whether this new
LSC mode is a general property for RBC flows in various geometries of different aspect
ratios or whether it is a special feature for a small specific range of Γ. It is known that
at aspect ratios of Γ ≈ 2 . . . 3 a transition range of the LSC from a single-roll regime to
adjacent double rolls occurs (Bailon-Cuba et al. 2010). In the vicinity of such transitions,
the formation of unconventional flow structures could possibly occur.

In this paper, we report a combined experimental and numerical work which considers
the turbulent RBC in a cuboid container with square horizontal cross-section of aspect
ratio 5 and continues a previous experimental study made by Akashi et al. (2019). We
use the eutectic metal alloy GaInSn (Pr = 0.03) as working fluid. Low-Pr convection is
characterized by a high thermal diffusivity and an enhanced production rate of vorticity
and shear which amplifies the small-scale intermittency and turbulence in the flow (Scheel
& Schumacher 2017). The dominant influence of inertia in low-Pr fluids qualifies them as a
suitable object of investigation with respect to the formation and the dynamical behaviour
of coherent flow structures in turbulent RBC. Several flow regimes were detected by
Akashi et al. (2019) in the Ra range 7.9 × 103 � Ra � 3.5 × 105. An increase of Ra causes
an increasing horizontal wavelength of the flow structure and a conversion from a four-roll
pattern via transient four- and three-roll regimes to a cellular flow regime. This cellular
structure is subject to pronounced regular oscillations, whose period corresponds to the
turnover time, but proves to be quite stable over a long period of time. The evaluation
of the temperature and velocity signals demonstrated that the flow in the investigated Ra
number range is turbulent. The previous study by Akashi et al. (2019) was not designed to
uncover individual details of the cellular flow structure or to provide information about the
changes that the structures undergo during the distinct oscillations. The motivation of the
present study is to investigate the nature of these oscillations in more detail and to reveal
the internal dynamics.

The paper is organized as follows. In § 2 we present a description of the experimental
set-up and the numerical model. Section 3 reports on ultrasonic measurements of
the flow structure and its temporal behaviour. Corresponding results obtained from
numerical simulations are presented with respect to the three-dimensional flow structure,
the dominating frequencies and the transport properties. A quantitative comparison of
these data with the experimental findings confirms the reliability of our numerical
approach. Section 4 is dedicated to the detailed analysis of the complex three-dimensional
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Figure 1. Experimental set-up and arrangement of measurement lines: (a) top view and (b) side view, where
light blue lines indicate the ultrasonic measurement lines.

oscillations of the cellular pattern. Moreover, the consequences of the periodic changes of
the flow field on heat transport are investigated.

2. Experimental methods and numerical scheme

2.1. Experimental set-up
The set-up employed for the experiments is almost identical to that used in previous
studies (Tasaka et al. 2016; Vogt et al. 2018b; Akashi et al. 2019; Tasaka et al. 2021;
Vogt et al. 2021; Yang, Vogt & Eckert 2021) to which the reader is referred for a detailed
description. A noteworthy difference from our previous study (Akashi et al. 2019) is that
additional measuring positions for the velocity sensors have been placed at the mid-height
of the fluid container in order to better compare the flow structures found here with
the results reported by Vogt et al. (2018a). Figure 1 shows schematics of the container
and the arrangement of the ultrasonic measurement lines. The fluid layer has a square
horizontal cross-section of L × L = 200 × 200 mm2 and a height H of 40 mm, resulting
in an aspect ratio of Γ = 5. In the vertical direction the fluid layer is bordered by two
copper plates, whose temperatures, Tbot and Ttop, are kept constant by water circulation
in branched channels inside the plates. The water temperatures are controlled by external
thermostats. The vertical temperature difference �T = Tbot − Ttop is varied between 3.0
and 15.5 K corresponding to the Ra range from 6.7 × 104 to 3.5 × 105. The sidewalls are
made of electrically non-conducting polyvinyl chloride. The entire fluid layer is encased
in 30 mm closed-cell foam to minimize heat loss. The working fluid is the eutectic alloy
Ga67In20.5Sn12.5 that is liquid at room temperature. Temperature-dependent data of the
thermo-physical properties can be found in Plevachuk et al. (2014). In particular, for a
temperature of 25 ◦C the following values are reported: density ρ = 6360 kg m−3, thermal
expansion coefficient α = 1.24 × 10−4 K−1, kinematic viscosity ν = 3.4 × 10−7 m2 s−1

and thermal diffusivity κ = 1.03 × 10−5m2 s−1. This gives a Prandtl number of Pr =
0.033. The thermal diffusion time for the fluid layer, tκ = H2/κ , is 155 s. Table 1 presents
the Ra investigated in the experiments together with the corresponding values for the
free-fall velocity uff = √

gα�TH and the free-fall time tff = √
H/(gα�T) resulting from

the respective temperature difference �T .
Due to the limited possibilities for measuring fluid velocities in liquid metals, the

majority of previous experimental studies of liquid metal convection were largely restricted
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Ra Pr uff (mm s−1) tff (s)

6.7 × 104 0.033 12.28 3.28
8.6 × 104 0.033 13.84 2.88
9.0 × 104 0.033 14.19 2.82
1.0 × 105 0.033 15.43 2.59
1.2 × 105 0.033 16.48 2.43
1.5 × 105 0.033 18.40 2.17
1.8 × 105 0.033 19.67 2.03
2.2 × 105 0.033 21.98 1.81
2.6 × 105 0.033 24.00 1.67
3.5 × 105 0.033 27.84 1.43

Table 1. Parameters for the experiments including the Rayleigh number Ra, the Prandtl number Pr, the
free-fall velocity uff and the free-fall time tff .

to the description of heat transfer in the system and the measurement of temperatures and
their fluctuations (Takeshita et al. 1996; Cioni, Cilberto & Sommeria 1997; Segawa, Naert
& Sano 1998; Horanyi, Krebs & Müller 1999; Burr & Müller 2001). The development of
the ultrasonic Doppler technique for flow measurements in liquid metals (Takeda 1987;
Eckert & Gerbeth 2002) enables an experimental determination of flow structures in
low-Pr liquid metal convection (Cramer, Zhang & Eckert 2004; Mashiko et al. 2004;
Yanagisawa et al. 2010, 2013; Tasaka et al. 2016; Zürner et al. 2019; Tasaka et al. 2021;
Vogt et al. 2021; Yang et al. 2021). This powerful technique was successfully used in
the previous study by Akashi et al. (2019) to identify the individual flow regimes and is
also employed here. It provides instantaneous profiles of the velocity component projected
onto each measurement line, ux(x, t) and uy( y, t), respectively. The spatial resolution of
the velocity measurements is 1.4 mm in the direction of the ultrasonic beam line and about
5 to 8 mm in the direction perpendicular to it. The velocity resolution is about 0.5 mm s−1

and a temporal resolution of 0.6 s is achieved. The measurement instrument (DOP 3010,
Signal Processing SA) is applied in combination with ultrasonic transducers having a basic
frequency of 8 MHz and a piezo-element with an active diameter of 5 mm. These sensors,
which are mounted horizontally inside holes drilled into the sidewalls of the container,
are in direct contact with the liquid metal. In general, velocity probes can be installed
at sidewalls at different heights. In the present study, measurement results are obtained
along three measurement lines (shown as light blue lines in figure 1), designated as
Middle1, Middle2 and Bottom. Middle1 and Middle2 are at the mid-height of the container
(z = 0.5H) and Bottom is situated close to the bottom plate (z = 0.25H). The velocity
profiles along each measurement line are acquired sequentially by multiplexing.

2.2. Numerical scheme
For the numerical simulation, a Boussinesq fluid in a cuboid container with a square
horizontal cross-section and an aspect ratio of Γ = 5 is considered. Here, we used
the non-magnetic version of a code originally developed for magnetohydrodynamic
simulations in Yanagisawa, Hamano & Sakuraba (2015). Cartesian coordinates (x, y, z)
are used with the z axis in the upward direction and the origin located at one of the
bottom corners of the container. We solve the governing equations for the non-dimensional
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velocity u, temperature T and pressure p as follows:

∂u
∂t

= −(u · ∇)u − ∇p + PrRa(T − T̄(z))kz + Pr∇2u, T̄(z) = 1 − z, (2.1a,b)

∇ · u = 0, (2.2)

∂T
∂t

= −(u · ∇)T + ∇2T, (2.3)

where kz is the unit vector in the z direction. Length and time are respectively
non-dimensionalized by the layer thickness H and the thermal diffusion time tκ =
H2/κ . Accordingly, the velocity is normalized by κ/H. The temperature satisfies the
isothermal boundary conditions at the top (Ttop = 0) and bottom (Tbot = 1), while
adiabatic conditions are assumed for the sidewalls. No-slip conditions are applied for
the velocity at all boundaries. The second-order-accurate staggered-grid finite-difference
method is used with a uniform grid interval in each direction. The time integration was
carried out explicitly by means of the third-order Runge–Kutta method. This procedure
modifies the equation of continuity to

ε2∂p/∂t = −∇ · u, (2.4)

where ε is a small parameter from Chorin (1967). In our numerical simulations a value
of ε = 0.002 is used (Yanagisawa et al. 2015). The code is parallelized with MPI in
combination with OpenMP.

To check the resolution of the simulation, we compared results from calculations
made with different grid resolutions: nz = 80, 128, 256 and 512 (see table 2). For these
pre-calculations, the parameters are set as Pr = 0.025, which is a representative value for
liquid metals, and Ra = 1.0 × 105, 3.0 × 105 and 6.0 × 105. All simulations performed
were able to reconstruct the same qualitative characteristics of the flow field: a cellular
pattern with quasi-periodic oscillations. Quantitative comparisons are carried out using
the values of the Nusselt number and the Reynolds number which were averaged both
temporally and spatially. In our equations 〈·〉S,t stands for the time–surface average on the
top or bottom boundary and 〈·〉V,t stands for the time–volume average. Nusselt numbers
are calculated both at the top boundary Nutop and at the bottom boundary Nubot:

Nutop = −
〈(

∂T
∂z

)
z=1

〉
S,t

, Nubot = −
〈(

∂T
∂z

)
z=0

〉
S,t

. (2.5a,b)

An alternative way to determine the Nusselt number is to integrate the upward heat
transport in the entire volume (e.g. Pandey et al. 2018). For comparison we also use this
definition for the Nusselt number Nuvol:

Nuvol = 1 + 〈uzT〉V,t. (2.6)

When thermally balanced states are achieved after adequate time integrations, applying
(2.5a,b) and (2.6) to our data yields a very good agreement. Therefore, in the further course
of the paper only the values of Nutop will be presented as Nu.

The Reynolds number is calculated using the root-mean-square (r.m.s.) velocities Urms
determined for the entire volume as characteristic velocity scale:

Re = Urms

Pr
with Urms =

√
〈ux2 + uy2 + uz2〉V,t. (2.7)

The quantitative comparison of the pre-tests is shown in table 2. The agreement of the
time-averaged Nusselt numbers Nu is satisfactory within 0.4 %, and the Reynolds numbers
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Ra Pr nx ny nz Nu Nustd nλΘ Re Restd ηK/lz

1.0 × 105 0.025 400 400 80 2.76 0.08 14 1011 18.3 0.62
1.0 × 105 0.025 640 640 128 2.76 0.09 23 1009 22.4 0.99
1.0 × 105 0.025 1280 1280 256 2.77 0.07 46 1011 16.2 1.97
1.0 × 105 0.025 2560 2560 512 2.76 0.07 93 1009 16.0 3.95
3.0 × 105 0.025 400 400 80 3.73 0.13 10 1706 27.2 0.42
3.0 × 105 0.025 640 640 128 3.74 0.12 17 1708 26.8 0.67
3.0 × 105 0.025 1280 1280 256 3.73 0.14 34 1708 25.7 1.35
3.0 × 105 0.025 2560 2560 512 3.73 0.14 69 1706 26.5 2.70
6.0 × 105 0.025 400 400 80 4.50 0.16 9 2317 36.2 0.33
6.0 × 105 0.025 640 640 128 4.51 0.14 14 2335 34.2 0.53
6.0 × 105 0.025 1280 1280 256 4.51 0.14 28 2334 37.5 1.06
6.0 × 105 0.025 2560 2560 512 4.51 0.16 57 2234 39.9 2.13

Table 2. Pre-tests of numerical simulations conducted with different numbers of grid points: the Rayleigh
number Ra, the Prandtl number Pr, the number of grid points nx, ny and nz, the time-averaged Nusselt number
Nu, the standard deviation of Nusselt number Nustd , the number of grid points in the thermal boundary layer λΘ
estimated by the relation Nu = 1/(2λΘ), nλΘ , the time-averaged Reynolds number Re, the standard deviation
of Reynolds number Restd and the ratio of the Kolmogorov scale ηK to the spatial resolution lz.

Re are almost the same within 0.8 %. As is shown below, quasi-periodicity is a dominant
feature of the pattern; hence, fluctuations of the Nusselt number are also important. The
fluctuations are evaluated in the form of the standard deviation and are listed in table 2 as
Nustd.

In addition, we checked the spatial resolution of our simulations by comparing them
with the Kolmogorov scale ηK . Using the results of Nu for given values of Pr and Ra, ηK
can be estimated as (Scheel, Emran & Schumacher 2013)

ηK =
(

Pr2

(Nu − 1)Ra

)1/4

. (2.8)

Table 2 contains the ratio of ηK to the spatial resolution lz = 1/nz. A ratio larger than
one indicates a sufficient resolution in terms of direct numerical simulation; hence, these
values are used as references. As shown in table 2, simulations with the highest grid
resolution satisfy this criterion for the Ra range considered here. Calculations of lower
resolution are conducted in the case of long simulation times. Due to the high diffusivity
of temperature, we assume that this is nevertheless sufficient to adequately evaluate Nu,
Re, temperature distribution and flow pattern. Our independence grid study shows that the
values of the quantities we focus on in this paper do not change significantly on a finer grid
(see above), so we can assume their validity. Higher resolutions of the grid are necessary
if details within the velocity boundary layers are to be examined, but this is outside the
scope of this study.

Based on these comparisons and considering available computational resources, we
performed simulations mainly with the resolution nz = 128. To check the long-term
stability of the quasi-periodic behaviour and to perform long-time averaging over 100
thermal diffusion times (∼300 oscillations), we utilized the resolution of nz = 80. The
parameters chosen for the numerical simulations in this study are listed in table 3. The
numerical simulations cover the parameter range that is investigated in the experiments.

932 A27-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

99
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.996


Jump rope vortex flow in liquid metal RBC

Ra Pr nx ny nz uff (mm s−1) tff (s)

1.0 × 105 0.03 640 640 128 13.13 3.05
1.2 × 105 0.03 640 640 128 15.75 2.54
1.2 × 105 0.03 400 400 80 15.75 2.54
2.0 × 105 0.03 640 640 128 20.33 1.97
3.0 × 105 0.03 640 640 128 24.90 1.61
6.0 × 105 0.03 640 640 128 35.22 1.14

Table 3. Parameters for the numerical simulations of the experimental configuration including the Rayleigh
number Ra, the number of grid points nx, ny and nz, the free-fall velocity uff and the free-fall time tff .

3. Characterization of the large-scale flow structure

3.1. Three-dimensional cellular regime
Previous experiments carried out by Akashi et al. (2019) using the same set-up show
a clear and reproducible dependence on Ra with respect to the occurrence of different
flow regimes. While the range of smaller Ra is associated with various regimes of
unsteady convection rolls, at Ra above 6.5 × 104 a new, stable flow pattern occurs, which
is characterized by a high symmetry with respect to the square base area of the fluid
container. This newly discovered flow pattern was designated as the cellular flow regime.
We are aware that the term of a cellular flow structure in thermal convection is often
associated with stationary cell patterns observed, for example, in the slightly supercritical
state after the onset of convection. This is explicitly not the case here. Accompanying
measurements of the temperature fluctuations indicate that the stage of developed thermal
turbulence is reached in the Ra range where the cellular regime occurs (Akashi et al.
2019). Our point of view is supported by results from Bailon-Cuba et al. (2010) who found
extended convection rolls and pentagon-like cells in their direct numerical simulation data
for a turbulent flow in a Γ = 12 cylinder at Ra = 107 and Pr = 0.7. After filtering out
the small-scale turbulence, these resulting patterns of turbulent convection resemble the
weakly nonlinear regime just above the onset of convection. However, the observation of
the cellular regime by Akashi et al. (2019) is also surprising because the appearance of
such cell-like structures is anticipated to be more prevalent in fluids with larger Pr � 1,
while the convection pattern at low Pr is supposed to be dominated by roll-like structures
(Breuer et al. 2004; Pandey et al. 2018). In order to analyse the cellular flow regime
in more detail, the investigations in this study are focused on the Ra range 6.7 × 104 �
Ra � 3.5 × 105. The upper limit of Ra is determined by the technical capabilities of the
experimental equipment.

Figure 2(a) shows the spatio-temporal map of the velocity component ux at Ra =
1.2 × 105 recorded by the ultrasonic sensor Bottom at a height of z = 0.25H. A negative
velocity (blue) indicates a flow toward the transducers, while a positive velocity (red)
is associated with the direction away from the sensor. In all results presented in the
following, the velocity is given dimensionless with respect to the free-fall velocity uff =√

gα�TH. In the convection cell considered here, the free-fall velocity reaches a value of
16.48 mm s−1 at Ra = 1.2 × 105. The dimensionless time is given in units of the free-fall
time tff = √

H/(gα�T) = 2.43 s.
The velocity map obtained by the sensor Bottom (figure 2a) reproduces a flow structure

almost identical to those presented in the recent study by Akashi et al. (2019). The
flow pattern divides the measured profile into two parts with respect to the centre of
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(a)
(b)
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ux/uff
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x/H

Figure 2. (a) Spatio-temporal velocity map at Ra = 1.2 × 105 recorded for ux along the x direction (sensor
Bottom at z = 0.25H). (b) A schematic illustration of the cell structure with the sensor positions.

the container. The strength of the measured velocity is subject to strong quasi-periodic
fluctuations, which at some points in time (e.g. t/tff = 100, 150, 270) even lead to
short-term reversals of the flow direction. If the average behaviour of the flow is
considered, then a fluid motion from the sidewall towards the centre is clearly dominant,
which means that an ascending flow in the centre of the cell can be assumed. Based on
the evaluation of the measured velocity profiles along six different measurement lines
within a horizontal plane above the heated bottom, Akashi et al. (2019) obtained a rough
reconstruction of the time-averaged velocity patterns in the convection cell. For the case
of the cellular regime, they revealed a three-dimensional structure having upwelling flows
at the centre and the four corners of the container as shown in figure 2(b) (Akashi et al.
2019). Once this flow pattern is established, it is stable for long measurement times of the
order of a few thousand free-fall times and does not change spontaneously. Repeating the
measurements several times, inverse flow patterns with a downward flow in the centre of
the fluid container were also observed. These structures, which differ principally in the
sign of the velocity, have similar probabilities of occurrence. Which variant is realized in
the experiment apparently depends only on random asymmetries in the initial conditions.

Inspired by the work of Vogt et al. (2018a), here we additionally monitor the velocities
in the horizontal centre plane of our container. If the convection pattern corresponds to a
single circulation, which fills the space between the copper plates, one would expect that
in the measuring plane at the mid-height the vertical component clearly dominates and
only marginal parts of a horizontal flow can be found here. As shown in figure 3(b,c), it is
surprising to observe pronounced flows also in the centre plane, their intensity only slightly
below that detected along the measuring lines at z = 0.25H and z = 0.75H. Moreover,
these velocity plots are characterized by the same pronounced oscillations. In contrast to
the measurement at z = 0.25H, however, an inversion of the flow direction occurs in every
period where no dominance of one of the two directions can be determined. Figure 3 also
contains a corresponding dataset from Vogt et al. (2018a) (see figure 3d,e). For better
comparability, the time axis and the velocity are normalized with the free-fall time and
the free-fall velocity, respectively. The comparison of both flow patterns shows striking
similarities with respect to the manifestation of the dominant oscillations in terms of
both the amplitude of the velocity and the time scale of the oscillations. This raises the
question as to whether we are dealing with the same phenomenon in the Γ = 5 box that
is referred to as JRV and has already been observed in the Γ = 2 cylinder. To answer this
question, we take a closer look at the flow structure and its changes during the oscillations.
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(a)

(d )

(b)

(c)

(e)

0

5

150

Middle1

Middle1

t/tff

150t/tff

1–1
uy/uff

y/H

0

2.5

y/H

0

2

y/H

Figure 3. Spatio-temporal velocity distributions measured at the mid-height of the fluid container for Ra =
1.2 × 105. (a) Sketch of the measuring line in the Γ = 5 box (Pr = 0.033). (b) Velocity pattern for the the
full-length measuring line. (c) The same dataset as in (b) plotted for only one half of the measuring line.
(d) Sketch of the measuring line in the Γ = 2 cylinder (Pr = 0.027). (e) Velocity pattern in the Γ = 2 cylinder.
(Adapted from Vogt et al. 2018a.)

Since the experiment reaches its limits here due to the small numbers of measuring
sensors, we performed numerical simulations in parallel.

Figure 4(a,b) contains the numerical counterpart of the measurements as presented in
figures 2 and 3. The qualitative agreement of the flow patterns proves the reliability of the
numerical approach. The numerical velocity distributions are also dominated by strong
oscillations, with periodic changes of direction in the centre plane of the container.

Snapshots of temperature isosurfaces and velocity distributions in figure 5 provide
a three-dimensional visualization of the convection pattern. Figures 5(a) and 5(b)
display instantaneous isosurfaces of the temperature for the values T = 0.2 and T = 0.8.
Figures 5(c) and 5(d) show the instantaneous distribution of the vertical velocity uz at
different heights of z = 0.75 and z = 0.25. The colour indicates the direction of flow,
meaning that blue (red) signifies a downwelling (upwelling) motion. The temperature
surface appears to be smoother than the velocity fields, which is naturally due to the
fact that low-Pr fluids feature a high thermal diffusivity. Apart from that, temperature
field and vertical velocity show an evident conformity. Previous studies of turbulent
superstructures raised the question as to what extent the temperature distribution and
the vertical velocity structure represent the same coherent structure (Pandey et al. 2018;
Stevens et al. 2018; Krug et al. 2020). Sakievich et al. (2016) showed that the thermal
updrafts and downdrafts match the three-dimensional field to a high degree in a Γ = 6.3
cylinder. Further analysis by Sakievich et al. (2020) revealed a high correlation in the
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(a) (b)
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t/tff

x(–)

0
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150 300

t/tff

y(–)

Figure 4. Results of the numerical simulations showing a reconstruction of the spatio-temporal velocity maps
at Ra = 1.2 × 105 in the cuboid container for (a) ux according to the measuring line of sensor Bottom at
z = 0.25 and (b) uy according to the measuring line of sensor Middle1 at z = 0.5. The measurement positions
are shown in figure 2(b).

(a) (b)

(c) (d )

1–1
uz/uff

x
y

z

Figure 5. Results of the numerical simulations performed for Ra = 1.2 × 105 representing snapshots of the
temperature isosurface for (a) T = 0.2 and (b) T = 0.8, and the distribution of the vertical velocity uz at
the height of (c) z = 0.75 and (d) z = 0.25. The colour scale of uz is the same as that in figure 4. See also
supplementary movies 1–4 available at https://doi.org/10.1017/jfm.2021.996.

temporal dynamics of the low-order Fourier modes of temperature and vertical velocity.
Based on this clear similarity and the findings of Krug et al. (2020), Sakievich et al. (2020)
hypothesize similar principles of spatial organization of the coherent patterns in a Γ = 6.3
cylinder and superstructures occurring in larger aspect ratios.

The temperature plots in figure 5 show that the cellular structure is characterized by an
ascending flow in its centre and at the four corners of the container (see figure 5b), while
the shape of the areas where the fluid descends resembles a rhombus (see figure 5a). It can
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also be seen that the zones of ascending warm fluids in the middle and the four corners
are connected by diagonally running ridges (figure 5b). This rough characterization of the
flow structure is consistent with the distributions of the vertical velocity component in
figures 5(c) and 5(d). The appearance of finer structures in the velocity contours illustrates
the character of inertia-dominated fluid turbulence and is in line with previous studies
(Pandey et al. 2018; Vogt et al. 2018a; Krug et al. 2020; Sakievich et al. 2020) which
demonstrated the occurrence of more small-scale velocity fluctuations compared with the
temperature field. Thus, it can be stated that the results of the numerical simulations
confirm the mean flow structure of the cellular regime suggested from the experiment
based on a limited number of velocity sensors (Akashi et al. 2019). A striking property
of this cellular convection is the occurrence of pronounced periodic oscillations, which
consequently must be reflected in some form of periodic changes of the flow topology.

3.2. Dominant oscillation frequencies
The dominant frequency fOS of the periodic oscillations in the spatio-temporal velocity
maps is determined by calculating the spatially averaged power spectral densities (PSDs)
from velocity time series. The velocity time series are divided into multiple time intervals
of 60 free-fall times. The spectra are calculated by fast Fourier transform for each time
interval and for each measurement point. These interim results are finally averaged both
spatially along the respective measuring line and temporally over the duration of the
measurement.

Figures 6(a) and 6(b) present the PSDs obtained from the velocity maps along
the measurement lines covered by the sensors Bottom and Middle1. The frequency is
normalized by the thermal diffusion frequency fκ = κ/H2. The dominant oscillation
frequency can be easily identified by the clear peaks in the PSDs. The same frequency is
found at both measuring positions indicating a certain coherence of the flow structure. The
spectra in both figures 6(a) and 6(b) show similar magnitudes over the whole frequency
range and an identical slope in the inertial domain for f /fκ > 101. There is a slight
deviation between experiment and numerical simulation concerning the values of the
normalized frequency f /fκ = 3.3 and f /fκ = 3.1, respectively.

The oscillation frequency fOS increases with increasing Ra as shown in figure 6(c). A
power-law fit leads to a scaling of fOS/fκ = 0.016Ra0.46±0.02 for the velocity measurements
in the experiments and fOS/fκ = 0.011Ra0.48±0.02 for the numerical data. The agreement
is satisfactory, where the exponents agree within the error bars. The slight discrepancy
may result from uncertainties in the material properties, which in turn could affect the
exact determination of Pr and Ra in the experiment. In the paper by Plevachuk et al.
(2014), from which the numerical values for the thermal diffusivity, viscosity and density
of GaInSn were taken, the accuracy of these measured values is specified in the range from
±1.5 % to ±7 %, which might be sufficient to explain the above mentioned deviations.

Previous results reported by Akashi et al. (2019) for experiments in the same container
reported a scaling law of fOS/fκ = 0.031Ra0.40±0.02. The discrepancy can be explained by
the fact that the range in which the power-law fit was calculated in Akashi et al. (2019)
also includes smaller Ra, where unstable rolls occur instead of the cellular structure.
This also indicates that the two separate flow patterns cause different exponents in the
scaling law. Experimental (Tsuji et al. 2005; Vogt et al. 2018a; Zürner et al. 2019) and
numerical (Scheel & Schumacher 2017) studies in cylindrical cells with Γ = 1 and Γ = 2
come to smaller exponents. Zürner et al. (2019) found fOS/fκ = (0.010±) × Ra0.40±0.02

at Pr = 0.029. The direct numerical simulation by Schumacher & Scheel (2016) at
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f/fk
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Figure 6. Spatially averaged PSDs calculated from the spatio-temporal velocity maps for Ra = 1.2 × 105

(a) measured in the experiments by the sensors Bottom and Middle1 and (b) obtained from numerical
simulations. (c) Oscillation frequency fOS as a function of Ra from experimental and numerical data, where the
solid line represents the least-squares fit of the experimental results, fOSH2/κ = 0.016Ra0.46, and the dotted
line shows the fitting of the results of numerical simulations, fOSH2/κ = 0.011Ra0.48. (d) The period length of
the oscillations normalized with the turnover time τTO versus Ra, where the the dotted line represents a value
of one.

Pr = 0.021 results in a scaling fOS/fκ = (0.08±) × Ra0.42±0.02. Another scaling law,
fOS/fκ = (0.027±) × Ra0.419±0.006, is given by Vogt et al. (2018a).

Akashi et al. (2019) demonstrated that the ratio between the oscillation period τOS =
1/fOS and the turnover time τTO is close to unity. The turnover time τTO describes the time
required for a fluid parcel to complete a full circulation within the LSC structure. Except
for the movement in the corners, the fluid elements follow in good approximation the path
of an ellipse with the semi-axes L/4 and H/2. Using a simple approximation formula to
determine the circumference of an ellipse, the turnover time can be calculated as follows:

τTO = π
√

2((L/4)2 + (H/2)2)

urms
. (3.1)

The velocity urms is calculated from the velocity data recorded by the sensor Bottom as

urms =
√

1
L

∫ L

0
u2

x(x, t) dx. (3.2)

The ratio τOS to τTO is plotted versus Ra in figure 6(d). All data points are in a close
proximity to the value one.
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The occurrence of characteristic frequency peaks is observed in many experimental
studies (Castaing et al. 1989; Siggia 1994; Qiu & Tong 2001) and is apparently a
characteristic feature of coherent large-scale structures occurring in thermal convection.
Several studies construe these oscillations as an indication of the transport of individual
plumes by the LSC (Cioni et al. 1997; Grossmann & Lohse 2000, 2002; Stevens
et al. 2013). Another perspective is to associate these oscillations with the advection of
deviations from an ideal two-dimensional LSC structure or other substructures by the
LSC. This in a natural way explains an inherent relationship between the frequency of
the oscillations and the turnover time. Thus, the torsion and sloshing phenomenon could
also be understood as a deformation of the two-dimensional single-roll LSC that travels
with a recurrence rate 1/τTO throughout the fluid container (Zürner et al. 2019). A strong
correlation between the turnover time and the periodicity of predominant oscillations has
been demonstrated in cylinders with Γ = 1 (Brown & Ahlers 2009; Zürner et al. 2019)
or Γ = 2 (Vogt et al. 2018a). In these geometries, where a single-roll LSC exists, the
oscillatory behaviour is due to torsion and sloshing at Γ = 1 or to JRV dynamics at
Γ = 2. In our case of the Γ = 5 box, a torsional movement of single-roll LSC can be
excluded. Nevertheless, it is reasonable to assume that perturbations of the flow pattern
or instabilities of the boundary layers are transported at the characteristic velocity of
circulation within the coherent structures. This interpretation was also adopted by Cioni
et al. (1997) who assumed that the dominating frequency of the oscillations reflected
in their temperature signal is associated with the velocity of the global circulation and
path length of the LSC. This assumption leads to the relation fOSH2/κ ∝ RePr (Cioni
et al. 1997). In the next section it becomes evident that this applies also for the flow
configuration studied here, since the Reynolds number and the oscillation frequency follow
the same power law as a function of Ra.

3.3. Transport of momentum and heat
The Reynolds number Re is the characteristic parameter to quantify the turbulent
momentum transport in the convection cell. Our definition of Re from the experiment
relies on the r.m.s. velocity urms determined from the linear velocity profile along the
measuring line Bottom:

Re = urmsH
ν

. (3.3)

A simultaneous acquisition of all three velocity components in the entire container is
difficult to achieve in the experiment. With the limitation to one velocity component on one
single measuring line, Re derived from this appears relatively arbitrary and the question
arises as to what extent it is representative for the total flow and the momentum transfer.
To check this, two Re values are determined by means of the numerical simulations, one
corresponding to the experiment with urms determined on the Bottom measurement line
and the other with the r.m.s. velocity Urms averaged over the entire volume in accordance
with (2.7). To compensate for the difference that all three components of the velocity were
considered in the calculation of Urms instead of only one in urms, the corresponding values
of Re have been corrected by a factor of

√
1/3.

The scaling behaviour of the resulting Re is plotted in figure 7. There is no significant
difference between the two results of numerical simulation, which suggests that the
time-averaged velocities determined on the Bottom measurement line are representative
for the global flow. A power-law fit reveals a scaling law of Re = 3.43Ra0.44 for velocity
measurements and Re = 2.83Ra0.45 for the numerical simulations. The direct comparison
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103
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106105

Ra

Re

Bottom (experiment)

Bottom (simulation)

Entire volume (simulation)

Figure 7. Scaling of the Reynolds number Re versus the Rayleigh number Ra. Results of numerical simulations
are calculated for two characteristic velocities urms and Urms representing the r.m.s. velocity for the measuring
line of sensor Bottom and the entire volume, respectively. Least-squares approximation leads to Re =
3.43Ra0.44 (grey solid line) for the experimental data, Re = 2.83Ra0.45 for numerical simulations (grey dashed
line) and Re = 2.56Ra0.46 for the entire volume (grey dotted line).

between experiment and simulation reveals a slight difference in the scaling exponents,
but the absolute values agree very well.

A comparison with the previous study by Akashi et al. (2019) also reveals a slightly
different scaling exponent, urms(H/κ) = 0.059Ra0.50±0.02. In Akashi et al. (2019) also
smaller Ra, where unsteady roll arrangements are observed but no cellular flow regime
occurs, were included into the power-law fit. Thus, Re in the cellular regime apparently
shows a measurably more gradual increase with Ra than in a roll regime. There are no
differences between the current measurements and the results of Akashi et al. (2019), as
long as only the range of the cellular regime is considered there.

Scaling exponents from 0.42 to 0.53 were reported by other experimental studies
(Takeshita et al. 1996; Cioni et al. 1997; Yanagisawa et al. 2013, 2015; Vogt et al.
2018a; Zürner et al. 2019) and numerical simulations (Scheel & Schumacher 2017) for
low-Pr thermal turbulence. Yanagisawa et al. (2013) found a higher velocity magnitude
and increased scaling exponent, urms(H/κ) = 0.08Ra0.53, in a square container with
the same geometry filled with pure gallium corresponding to Pr = 0.025. Zürner et al.
(2019) defined three different characteristic velocities: (1) the typical horizontal velocity
magnitude near the plates vLSC, (2) the typical vertical velocity magnitude of the LSC
along the sidewall vvert and (3) the turbulent velocity fluctuations in the centre of the cell
vcentre. This is reflected in slightly varying scaling exponents: (1) vLSC ∝ Ra0.42±0.03, (2)
vvert ∝ Ra0.42±0.04 and (3) vcentre ∝ Ra0.46±0.04 (Zürner et al. 2019). The smaller scaling
exponent for the horizontal and vertical LSC is a result of probing different parts of
the complex three-dimensional flow structure. It suggests that the Ra dependence of the
representative velocities depends on how and where it is measured in the convection cell.
It seems plausible that the option of calculating the r.m.s. velocity over the entire cell can
be considered as the most reliable method for evaluating the representative convection
velocity. For instance, Scheel & Schumacher (2017) found a scaling Urms ∝ Ra0.45±0.01 in
a cylinder with Γ = 1 at Pr = 0.021, which matches our results almost perfectly.

The heat transport of the three-dimensional cell structure is evaluated in numerical
simulations by considering the Nusselt number dependence on the Rayleigh number,
Nu(Ra). Respective results are shown in figure 8. We find a scaling of Nu = 0.14 ×
932 A27-16
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101

100

106105

Ra

Nu

Figure 8. Scaling of the Nusselt number Nu versus Ra obtained by numerical simulations, where the error
bars represent the standard deviation of the temporal fluctuations and the grey line shows the fitted curve,
Nu = 0.14 × Ra0.26 (numerical simulation).

Ra0.26±0.01 which is in agreement with the outcome of measurements and simulations
in a cylindrical cell with Γ = 1 (Scheel & Schumacher 2017; Zürner et al. 2019).
The laboratory experiments conducted by Zürner et al. (2019) for Pr = 0.029 provide
Nu ∼= (0.12 ± 0.04) × Ra(0.27±0.04) while the simulations by Scheel & Schumacher
(2017) suggest Nu ∼= (0.13 ± 0.04) × Ra(0.27±0.01) for Pr = 0.021. Recent experiments
conducted in the same container by Vogt et al. (2021) show a scaling of Nu = 0.166 ×
Ra0.25 and thus a satisfactory agreement with the result presented here.

4. Oscillatory dynamics of the three-dimensional cell structure

4.1. Procedure of phase averaging
As shown by the flow measurements and the numerical simulations presented in figures 2,
3 and 4, the flow patterns are characterized by a variety of large- and small-scale
fluctuations, which indicate the presence of both a periodically oscillating coherent flow
filling the entire container and inertia-dominated turbulence on smaller scales. We are
interested in the dynamics of the coherent flow structure and want to separate it from the
background of the turbulent fluctuations by a suitable averaging method. Investigations of
turbulent superstructures in very large aspect ratios are confronted with the same problem.
Pandey et al. (2018) propose an averaging procedure where the averaging time to be
used is in a range between the free-fall time tff and the effective dissipation time td =
max(H2/ν, H2/κ). In the case of turbulent superstructures in very large aspect ratios, the
patterns are slowly changing. The structure under consideration here undergoes significant
oscillations with a constant periodicity. For this reason it is useful to apply a phase
averaging to our numerical data. Such a procedure has already been suggested by Vogt
et al. (2018a) to reveal the nature of the dynamic flow structures of the periodic oscillations
of velocity and temperature in the Γ = 2 cylinder. The analysis covers one complete
oscillation period τOS = 1/fOS, which in our case also corresponds to the turnover time for
a respective fluid parcel (see figure 6). It is based on simulation results with a computation
time comprising 16 oscillation periods with a total number of 5536 snapshots. The entire
dataset is divided into 16 parts, each corresponding exactly to one oscillation period. This
time period of one oscillation is again divided into 16 equidistant intervals, also called
phases. Each interval or phase includes 21 snapshots of temperature, velocity and pressure.
In the next step, these snapshots are averaged. Finally, for the distributions of temperature,
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velocity and pressure obtained for all oscillation periods are conditionally averaged with
the respective distributions belonging to the same phase.

Vogt et al. (2018a) also had to adequately consider the orientation of the LSC in a
convection cell for each time step, since the LSC symmetry plane in the cylindrical Γ = 2
cylinder wanders in the azimuthal direction. This did not have to be taken into account in
our case, since the flow is approximately fixed in its orientation by the square geometry of
the convection cell.

4.2. Variations of temperature and flow field during the oscillation period
The results presented in this section are restricted to Ra = 1.2 × 105 as an example.
The flow at other Ra shows a qualitatively similar behaviour. The numerical calculations
of temperature and flow fields are performed for a duration of 16 oscillations which
corresponds to about 300 free-fall times tff and 5 thermal diffusion times tκ = H2/κ
with a grid resolution of nx × ny × nz = 400 × 400 × 80. Figures 9(a) and 9(b) show
the phase-averaged temperature distribution for the horizontal plane at the mid-height of
z = 0.5 at two different phases. The temperature scale refers to the mean temperature
Tm = 0.5 in the considered plane in such a way that the regions of the warm fluid
marked by red coloration have a temperature above Tm, while colder fluid appears in
blue coloration in the plots. We observe a distribution of temperature that resembles a
checkerboard pattern, where the cold fluid occurs in the centre and the four corners of the
container, while the warm fluid is located in centrally situated areas at the four sidewalls.
This downwelling flow pattern is opposite to the upwelling one shown in the figure 5. The
simulations reveal that the boundaries between the areas of warm and cold fluid which
are identical to the isolines T = Tm = 0.5 are subject to significant deformation during
the oscillations (see also supplementary movie 5). To quantify this behaviour in a simple
way, we follow the displacements of some specially defined locations in the temperature
distribution during one oscillation period. For this purpose we have selected the following
positions: the intersection points of the Tm isolines with the central lines of the centre
plane along the x axis (white triangles) and the y axis (yellow triangles) as well as at the
intersection points of the Tm isolines with the sidewalls. The latter are marked by the grey
and white squares in the x direction and by the blue and white circles along the y direction.
Each of these marker points on the isolines can be assigned an x coordinate XTm and a y
coordinate YTm . In the following, the movements of these points along the x and y centre
lines and along the sidewalls are recorded. Our analysis takes into account that all marker
points have only one degree of freedom and can change their position either exclusively
along the x or y direction. The two snapshots in figures 9(a) and 9(b) show in a certain
sense two extreme states in which the respective pairs of points have either a minimum or
maximum distance to each other. The oscillation of the flow pattern is reflected accordingly
in the coordinates of these markers.

This is demonstrated in figure 9(c) which displays the varying locations of the marker
points during one oscillation period. A sinusoidal behaviour is detected, where the
coordinates of each point accomplish a full oscillation in one cycle. It is noticeable that
the selected pairs of markers always move in opposite directions; this concerns the white
and yellow triangles on the centre lines as well as the points on the differently aligned side
edges. If, for example, one considers the associated deformation of the fluid regions of
higher temperature, this means that the approximately rectangular fields alternately retract
to the area in front of the sidewall or extend into the central zone. For further consideration
we have defined the phase shown in figure 9(a) as the starting point t = 0 of the
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Figure 9. Phase-averaged temperature distribution for Ra = 1.2 × 105 in the centre plane at (a) t = 0 and
(b) t = 0.5τOS; (c) time variations of the x and y positions of the mean temperature of Tm = 0.5 on the centre
lines and the sidewalls of the container in the temperature distribution shown in (a,b) (numerical simulation).

oscillation period. Because of the symmetry of the configuration, both states in figures 9(a)
and 9(b) are quasi-identical, since the marker points reach their extreme positions here. The
distances between all marker points are nearly equal at intermediate times t = 0.25τOS and
t = 0.75τOS.

Figures 10(a)–10(d) show the cross-section of the phase-averaged temperature
distribution, streamlines and velocity vectors in two vertical centre planes of the container
at y = 2.5 and x = 2.5. The colour map represents the temperature of the fluid. The length
of the velocity vectors indicates the magnitude of the velocity. The streamlines and the
velocity vectors visualize two LSCs lined up side by side, where the fluid sinks in the
centre of the cell and rises on the sidewalls. Size and location of the two dominating
vortices are not constant but subject to permanent changes. The positions of the rotational
axes of the vortices are not stationary, but move in the shown sectional planes. Naturally,
this has significant consequences for the distribution of cold and warm fluid, which is
reflected in the temperature colour plot (see also supplementary movie 6). The changes
in the size of the respective zones of cold and warm fluids are clearly visible in the plots
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Figure 10. Phase-averaged temperature distribution with velocity vectors and streamlines for Ra = 1.2 × 105

in the cross-section of the centre lines of y = 2.5 (left column) and x = 2.5 (right column) at different phases:
(a) t = 0, (b) t = 0.25τOS, (c) t = 0.5τOS and (d) t = 0.75τOS. (e) Temporal change of representative velocity
urms calculated along the measurement lines of z = 0.25 and z = 0.75 in the cross-sections of y = 2.5 and
x = 2.5 shown in (a–d) (numerical simulation).

and confirm the dynamics already described in the context of figure 9. It should also be
pointed out here that the temperature distribution does not only change in the centre of
the convection box, but that significant alterations also occur near the bottom and the lid.
We focus on this aspect in more detail later in § 4.4.
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For further evaluation, we consider the temporal behaviour of the r.m.s. velocities urms
recorded along two horizontal lines at z = 0.25 and z = 0.75 in both cross-sections. Time
variations of urms during one oscillation period are plotted as shown in figure 10(e).
The velocities urms monitored along the various horizontal lines reach their maximum
(minimum) values at t = 0.25τOS or half a period later at t = 0.75τOS. As already seen
in the evaluation of the temperature distribution in figure 9(c), a sinusoidal behaviour of
the velocities is observed. Furthermore, it is immediately noticeable that the velocities
at the different heights in one plane and the velocities at the same height in different
planes vary in opposite directions. This corresponds in an excellent way with the velocity
measurements in the experiment (see Akashi et al. 2019). The periodic up and down of the
velocity magnitude near the lid or bottom is related to an oscillatory shift of the centre of
the dominating vortices in both vertical and horizontal directions. In figures 10(a)–10(d)
it can be seen that smaller secondary vortices can form temporarily on the sidewalls if
the axes of the larger vortices are located near the centre of the convection container.
The vertical shift of the vortex positions lets the zone around the horizontal centre
line alternately come into the effective range of the horizontal flow pointing towards
the centre or towards the sidewalls, respectively. This explains the flow patterns with
periodic reversals of flow direction found in the mid-height of the convection cell by both
measurements and simulations (see figures 3b, 3c and 4b).

4.3. Delineation of the three-dimensional flow structure
In the previous section, it was shown that the location and properties of dominant
vortices filling the entire height of the fluid layer change significantly during a period
of oscillation.The position of a vortex centre can be determined by its axis of rotation,
which is characterized by minimum pressure. The phase-averaged pressure distribution has
been calculated for this purpose. Snapshots of the pressure fields in both vertical sectional
planes are displayed in figures 11(a) and 11(b) for t = 0.25τOS. Here, the positions of
the minimum pressure are marked with dark blue coloured circles. The trajectories of
these vortex axes during one oscillation period are presented in the figures 11(c) and
11(d). In addition to the information regarding the position of the pressure minimum in
the respective sectional plane, the colouring of the circles in this diagram also indicates
the time when the vortex centre was at which position. The trajectories of the axes of
the LSCs form the central segment of a diagonal line running approximately between the
lower corners of the convection cell and the centre of the upper plate, with the forward and
return paths not exactly on the same line. It becomes also obvious that the two circulation
centres always move in opposite directions in their respective sectional planes with an
offset of half a period.

Figure 12 is intended to illustrate the movement of the circulation areas in three
dimensions by means of the streamlines in the vicinity of the vortex centres. To visualize
the third component in the vertical direction, the streamlines are coloured according to
the vertical position of the structure. A first thing to notice is that four recirculating swirls
exist in the convection cell. These four connected swirls are arranged as two pairs, with
the axes of the respective pair aligned on average mainly along the x and y directions,
respectively. Figures 12(a) and 12(b) show two snapshots at t = 0.25τOS and t = 0.75τOS,
respectively. These are the moments when the swirls are close to either the bottom or the
top of the convection cell (see figures 10 and 11). A corresponding animation of these
results (supplementary movies 7–9) during one oscillation period shows, in fact, that we
are dealing here with the phenomenon of a three-dimensional flow structure that shows the
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Figure 11. Phase-averaged pressure contour for Ra = 1.2 × 105 in the cross-section of (a) y = 2.5 and
(b) x = 2.5 at the phase of t = 0.25τOS. The minimum pressure points in the phase-averaged pressure contour
during one oscillation period in the cross-sections of (c) y = 2.5 and (d) x = 2.5 (numerical simulation).

same characteristics as JRV, which was observed and described first by Vogt et al. (2018a).
The main difference from the geometry of a Γ = 2 cylinder, in which the dynamics of a
JRV extends over almost the entire convection cell, is that four such structures exist in
our Γ = 5 configuration, whose movements are restricted to each partial area of the fluid
layer. Supplementary movie 10 shows that the phase-averaged temperature and velocity
fields in the centre plane and the vertical cross-sections of the limited area are in very
good agreement with the conditionally averaged temperature and velocity fields in the
centre plane, the LSC symmetry plane and the perpendicular plane of the LSC symmetry
plane in the cylinder of Γ = 2 (Vogt et al. 2018a). The direction of motion of the vortex
centre is clockwise, whereas the direction of flow is counterclockwise, and vice versa.
It is interesting to note that the revolution of these swirls in the convection cell occurs
in the opposite direction to the main flow of the LSCs. The direction of motion of the
vortex centre is clockwise, whereas the direction of flow is counterclockwise, and vice
versa. Another peculiarity is that the trajectories of the circulation centres obviously do
not follow a circle, as one would normally expect for a typical jump rope, but through a
tilted ellipse-like trajectory as visualized in figure 11(c,d). One reason for this might be
the fact that the limited height of the fluid layer imposes a geometric constraint on the
dynamics of the JRV.

4.4. Impact on heat transport
The temperature distributions presented in § 4.2 demonstrate that considerable
redistribution of cold and warm fluid occurs in the course of the three-dimensional
oscillations. In this section, we consider the extent to which this has measurable effects
on the heat transport.

To verify the steadiness of the heat transport, Nusselt numbers are calculated from
the phase-averaged temperature distributions. Figure 13 presents the phase-averaged Nu
numbers during one oscillation period. The results reveal that Nu is not constant but rather
shows an oscillatory behaviour with a verifiable difference between the maximum and
minimum value. Moreover, at the first glance it is a very surprising finding that the period
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Figure 12. Three-dimensional visualization of phase-averaged streamlines at (a) t = 0.25τOS and (b) t =
0.75τOS for Ra = 1.2 × 105. The dashed lines mark the two centre planes x = 2.5 and y = 2.5, which also
represent the symmetry axes of the flow pattern. The colour represents the vertical position of the structure in
the container (numerical simulation).

3.2
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t

Nu

Figure 13. Phase-averaged values of the Nusselt number Nu during one oscillation period for for
Ra = 1.2 × 105 (numerical simulation).

of the Nu oscillation is only half as long as that of the fluctuations in the temperature field
or the horizontal velocities.

Figure 14 shows contour plots of phase-averaged local heat flux. These plots represent
local heat flux calculated at the top boundary Fz,top = −(∂T/∂z)z=1 and the bottom
boundary Fz,bot = −(∂T/∂z)z=0. Here, the average number of local heat flux for an entire
plate means the Nusselt number of the convection. The red-coloured zones feature the
local heat flux that is above the mean value of the entire area and period (Nu ≈ 3.0),
while local heat flux below the mean value is marked in blue colour. Here, the contrasting
behaviour of the local heat flux at the bottom and the top is obvious which is caused by
the flow that either impinges or detaches in the corresponding areas of the plates. The
local heat flux distributions change during the oscillation period and agree to a certain
degree with the temperature distributions presented in figure 9. According to figure 13,
Nu reaches a maximum value at time points t = 0 and t = 0.5τOS, while minima occur at
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Figure 14. Phase-averaged local heat flux at the top boundary Fz,top (a–d) and at the bottom boundary Fz,bot

(e–h) for Ra = 1.2 × 105, at different phases: (a,e) t = 0, (b, f ) t = 0.25τOS, (c,g) t = 0.5τOS and (d,h) t =
0.75τOS. The contour interval is 0.5 (numerical simulation).

t = 0.25τOS and t = 0.75τOS. The corresponding local heat flux distributions on the plates
are geometrically similar. This is in agreement with the periodicity of the Nu number
oscillations.

The heat transfer of the system is mainly determined by the conductivity and stability of
the thermal boundary layers (Ahlers et al. 2009; Iyer et al. 2020). Our results presented in
figure 10 suggest that the turbulent fluid motion might have a considerable impact on the
extent of the thermal boundary layers. Indeed, our data also show that the instantaneous
thermal boundary layer thickness at both the bottom and the top plates λΘ oscillates with
the same frequency as the JRV. Owing to the relation Nu = 1/(2λΘ), this is reflected
accordingly in the changes of Nu illustrated in figure 13.

Figure 15(a) compares time series of Nu with time series of the horizontal velocity urms
obtained along the line Bottom and the volume-averaged vertical velocity for the entire
container Uz obtained by numerical simulations. All data show quasi-periodic oscillations.
The signals of Nu and Uz are synchronized with each other, i.e. they oscillate with the
same frequency, while urms exhibits twice the oscillation period. This is confirmed by the
corresponding PSDs presented in figure 15(b). Both PSDs of Nu and Uz show dominant
peaks at the same frequency, which is almost exactly twice the oscillation frequency
fOS. Here we see an effect that, on closer inspection, is already apparent in figure 10.
Figure 10(e) reveals that the approach of the centre of the circulation to one of the
horizontal interfaces suppresses the horizontal flow there, while the horizontal flow on the
opposite side simultaneously reaches a maximum. The evaluation of the numerical data
in the whole convection cell shows that the vertical flow component, on the other hand,
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Figure 15. (a) Time variations of Nu, the volume average of the vertical velocity component Uz and the
horizontal velocity urms obtained by the line Bottom at z = 0.25 and (b) the PSDs calculated from the temporal
fluctuations of Nu, Uz and the PSD calculated from the horizontal velocity urms obtained by the line Bottom for
Ra = 1.2 × 105 (numerical simulation).

becomes greatest when the centre of the circulation moves either from bottom to top or
in the opposite direction. This vertical momentum transport thus additionally contributes
to the heat transport.Accordingly, figure 15(a) demonstrates a simultaneous occurrence of
maximal values for Nu and Uz.

5. Summary and conclusions

The present study combines flow measurements in a Rayleigh–Bénard set-up and
corresponding numerical simulations. The flow in the cuboid container with an aspect
ratio of Γ = 5 is fully turbulent at a Prandtl number of 0.03 and Rayleigh numbers in
the range Ra of 6.7 × 104 � Ra � 3.5 × 105. In this parameter range the thermally driven
convection produces a coherent cellular flow structure that is extremely stable with respect
to changes in topology and orientation. On the other hand, this cellular flow pattern is
subject to distinct oscillations. The change in fluid velocity during the oscillations is quite
dramatic: the local velocity value varies during one period between a maximum value of
the measured velocity and a value close to zero; in some regions even a periodic flow
reversal occurs.

Our analysis succeeded in clarifying the complex three-dimensional structure of the
large-scale flow and identifying a multiple JRV structure that is the underlying nature of
the oscillations. The JRV structure was originally discovered by Vogt et al. (2018a) in a
Γ = 2 cylinder. As the name suggests, this is a vortex with a curved axis performing a
cycling motion in three-dimensional space. Our results confirm the existence of such kind
of flow structure also in a cuboid container with Γ = 5. This finding is most remarkable,
since it shows that the structure of the JRV is not a rare phenomenon that occurs only in
special geometrical arrangements. Instead, we showed that it is a more common property
of turbulent convection.

The striking feature of the structure detected here is that we find four vortices at the same
time, with the symmetry axes of the circling motion being aligned parallel to the sidewalls
of the fluid container in each case. One full revolution of the JRV corresponds exactly
to one periodic length of the oscillation of the cellular flow structure. The dynamics of
the JRV is strongly correlated and characterized by the fact that the respective opposite
vortices move towards the centre or the sidewall at the same time, while the other pair
of vortices rotates with an offset of half a period. The JRVs interact significantly with
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the thermal boundary layers, the thickness decreasing each time the centres of the JRVs
are in close proximity in the immediate vicinity of the respective copper plate. This also
leaves detectable traces in the heat transfer in the form of an oscillation of the Nusselt
number. Its periodicity is related to the dynamics of the JRVs. Furthermore, instead of
following an almost circular path as observed in the Γ = 2 cylinder, the vortices move
along an elongated and obliquely inclined ellipse. Thus, it is obvious that the movement
of the jump rope is affected by the limited height of the fluid layer.

The previous study by Akashi et al. (2019) revealed an increase in the characteristic
length scale of the flow patterns with increasing Ra. In the slightly supercritical region
directly after the onset of convection, roll structures are formed whose horizontal
wavelength corresponds approximately to the height of the fluid layer H. As Ra grows,
the number of rolls decreases, and thus the wavelength of the structures increases
incrementally. Finally, there is a qualitative transition to the cellular regime considered
here; the dimension of the cellular structure is ∼5H. An increase in the characteristic
length scale of coherent large-scale velocity structures with Ra has also been reported in
earlier studies, in particular for turbulent superstructures (Fitzjarrald 1976; Hartlep et al.
2003; Pandey et al. 2018; Krug et al. 2020). Numerical studies identified the typical sizes
of turbulent superstructures in large aspect ratios Γ > 10, which are of the order of 10H
for Pr = 6.7 (Busse 1994; Pandey et al. 2018) or 6H to 7H for Pr = 0.7 (Hartlep et al.
2003; Pandey et al. 2018; Stevens et al. 2018). Sakievich et al. (2016, 2020) refer to these
’natural’ dimensions of superstructures to explain the dominance of specific Fourier modes
in a flat Γ = 6.3 cylinder at Pr = 6.7. From the data published by Pandey et al. (2018),
it is evident that the horizontal wavelength of the superstructures in the range Pr � 10
decreases when approaching smaller Pr. If we extrapolate the above estimates to the Pr of
0.03 considered here, we achieve approximately a size of 5H, a value that is found for the
cellular regime. However, due to the limitation imposed by the finite Γ = 5 box, it is not
possible to verify whether the velocity field cannot form larger structures.

In summary, the cellular flow regime we studied here exhibits some general properties
that are also attributed to turbulent superstructures (Pandey et al. 2018; Stevens et al. 2018;
Krug et al. 2020):

(i) The characteristic length scale of the flow structures increases with increasing Ra as
shown by Akashi et al. (2019).

(ii) The horizontal length scale is distinctly larger than the height of the flow domain.
(iii) The characteristic dynamic time scale of the evolving or altering large-scale flow

structure is much longer than the free-fall time.

In this general respect, our study is comparable to the work of Sakievich et al.
(2016, 2020), although the observed flow patterns differ from each other, which we believe
is due to the differences in the shape of the convection vessels (cylinder versus box). In
particular, it is not surprising that the flow in the box is restricted in its dynamics and does
not form a rotational symmetry as shown by Sakievich et al. (2020). The cellular flow
regime, instead, shows mirror symmetry with respect to the two vertical centre planes
x = 2.5 and y = 2.5 of the convection box, respectively. This also reveals that the aspect
ratios investigated in both studies (those of Sakievich et al. and ours) are still too small
to produce flow structures that can develop unaffected by the sidewalls. New experiments
with larger aspect ratios are needed to address this issue. Therefore, future work should
consider further investigations in a wide parameter range of aspect ratios. In particular, it
would be very interesting to find out to what extent the cellular structures studied in detail
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here also shape the flow in turbulent superstructures at large aspect ratios and whether
such oscillatory dynamics with structures resembling JRVs can also be observed there.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.996.
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