Proceedings of the Edinburgh Mathematical Society (2013) **56**, 509–513 DOI:10.1017/S0013091512000272

BOUND FOR THE ORDER FOR *P*-ELEMENTARY SUBGROUPS IN THE PLANE CREMONA GROUP OVER A PERFECT FIELD

A. L. FOMIN

Department of Higher Algebra, Faculty of Mechanics and Mathematics, Moscow State Lomonosov University, Vorobievy Gory, Moscow 119899, Russia (fin-al@yandex.ru)

(Received 4 August 2010)

Abstract We obtain a sharp bound for p-elementary subgroups in the Cremona group $\operatorname{Cr}_2(k)$ over an arbitrary perfect field k.

Keywords: Cremona group; finite subgroups; p-groups

2010 Mathematics subject classification: Primary 14E07

1. Introduction

Let k be a field. The plane Cremona group $\operatorname{Cr}_2(k)$ over k is the group of birational transformations of \mathbb{P}^2 that are defined over k, or equivalently the group of k-automorphisms of the field k(x, y). The study of finite subgroups of $\operatorname{Cr}_2(\mathbb{C})$ has a history of nearly one and a half centuries. But dealing with fields k, which are not algebraically closed, started only a few years ago, in [2].

A finite abelian group A is called a *p*-elementary group, where p is a prime number, if $A \cong (\mathbb{Z}/p)^r$; r is called the rank of A and is denoted by rank A. In [1], Beauville classified maximal p-elementary subgroups in $\operatorname{Cr}_2(k)$ over an algebraically closed field k of arbitrary characteristic up to conjugacy. The purpose of the present paper is to find a sharp bound for p-elementary subgroups in the plane Cremona group $\operatorname{Cr}_2(k)$ over an arbitrary perfect field k.

For a perfect field k, denote by \bar{k} its algebraic closure and set $\Gamma_k = \operatorname{Gal}(\bar{k}/k)$. For a prime number p it is always assumed that $p \neq \operatorname{Char}(k)$. Note that in the case $p = \operatorname{Char}(k)$ there exist groups isomorphic to $(\mathbb{Z}/p)^r$ in $\operatorname{Cr}_2(k)$ for any r > 0 (for instance the group generated by $(x, y) \mapsto (x, y + x^q), q = 1, \ldots, r$). Define $t = [k(\zeta_p) : k]$, where $\zeta_p \in \bar{k}$ is any primitive root of unity of degree p. It is clear that t divides p - 1.

Our main result is the following.

© 2012 The Edinburgh Mathematical Society

509

A. L. Fomin

Theorem 1.1. Let $A \subset Cr_2(k)$ be a *p*-elementary subgroup, where *k* is a perfect field. Then

$$\operatorname{rank} A \leqslant \begin{cases} 4 & \text{if } p = 2, \\ 3 & \text{if } p = 3, \ t = 1, \\ 2 & \text{if } p = 3, \ t = 2 \text{ and } p > 3, \ t = 1, 2, \\ 1 & \text{if } t = 3, 4, 6, \\ 0 & \text{otherwise.} \end{cases}$$
(1.1)

Moreover, this bound is attained for any $p \neq \text{Char}(k)$.

2. Bounds for a *p*-torsion subgroup of a torus

2.1. Let T be an algebraic torus of dimension d defined over k. In [3], Serre obtained a sharp bound for the order of finite p-subgroups in T(k). Below we give a similar bound for p-elementary subgroups.

Theorem 2.1. In the notation above, rank $T(k)[p] \leq d/\varphi(t)$, where T(k)[p] is a *p*-torsion subgroup of T(k) and φ is Euler's function. Moreover, this bound is attained for a suitable torus defined over k.

Proof. Let X(T) and $\Upsilon(T)$ be the groups of characters and cocharacters of T over \bar{k} , where $\rho: \Gamma_k \to \operatorname{Aut}(\Upsilon(T))$ is the action of the Galois group and $\rho_p: \Gamma_k \to \operatorname{Aut}(\Upsilon(T)/p)$ is its reduction modulo p. In addition, let $\mu_p \subset \bar{k}^*$ be the group of the roots of unity of degree p, and let $\chi: \Gamma_k \to \operatorname{Aut}(\mu_p) \cong (\mathbb{Z}/p)^*$ be the action of the Galois group. It is also that

It is clear that

$$T(k)[p] = T(\bar{k})[p]^{\Gamma_k}$$
 and $T(\bar{k})[p] \cong \operatorname{Hom}(X(T)/p, \mu_p) \cong \Upsilon(T)/p \otimes \mu_p$

with all isomorphisms being compatible with the actions of the Galois group. Obviously,

 $\operatorname{rank}(\Upsilon(T)/p\otimes\mu_p)^{\Gamma_k}\leqslant \operatorname{rank}(\Upsilon(T)/p\otimes\mu_p)^g$ for any $g\in\Gamma_k$

and g acts on $\Upsilon(T)/p \otimes \mu_p$ as $\rho_p(g) \otimes \chi(g) = \chi(g)\rho_p(g) \otimes 1$. Using any isomorphism $\mu_p \cong \mathbb{Z}/p$ and $\Upsilon(T)/p \otimes \mu_p \cong \Upsilon(T)/p$, it is possible to identify the set of fixed points of g in $\Upsilon(T)/p \otimes \mu_p$ with the set of fixed points of $\chi(g)\rho_p(g)$ in $\Upsilon(T)/p$, which is merely the eigenspace of $\rho_p(g)$ with eigenvalue $\chi(g)^{-1}$.

We fix $g \in \Gamma_k$ such that $\chi(g)$ is of order t and set $\chi(g)^{-1} = \varepsilon$. Since $\rho(g)$ has finite order, its characteristic polynomial F is the product of cyclotomic polynomials, $F = \prod_i \Phi_{d_i}$, and the characteristic polynomial of $\rho_p(g)$ is $\bar{F} = \prod_i \bar{\Phi}_{d_i}$, where $\bar{\Phi}$ denotes the reduction a polynomial Φ modulo p. To prove the theorem, we need to find an upper bound for the multiplicity of ε as the root of $\bar{\Phi}_{d_i}$.

Lemma 2.2. In the above notation, the multiplicity of $\varepsilon \in (\mathbb{Z}/p)^*$ as the root of $\overline{\Phi}_n$ is the same for all ε of the fixed order t, and it is positive if and only if $n = tp^f$.

510

Proof of Lemma 2.2. First, if $p \nmid n$ and $q = p^f$, then $\bar{\Phi}_{nq} \equiv \bar{\Phi}_n^{\varphi(q)} \pmod{p}$, so we can assume that $p \nmid n$.

Let \mathcal{O} be the integral closure of \mathbb{Z} in the field $\mathbb{Q}(\zeta_n)$, where $\zeta_n \in \mathbb{C}$ is any primitive root of unity of degree $n, \mu_n \subset \mathcal{O}^*$ is the group of the roots of unity of degree n and $\mathfrak{p} \subset \mathcal{O}$ is any prime ideal such that $\mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}$. Then

$$\Phi_n(X) = \prod_{\zeta} (X - \zeta) \quad \text{and} \quad \overline{\Phi}_n(X) = \prod_{\zeta} (X - \overline{\zeta})$$

in \mathcal{O}/\mathfrak{p} , where ζ runs through all primitive roots of unity of degree n. It is well known that the natural map $\mu_n \to (\mathcal{O}/\mathfrak{p})^*$ is injective, so $\overline{\zeta}$ is of order n in $(\mathcal{O}/\mathfrak{p})^*$ for any ζ . This implies that the set of roots of $\overline{\Phi}_n$ in \mathcal{O}/\mathfrak{p} coincides with the set of all elements of order n in $(\mathcal{O}/\mathfrak{p})^*$.

Suppose that $\bar{\Phi}_n$ has a root $\varepsilon \in (\mathbb{Z}/p)^*$ of order t; then t = n and any element of order t in $(\mathbb{Z}/p)^*$ is a simple root of $\bar{\Phi}_n$. This proves all statements of the lemma. \Box

Going back to the proof of Theorem 2.1 we see that it follows from the above lemma that the multiplicity of ε as the root of $\overline{\Phi}_{d_i}$ is bounded from above by $\varphi(d_i)/\varphi(t)$, and its multiplicity as the root of \overline{F} is bounded from above by $d/\varphi(t)$, since $\sum_i \varphi(d_i) = d$.

To prove the second statement of Theorem 2.1, it is enough to construct a torus of dimension $d = \varphi(t)$ defined over k such that rank T(k)[p] > 0. This is done in [3] (see the proof of Theorem 4' therein).

3. Proof of the main theorem

In this section we prove Theorem 1.1.

3.1. Let $A \subset \operatorname{Cr}_2(k)$ be a *p*-elementary subgroup. It is known [2, Theorem 5] that A can be represented as a subgroup of $\operatorname{Aut}_k(S)$, where S is a smooth projective surface defined and rational over k, which is of one of the following two types.

- (i) There exists an A-equivariant conic bundle structure $f: S \to C$, where C is a smooth curve of genus 0, such that rank $\operatorname{Pic}(S/C)^A = 1$ (though we do not need this fact, note that if S is rational over k, then $C \cong \mathbb{P}^1$ over k since $S(k) \neq \emptyset$ and thus $C(k) \neq \emptyset$).
- (ii) S is a Del Pezzo surface such that rank $\operatorname{Pic}(S)^A = 1$.

Proposition 3.1. If $p \nmid n$, any p-elementary subgroup $A \subset G(k)$, where G is a k-form of PGL_n, is contained in a maximal torus defined over k.

Proof. This statement was proved in [1, Lemma 3.1] for $k = \bar{k}$. The centralizer of A in G, which is defined over k as A itself is, contains a maximal torus defined over k, which is the maximal torus in G. Since A consists of semisimple elements, any maximal torus that centralizes A must contain it.

A. L. Fomin

3.2. In what follows we shall study all possible cases for rank A in order to find in each case the restrictions on t and then we shall prove that under the restrictions obtained such an A exists. The case p = 2 will be dealt with separately, as it does not involve the value of t.

3.3. Suppose that rank $A \ge 1$. It was proved in [2, Theorem 2] that in this case $t \in \{1, 2, 3, 4, 6\}$ and, moreover, for these values of t there is an element of order p in $A \subset \operatorname{Cr}_2(k)$.

3.4. Suppose that rank $A \ge 2$. We shall prove that $t \le 2$. We can assume that p > 3 (as otherwise there is nothing to prove) and that A is a subgroup of $\operatorname{Aut}_k(S)$ as it is described above. Define $\overline{S} = S \otimes \overline{k}$. We have two possibilities for S specified in § 3.1.

Let $f: S \to C$ be an A-equivariant conic bundle. The action of A on the base defines the homomorphism $A \to \operatorname{Aut}_k(C)$. Denote by \overline{A} its image and by A_0 its kernel. Obviously, A_0 is an automorphism group of the generic fibre of f, which is a smooth curve of genus 0 over the field k(C). The automorphism group of the base is a k-form of PGL₂, and the automorphism group of the generic fibre is a k(C)-form of PGL₂. It is readily seen that t has the same value for k and k(C). Since p is odd, it follows from Proposition 3.1 that \overline{A} and A_0 are contained in tori of dimension 1 defined over k and k(C), respectively. Theorem 2.1 yields that rank $A_0 \leq 1$ and rank $\overline{A} \leq 1$, with the equality being possible only if $t \leq 2$. Finally, we obtain that rank $A \leq 2$, and the equality implies that $t \leq 2$.

Let S be a Del Pezzo surface. It follows from [1, Proposition 3.9] and [2, Theorem 5] that $9 \ge K_S^2 \ge 6$ and $K_S^2 \ne 7$. We consider the possibilities for K_S^2 case by case.

- (i) If $K_S^2 = 9$, then $\bar{S} \cong \mathbb{P}^2$. Therefore, $\operatorname{Aut}(S)$ is a k-form of PGL₃ and Proposition 3.1 gives that A is contained in a torus of dimension 2 defined over k. According to Theorem 2.1 this is possible only if $t \leq 2$.
- (ii) If $K_S^2 = 8$, then $\bar{S} \cong \mathbb{P}^1 \times \mathbb{P}^1$ (otherwise \bar{S} contains a unique (-1)-curve which must be defined over k; this contradicts rank $\operatorname{Pic}(S)^A = 1$). Then the connected component $\operatorname{Aut}(S)^\circ$ is a k-form of $\operatorname{PGL}_2 \times \operatorname{PGL}_2$ of index 2 in $\operatorname{Aut}(S)$. It is clear that $A \subset \operatorname{Aut}(S)^\circ$ since p > 3, and by Proposition 3.1 A is contained in a torus of dimension 2, and thus $t \leq 2$.
- (iii) If $K_S^2 = 6$, then the connected component $\operatorname{Aut}(S)^\circ$ is a two-dimensional torus and $\operatorname{Aut}(S)/\operatorname{Aut}(S)^\circ \otimes \overline{k} \cong S_3 \times \mathbb{Z}/2$. As above, $A \subset \operatorname{Aut}(S)^\circ$ since p > 3, and we obtain that $t \leq 2$.

Now we prove that there exists a *p*-elementary subgroup of rank 2 in $\operatorname{Cr}_2(k)$ whenever $t \leq 2$. Applying Theorem 2.1, we obtain that for such *t* there exists a two-dimensional torus *T* defined over *k* such that T(k) contains a *p*-elementary subgroup *A* of rank 2. Thus, the well-known fact that *T* is rational over *k* [4, §4.9] yields that $A \subset \operatorname{Cr}_2(k)$.

3.5. Suppose now that rank $A \ge 3$ and p is odd. It is shown in [1, Propositions 2.6 and 3.10] that p = 3, rank A = 3 and S must be a cubic surface in \mathbb{P}^3 . We claim that t = 1.

It follows from Proposition 3.1 that $A \subset T(k)$, where $T \subset \text{PGL}_4$ is a maximal torus defined over k. We use notation from the proof of Theorem 2.1. Since PGL_4 is a group of inner type, for any $g \in \Gamma_k$, $\rho(g)$ acts on $\Upsilon(T)$ as an element of the Weyl group. Let $F = \prod_i \Phi_{d_i}$ be the characteristic polynomial of $\rho(g)$ and let $\overline{F} = \prod_i \overline{\Phi}_{d_i}$ be its reduction modulo 3. Note that each d_i divides one of the invariant degrees of the Weyl group; therefore, each $d_i \in \{1, 2, 3, 4\}$. Suppose that t = 2; then the multiplicity of $-1 \in (\mathbb{Z}/3)^*$ as the root of \overline{F} is equal to 3. It follows easily from Lemma 2.2 that each $d_i = 2$ and $F(X) = (X + 1)^3$. Since $\rho(g)$ has finite order, $\rho(g) = -1$, but it is well known that -1 does not belong to the Weyl group of PGL4. So we conclude that the case t = 2 is impossible. This completes the proof of (1.1) for p > 2.

To prove the second statement of Theorem 1.1 in the case p = 3 and t = 1, i.e. k contains the primitive cubic root of unity, consider the Fermat cubic given by equation $X_0^3 + X_1^3 + X_2^3 + X_3^3 = 0$ in \mathbb{P}^3 . It is rational over k and evidently admits the action of 3-elementary group A with rank A = 3, so $A \subset \operatorname{Cr}_2(k)$.

3.6. Finally, suppose that p = 2. It was proved in [1, Propositions 2.6 and 3.11] that rank $A \leq 4$. On the other hand, \mathbb{P}^1 admits $(\mathbb{Z}/2)^2$ as the automorphism group for every field k; hence, there exists an action of the group $A \cong (\mathbb{Z}/2)^4$ on $\mathbb{P}^1 \times \mathbb{P}^1$ and $A \subset \operatorname{Cr}_2(k)$. This completes the proof of the main theorem.

Acknowledgements. The author was supported in part by Leading Scientific Schools Grant 4713.2010.1.

References

- 1. A. BEAUVILLE, *p*-elementary subgroups of the Cremona group, *J. Alg.* **314** (2007) 553–564.
- 2. I. V. DOLGACHEV AND V. A. ISKOVSKIKH, On elements of prime order in the plane Cremona group over a perfect field, *Int. Math. Res. Not.* **18** (2009), 3467–3485.
- 3. J.-P. SERRE, Bounds for the order of finite subgroup of G(k), in *Group representation theory* (ed. M. Geck, D. Testerman and J. Thévenaz), Fundamental Sciences (EPFL Press, Lausanne, 2006).
- 4. V. E. VOSKRESENSKII, Algebraic groups and their birational invariants, Translations of Mathematical Monographs, Volume 179 (American Mathematical Society, Providence, RI, 1998).