BOUND FOR THE ORDER FOR P-ELEMENTARY SUBGROUPS IN THE PLANE CREMONA GROUP OVER A PERFECT FIELD

A. L. FOMIN
Department of Higher Algebra, Faculty of Mechanics and Mathematics, Moscow State Lomonosov University, Vorobievy Gory, Moscow 119899, Russia (fin-al@yandex.ru)

(Received 4 August 2010)

Abstract We obtain a sharp bound for p-elementary subgroups in the Cremona group $\mathrm{Cr}_{2}(k)$ over an arbitrary perfect field k.

Keywords: Cremona group; finite subgroups; p-groups
2010 Mathematics subject classification: Primary 14E07

1. Introduction

Let k be a field. The plane Cremona group $\mathrm{Cr}_{2}(k)$ over k is the group of birational transformations of \mathbb{P}^{2} that are defined over k, or equivalently the group of k-automorphisms of the field $k(x, y)$. The study of finite subgroups of $\mathrm{Cr}_{2}(\mathbb{C})$ has a history of nearly one and a half centuries. But dealing with fields k, which are not algebraically closed, started only a few years ago, in [2].

A finite abelian group A is called a p-elementary group, where p is a prime number, if $A \cong(\mathbb{Z} / p)^{r} ; r$ is called the rank of A and is denoted by rank A. In [$\left.\mathbf{1}\right]$, Beauville classified maximal p-elementary subgroups in $\mathrm{Cr}_{2}(k)$ over an algebraically closed field k of arbitrary characteristic up to conjugacy. The purpose of the present paper is to find a sharp bound for p-elementary subgroups in the plane Cremona group $\mathrm{Cr}_{2}(k)$ over an arbitrary perfect field k.

For a perfect field k, denote by \bar{k} its algebraic closure and set $\Gamma_{k}=\operatorname{Gal}(\bar{k} / k)$. For a prime number p it is always assumed that $p \neq \operatorname{Char}(k)$. Note that in the case $p=\operatorname{Char}(k)$ there exist groups isomorphic to $(\mathbb{Z} / p)^{r}$ in $\operatorname{Cr}_{2}(k)$ for any $r>0$ (for instance the group generated by $\left.(x, y) \mapsto\left(x, y+x^{q}\right), q=1, \ldots, r\right)$. Define $t=\left[k\left(\zeta_{p}\right): k\right]$, where $\zeta_{p} \in \bar{k}$ is any primitive root of unity of degree p. It is clear that t divides $p-1$.

Our main result is the following.

Theorem 1.1. Let $A \subset \mathrm{Cr}_{2}(k)$ be a p-elementary subgroup, where k is a perfect field. Then

$$
\operatorname{rank} A \leqslant \begin{cases}4 & \text { if } p=2 \tag{1.1}\\ 3 & \text { if } p=3, t=1 \\ 2 & \text { if } p=3, t=2 \\ 1 & \text { if } t=3,4,6 \\ 0 & \text { otherwise }\end{cases}
$$

Moreover, this bound is attained for any $p \neq \operatorname{Char}(k)$.

2. Bounds for a p-torsion subgroup of a torus

2.1. Let T be an algebraic torus of dimension d defined over k. In [3], Serre obtained a sharp bound for the order of finite p-subgroups in $T(k)$. Below we give a similar bound for p-elementary subgroups.

Theorem 2.1. In the notation above, $\operatorname{rank} T(k)[p] \leqslant d / \varphi(t)$, where $T(k)[p]$ is a p-torsion subgroup of $T(k)$ and φ is Euler's function. Moreover, this bound is attained for a suitable torus defined over k.

Proof. Let $\mathrm{X}(T)$ and $\Upsilon(T)$ be the groups of characters and cocharacters of T over \bar{k}, where $\rho: \Gamma_{k} \rightarrow \operatorname{Aut}(\Upsilon(T))$ is the action of the Galois group and $\rho_{p}: \Gamma_{k} \rightarrow \operatorname{Aut}(\Upsilon(T) / p)$ is its reduction modulo p. In addition, let $\boldsymbol{\mu}_{p} \subset \bar{k}^{*}$ be the group of the roots of unity of degree p, and let $\chi: \Gamma_{k} \rightarrow \operatorname{Aut}\left(\boldsymbol{\mu}_{p}\right) \cong(\mathbb{Z} / p)^{*}$ be the action of the Galois group.

It is clear that

$$
T(k)[p]=T(\bar{k})[p]^{\Gamma_{k}} \quad \text { and } \quad T(\bar{k})[p] \cong \operatorname{Hom}\left(\mathrm{X}(T) / p, \boldsymbol{\mu}_{p}\right) \cong \Upsilon(T) / p \otimes \boldsymbol{\mu}_{p}
$$

with all isomorphisms being compatible with the actions of the Galois group. Obviously,

$$
\operatorname{rank}\left(\Upsilon(T) / p \otimes \boldsymbol{\mu}_{p}\right)^{\Gamma_{k}} \leqslant \operatorname{rank}\left(\Upsilon(T) / p \otimes \boldsymbol{\mu}_{p}\right)^{g} \quad \text { for any } g \in \Gamma_{k}
$$

and g acts on $\Upsilon(T) / p \otimes \boldsymbol{\mu}_{p}$ as $\rho_{p}(g) \otimes \chi(g)=\chi(g) \rho_{p}(g) \otimes 1$. Using any isomorphism $\boldsymbol{\mu}_{p} \cong \mathbb{Z} / p$ and $\Upsilon(T) / p \otimes \boldsymbol{\mu}_{p} \cong \Upsilon(T) / p$, it is possible to identify the set of fixed points of g in $\Upsilon(T) / p \otimes \boldsymbol{\mu}_{p}$ with the set of fixed points of $\chi(g) \rho_{p}(g)$ in $\Upsilon(T) / p$, which is merely the eigenspace of $\rho_{p}(g)$ with eigenvalue $\chi(g)^{-1}$.

We fix $g \in \Gamma_{k}$ such that $\chi(g)$ is of order t and set $\chi(g)^{-1}=\varepsilon$. Since $\rho(g)$ has finite order, its characteristic polynomial F is the product of cyclotomic polynomials, $F=\prod_{i} \Phi_{d_{i}}$, and the characteristic polynomial of $\rho_{p}(g)$ is $\bar{F}=\prod_{i} \bar{\Phi}_{d_{i}}$, where $\bar{\Phi}$ denotes the reduction a polynomial Φ modulo p. To prove the theorem, we need to find an upper bound for the multiplicity of ε as the root of $\bar{\Phi}_{d_{i}}$.

Lemma 2.2. In the above notation, the multiplicity of $\varepsilon \in(\mathbb{Z} / p)^{*}$ as the root of $\bar{\Phi}_{n}$ is the same for all ε of the fixed order t, and it is positive if and only if $n=t p^{f}$.

Proof of Lemma 2.2. First, if $p \nmid n$ and $q=p^{f}$, then $\bar{\Phi}_{n q} \equiv \bar{\Phi}_{n}^{\varphi(q)}(\bmod p)$, so we can assume that $p \nmid n$.

Let \mathcal{O} be the integral closure of \mathbb{Z} in the field $\mathbb{Q}\left(\zeta_{n}\right)$, where $\zeta_{n} \in \mathbb{C}$ is any primitive root of unity of degree $n, \boldsymbol{\mu}_{n} \subset \mathcal{O}^{*}$ is the group of the roots of unity of degree n and $\mathfrak{p} \subset \mathcal{O}$ is any prime ideal such that $\mathfrak{p} \cap \mathbb{Z}=p \mathbb{Z}$. Then

$$
\Phi_{n}(X)=\prod_{\zeta}(X-\zeta) \quad \text { and } \quad \bar{\Phi}_{n}(X)=\prod_{\zeta}(X-\bar{\zeta})
$$

in $\mathcal{O} / \mathfrak{p}$, where ζ runs through all primitive roots of unity of degree n. It is well known that the natural map $\mu_{n} \rightarrow(\mathcal{O} / \mathfrak{p})^{*}$ is injective, so $\bar{\zeta}$ is of order n in $(\mathcal{O} / \mathfrak{p})^{*}$ for any ζ. This implies that the set of roots of $\bar{\Phi}_{n}$ in $\mathcal{O} / \mathfrak{p}$ coincides with the set of all elements of order n in $(\mathcal{O} / \mathfrak{p})^{*}$.

Suppose that $\bar{\Phi}_{n}$ has a root $\varepsilon \in(\mathbb{Z} / p)^{*}$ of order t; then $t=n$ and any element of order t in $(\mathbb{Z} / p)^{*}$ is a simple root of $\bar{\Phi}_{n}$. This proves all statements of the lemma.

Going back to the proof of Theorem 2.1 we see that it follows from the above lemma that the multiplicity of ε as the root of $\bar{\Phi}_{d_{i}}$ is bounded from above by $\varphi\left(d_{i}\right) / \varphi(t)$, and its multiplicity as the root of \bar{F} is bounded from above by $d / \varphi(t)$, since $\sum_{i} \varphi\left(d_{i}\right)=d$.

To prove the second statement of Theorem 2.1, it is enough to construct a torus of dimension $d=\varphi(t)$ defined over k such that $\operatorname{rank} T(k)[p]>0$. This is done in [3] (see the proof of Theorem 4^{\prime} therein).

3. Proof of the main theorem

In this section we prove Theorem 1.1.
3.1. Let $A \subset \operatorname{Cr}_{2}(k)$ be a p-elementary subgroup. It is known [2, Theorem 5] that A can be represented as a subgroup of $\operatorname{Aut}_{k}(S)$, where S is a smooth projective surface defined and rational over k, which is of one of the following two types.
(i) There exists an A-equivariant conic bundle structure $f: S \rightarrow C$, where C is a smooth curve of genus 0 , such that $\operatorname{rank} \operatorname{Pic}(S / C)^{A}=1$ (though we do not need this fact, note that if S is rational over k, then $C \cong \mathbb{P}^{1}$ over k since $S(k) \neq \varnothing$ and thus $C(k) \neq \varnothing)$.
(ii) S is a Del Pezzo surface such that $\operatorname{rank} \operatorname{Pic}(S)^{A}=1$.

Proposition 3.1. If $p \nmid n$, any p-elementary subgroup $A \subset G(k)$, where G is a k-form of PGL_{n}, is contained in a maximal torus defined over k.

Proof. This statement was proved in [1, Lemma 3.1] for $k=\bar{k}$. The centralizer of A in G, which is defined over k as A itself is, contains a maximal torus defined over k, which is the maximal torus in G. Since A consists of semisimple elements, any maximal torus that centralizes A must contain it.
3.2. In what follows we shall study all possible cases for $\operatorname{rank} A$ in order to find in each case the restrictions on t and then we shall prove that under the restrictions obtained such an A exists. The case $p=2$ will be dealt with separately, as it does not involve the value of t.
3.3. Suppose that $\operatorname{rank} A \geqslant 1$. It was proved in [2, Theorem 2] that in this case $t \in$ $\{1,2,3,4,6\}$ and, moreover, for these values of t there is an element of order p in $A \subset$ $\mathrm{Cr}_{2}(k)$.
3.4. Suppose that rank $A \geqslant 2$. We shall prove that $t \leqslant 2$. We can assume that $p>3$ (as otherwise there is nothing to prove) and that A is a subgroup of $\operatorname{Aut}_{k}(S)$ as it is described above. Define $\bar{S}=S \otimes \bar{k}$. We have two possibilities for S specified in \S 3.1.

Let $f: S \rightarrow C$ be an A-equivariant conic bundle. The action of A on the base defines the homomorphism $A \rightarrow \operatorname{Aut}_{k}(C)$. Denote by \bar{A} its image and by A_{0} its kernel. Obviously, A_{0} is an automorphism group of the generic fibre of f, which is a smooth curve of genus 0 over the field $k(C)$. The automorphism group of the base is a k-form of PGL_{2}, and the automorphism group of the generic fibre is a $k(C)$-form of PGL_{2}. It is readily seen that t has the same value for k and $k(C)$. Since p is odd, it follows from Proposition 3.1 that \bar{A} and A_{0} are contained in tori of dimension 1 defined over k and $k(C)$, respectively. Theorem 2.1 yields that $\operatorname{rank} A_{0} \leqslant 1$ and $\operatorname{rank} \bar{A} \leqslant 1$, with the equality being possible only if $t \leqslant 2$. Finally, we obtain that $\operatorname{rank} A \leqslant 2$, and the equality implies that $t \leqslant 2$.

Let S be a Del Pezzo surface. It follows from [1, Proposition 3.9] and [2, Theorem 5] that $9 \geqslant K_{S}^{2} \geqslant 6$ and $K_{S}^{2} \neq 7$. We consider the possibilities for K_{S}^{2} case by case.
(i) If $K_{S}^{2}=9$, then $\bar{S} \cong \mathbb{P}^{2}$. Therefore, $\operatorname{Aut}(S)$ is a k-form of PGL_{3} and Proposition 3.1 gives that A is contained in a torus of dimension 2 defined over k. According to Theorem 2.1 this is possible only if $t \leqslant 2$.
(ii) If $K_{S}^{2}=8$, then $\bar{S} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ (otherwise \bar{S} contains a unique (-1)-curve which must be defined over k; this contradicts $\left.\operatorname{rank} \operatorname{Pic}(S)^{A}=1\right)$. Then the connected component $\operatorname{Aut}(S)^{\circ}$ is a k-form of $\mathrm{PGL}_{2} \times \mathrm{PGL}_{2}$ of index 2 in $\operatorname{Aut}(S)$. It is clear that $A \subset \operatorname{Aut}(S)^{\circ}$ since $p>3$, and by Proposition 3.1 A is contained in a torus of dimension 2 , and thus $t \leqslant 2$.
(iii) If $K_{S}^{2}=6$, then the connected component $\operatorname{Aut}(S)^{\circ}$ is a two-dimensional torus and $\operatorname{Aut}(S) / \operatorname{Aut}(S)^{\circ} \otimes \bar{k} \cong S_{3} \times \mathbb{Z} / 2$. As above, $A \subset \operatorname{Aut}(S)^{\circ}$ since $p>3$, and we obtain that $t \leqslant 2$.

Now we prove that there exists a p-elementary subgroup of rank 2 in $\mathrm{Cr}_{2}(k)$ whenever $t \leqslant 2$. Applying Theorem 2.1, we obtain that for such t there exists a two-dimensional torus T defined over k such that $T(k)$ contains a p-elementary subgroup A of rank 2 . Thus, the well-known fact that T is rational over $k[4, \S 4.9]$ yields that $A \subset \operatorname{Cr}_{2}(k)$.
3.5. Suppose now that $\operatorname{rank} A \geqslant 3$ and p is odd. It is shown in [1, Propositions 2.6 and 3.10] that $p=3, \operatorname{rank} A=3$ and S must be a cubic surface in \mathbb{P}^{3}. We claim that $t=1$.

It follows from Proposition 3.1 that $A \subset T(k)$, where $T \subset \mathrm{PGL}_{4}$ is a maximal torus defined over k. We use notation from the proof of Theorem 2.1. Since PGL_{4} is a group of inner type, for any $g \in \Gamma_{k}, \rho(g)$ acts on $\Upsilon(T)$ as an element of the Weyl group. Let $F=\prod_{i} \Phi_{d_{i}}$ be the characteristic polynomial of $\rho(g)$ and let $\bar{F}=\prod_{i} \bar{\Phi}_{d_{i}}$ be its reduction modulo 3. Note that each d_{i} divides one of the invariant degrees of the Weyl group; therefore, each $d_{i} \in\{1,2,3,4\}$. Suppose that $t=2$; then the multiplicity of $-1 \in(\mathbb{Z} / 3)^{*}$ as the root of \bar{F} is equal to 3 . It follows easily from Lemma 2.2 that each $d_{i}=2$ and $F(X)=(X+1)^{3}$. Since $\rho(g)$ has finite order, $\rho(g)=-1$, but it is well known that -1 does not belong to the Weyl group of PGL_{4}. So we conclude that the case $t=2$ is impossible. This completes the proof of (1.1) for $p>2$.

To prove the second statement of Theorem 1.1 in the case $p=3$ and $t=1$, i.e. k contains the primitive cubic root of unity, consider the Fermat cubic given by equation $X_{0}^{3}+X_{1}^{3}+X_{2}^{3}+X_{3}^{3}=0$ in \mathbb{P}^{3}. It is rational over k and evidently admits the action of 3 -elementary group A with $\operatorname{rank} A=3$, so $A \subset \mathrm{Cr}_{2}(k)$.
3.6. Finally, suppose that $p=2$. It was proved in [1, Propositions 2.6 and 3.11$]$ that $\operatorname{rank} A \leqslant 4$. On the other hand, \mathbb{P}^{1} admits $(\mathbb{Z} / 2)^{2}$ as the automorphism group for every field k; hence, there exists an action of the group $A \cong(\mathbb{Z} / 2)^{4}$ on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and $A \subset \mathrm{Cr}_{2}(k)$. This completes the proof of the main theorem.

Acknowledgements. The author was supported in part by Leading Scientific Schools Grant 4713.2010.1.

References

1. A. Beauville, p-elementary subgroups of the Cremona group, J. Alg. 314 (2007) 553564.
2. I. V. Dolgachev and V. A. Iskovskikh, On elements of prime order in the plane Cremona group over a perfect field, Int. Math. Res. Not. 18 (2009), 3467-3485.
3. J.-P. Serre, Bounds for the order of finite subgroup of $G(k)$, in Group representation theory (ed. M. Geck, D. Testerman and J. Thévenaz), Fundamental Sciences (EPFL Press, Lausanne, 2006).
4. V. E. Voskresenskir, Algebraic groups and their birational invariants, Translations of Mathematical Monographs, Volume 179 (American Mathematical Society, Providence, RI, 1998).
