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Description-based and experience-based decisions: individual
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Abstract

We analyze behavior in two basic classes of decision tasks: description-based and experience-based. In particular,
we compare the prediction power of a number of decision learning models in both kinds of tasks. Unlike most previous
studies, we focus on individual, rather than aggregate, behavioral characteristics. We carry out an experiment involv-
ing a battery of both description- and experience-based choices between two mixed binary prospects made by each of
the participants, and employ a number of formal models for explaining and predicting participants’ choices: Prospect
theory (PT) (Kahneman & Tversky, 1979); Expectancy-Valence model (EVL) (Busemeyer & Stout, 2002); and three
combinations of these well-established models. We document that the PT and the EVL models are best for predicting
people’s decisions in description- and experience-based tasks, respectively, which is not surprising as these two models
are designed specially for these kinds of tasks. Furthermore, we find that models involving linear weighting of gains and
losses perform better in both kinds of tasks, from the point of view of generalizability and individual parameter consis-
tency. We therefore, conclude that, overall, when both prospects are mixed, the assumption of diminishing sensitivity
does not improve models’ prediction power for individual decision-makers. Finally, for some of the models’ parameters,
we document consistency at the individual level between description- and experience-based tasks.

Keywords: description-based decisions, diminishing sensitivity, expectancy-valence model, experience-based decisions,
model fit, parameter consistency, prospect theory.

1 Introduction

All our lives we have to make decisions. We have to
choose where to go on vacation, when to replace our old
car, which pair of shoes to buy. In fact, each step we make
in our life is a result of a decision we have made. Even if
we do nothing, this is probably our personal choice. Of
course, we would be happy if we could always make cor-
rect decisions in order to maximize the resulting utility,
yet we sometimes fail as a result of objectively insuffi-
cient information or subjective behavioral biases. There-
fore, understanding and systematically describing peo-
ple’s behavior is extremely important both for predicting
their future decisions and for potentially improving deci-
sion quality.

Decisions we make may be classified into two main
categories. When we study newspaper daily weather
forecasts, drug package inserts and mutual funds’
brochures, we enjoy convenient descriptions of the risky
prospects, including the probabilities of possible out-
comes. Respectively, decisions based on such statisti-
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cal descriptions are called description-based decisions.
When we decide whether to backup their computer’s hard
drive, cross a busy street, go on a blind date, put on a belt
during driving, we are typically denied a benefit of conve-
nient descriptions of the possible outcomes (for example,
the probabilities of a hard disk failure, of an accident, or
of meeting a desirable partner in a blind date are never ex-
plicitly provided). In many such decisions, all we can rely
on is our own past experience. Respectively, decisions
based on past personal experience are called experience-
based decisions.

Tasks typically studied under the description-based
paradigm tend to focus on one-shot decisions that are
based on detailed information concerning the relevant
outcome distributions. Tasks typically studied under the
experience-based paradigm do not provide objective prior
information concerning the payoff distributions, and this
could be these tasks’ drawback. On the other hand, the
decisions are repeated, and thus decision-makers get a
chance to learn from experience.

The distinction between risky description-based and
experience-based decisions has attracted recent attention
because the ostensibly same information can lead to dif-
ferent choices depending on how the information is ac-
quired (Hertwig et al., 2004, 2006; Hadar & Fox, 2009).
This difference, sometimes referred to as description-
experience gap, is usually attributed to the difference in
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treatment of rare outcomes in the two paradigms. On
the one hand, in description-based tasks, according to
“presentation effect”, low-probability events are likely to
be overweighted if their probabilities are explicitly pre-
sented (Hertwig & Erev, 2009). On the other hand, in
experience-based tasks, low-probability outcomes may
be underweighted either because of a recency effect—
since low-probability events are not likely to occur re-
cently the availability of personal experience tends to re-
duce the weighting of these events (Hogarth & Einhorn,
1992; Hertwig et al., 2004)—or simply because of a small
sample size, which may cause rare events not to occur at
all during relatively short intervals of time (Fox & Hadar,
2006; Ungemach et al., 2009; Erev et al., 2010).

As an example of a description-experience gap, we
may cite a classic example given by Weber (2006): Con-
sider the decision of whether to vaccinate a child against
diphtheria, tetanus, and pertussis (DTP). Parents who re-
search the side effects of the DTP vaccine by consult-
ing the National Immunization ProgramWeb site or a
brochure provided by their pediatrician will learn that up
to 1 child out of 1,000 will suffer from high fever and
about 1 child out of 14,000 will suffer from seizures as a
result of immunization. An increasing number of parents,
after reading such information, decide not to immunize
their child. Although doctors have the same statistics at
their disposal, they also have access to information not
available to parents—namely, personal experience gath-
ered across many patients. This information tells them
that vaccination is very unlikely to result in side effects.
Few doctors will have encountered one of the rare cases
of high fever or seizures. If they have encountered one,
the experience is dwarfed by hundreds of memories of
side-effect free immunizations. One sources of differ-
ences between doctors and vaccine resisters may result
from differences in the weight given to rare events (like
the likelihood of a seizure) as a function of whether this
likelihood is acquired through experience or statistical
description.

In naturally occurring situations, decision-makers of-
ten base their decisions both on descriptions and on their
own experience. In laboratory settings it is possible to
construct choice tasks based purely on descriptions or ex-
perience. Our major goal is to determine which mod-
els best explain behavior in these two classes of de-
cision tasks. Unlike previous studies focusing on ag-
gregate behavioral characteristics of groups of people
(e.g., Barron & Erev, 2003; Yechiam & Ert, 2007), our
study analyzes choice evaluation parameters for individ-
ual decision-makers. Moreover, we examine the connec-
tion between the choices of the same decision-makers in
description- and experience-based tasks.

We carry out an experiment involving a battery of
description-based and experience-based choices. So that

our decision tasks are more representative of real-world
situations, each of the choices is made between two bi-
nary prospects involving probabilities of both gains and
losses. To examine the common behavioral characteris-
tics of these kinds of tasks, we employ a number of for-
mal decision learning models, incorporating a number of
factors or parameters, namely, loss aversion, diminishing
sensitivity, probability weighting, choice consistency (or
the degree of randomness in choice), and recency (the
tendency to relate past information to the current choice).
First, we use two well-established models: (i) Prospect
theory (PT) (Kahneman, & Tversky, 1979), which was
developed mainly for description-based tasks, and (ii)
Expectancy-Valence model (EVL) (Busemeyer & Stout,
2002; Yechiam et al., 2005), which was designed spe-
cially for experience-based tasks. In addition, we create
three combinations of these basic models to find out what
parameters would be most suitable for describing human
behavior at the individual level by comparing same per-
son’s choices in the two types of tasks: (i) PT-NO-S
model, which is similar to the PT without the assumption
of diminishing sensitivity to gains and losses, (ii) EVL-S
model, which is similar to the EVL, but with the assump-
tion of diminishing sensitivity, and (iii) EVL-PT model
with utility function similar to that of the PT, except for
the loss aversion parameter.

In description-based tasks, in order to account for the
presentation effect, a learning model should contain a
possibility of non-linear weighting of explicitly stated
probabilities. Therefore, we employ models possessing
the probability weighting parameter, that is, PT and PT-
NO-S, for this kind of tasks. On the other hand, in order
to reflect the recency effect, learning models dealing with
experience-based decisions should contain a recency pa-
rameter. The EVL, EVL-S and EVL-PT models meet this
criterion.

First of all, we expect that the classical PT and EVL
models that were specially designed for description- and
experience-based tasks, respectively, will prove more
suitable than their possible combinations for the respec-
tive tasks. Our findings, based on the models’ fit, support
this expectation.

Furthermore, we expect that people tend to behave
consistently in terms of decision-making model param-
eters (e.g., Daneman & Carpenter, 1980; Higgins, 1997,
2005; Lee & Webb, 2005). We thus expect that the better
fitting models should also provide higher individual pa-
rameter consistency. In other words, we hypothesize that
an individual who, according to a certain model, reveals
relatively high/low values of certain decision parameters
in a certain task should reveal, according to the same
model, relatively high/low values of the same parame-
ters in other tasks of the same choice paradigm. Addi-
tionally, we expect that the contribution of the diminish-

https://doi.org/10.1017/S193029750000228X Published online by Cambridge University Press

https://doi.org/10.1017/S193029750000228X


Judgment and Decision Making, Vol. 7, No. 3, May 2012 Description and experience 318

ing sensitivity assumption to explaining decision-makers’
behavior in our experiment may be rather limited, due
to the mixed nature of prospects we employ. The for-
mer surmise is partially supported, since in description-
based tasks the combined PT-NO-S model is found to
outperform the PT model in terms of parameter consis-
tency. This finding is in line with other results indicating
that models involving linear weighting of gains and losses
perform better in both kinds of tasks.

Finally, we expect that individuals’ behavior should
also be consistent between different choice paradigms,
that is, individual parameters having similar functionality
in description- and experience-based tasks should be pos-
itively correlated. This hypothesis is only partially sup-
ported, suggesting that these widely-used learning mod-
els may still need further improvement.

The rest of the paper is structured as follows. In Sec-
tion 2, we present the models of decision-making we em-
ploy. In Section 3, we describe our experimental design
and research approach. Section 4 describes the empiri-
cal tests we perform and provides the results. Section 5
concludes and provides a brief discussion.

2 Decision-making models

2.1 Models of description-based choices
In order to explain and predict people’s decisions in
description-based tasks, we employ two formal mod-
els: the classical version of the Prospect Theory
which is commonly used to analyze behavior under
description-based paradigm, and its combination with the
Expectancy-Valence Theory.

2.1.1 Prospect theory

Prospect theory (PT) was developed by Kahneman and
Tversky (1979) as a new approach to decision-making
under uncertainty, and presented as a critique of the Ex-
pected Utility Theory as a descriptive model. We employ
the stochastic version of PT, rather than the deterministic
one, since it was found to have better predictions both on
Kahneman and Tversky’s original dataset as well as on
randomly selected prospects (Ert & Erev, 2007).

In the framework of the model, the choice is made be-
tween two prospects: a and b. Each prospect has two
possible outcomes: i = 1 (win) and i = 2 (loss). The
model may be briefly summarized in the following way:

U(prospecta) =
∑

i

V (xai) ·Π(pai) (1)

V (xai) =

{
xaa

i , if x ≥ 0
−β|xai|a, if x < 0

(2)

Π(pai) =
paλ

i

(paλ
i + (1− paλ

i )λ)1/λ
(3)

where: xai is the payoff on prospect a if outcome i oc-
curs; pai is the probability of outcome i for prospect a;
V (xai) is the subjective value of the payoff, according to
the individual value function v; and Π(pai) is the subjec-
tive probability function.

Respectively, a represents a parameter characterizing
subjects’ sensitivity to the numerical values of wins and
losses; β is a loss-aversion parameter, since it describes
subjects’ fear from losses; and λ gives a mathematical in-
terpretation to the shape of subjective probability func-
tion, namely, overweighting of small probabilities and
underweighting of high probabilities. Following Ert and
Erev (2007), we assume that λ is equal for gains and
losses.1

In accordance with the classical PT formulation, we as-
sume that the value function is S-shaped, that is, a ranges
from 0 to 1, representing concavity (risk aversion) in the
gains domain and convexity (risk seeking) in the losses
domain. Respectively, the value of a = 0 would reflect
the lowest sensitivity to the payoff value, and the value
of a = 1 would reflect the highest sensitivity. Further-
more, the subjective probability function, which of course
ranges along both objective and subjective probabilities
of 0 to 1, is assumed to be inverse S-shaped, indicating
that people tend to overweight low probabilities and un-
derweight high ones. Respectively, λ also ranges from
0, suggesting maximum deviation of subjective probabil-
ity weights from indicated objective probabilities, to 1,
suggesting linear (fully rational) probability weighting.
Finally, we assume that β ranges from 0 to 10, repre-
senting low and high levels of loss aversion, respectively.
The value of β = 1 would indicate equal treatment of
gains and losses. The consensus is that β is greater than 1
for most people, indicating that losses are more powerful
than gains. The upper limit of 10 we set consistently with
Ert and Erev (2007) would indicate a rather extreme de-
gree of loss aversion, and we intentionally set it so high
in order to allow the model to describe the behavior of
extremely loss-averse individuals.

The predicted probability of choosing prospect a may
be described by the Luce strength equation commonly
used as a decision rule in risky choices (see Luce, 1959):

Pr[a] =
eθ·U(prospecta)

eθ·U(prospecta) + eθ·U(prospectb)
(4)

θ = 5c − 1 (5)

where: c is a consistency parameter ranging from 0 to
10. When the value of c is low, choices are inconsistent,
random, impulsive, and independent of the expectancies.

1Assuming different values of λ for gains and losses does not im-
prove the fit of the model.
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The lowest value of 0 would imply that the probability
that the respective individual will choose prospect a is
always 0.5, regardless of the characteristics of this and
the other possible prospects. When the value of the con-
sistency parameter is high, it means that the option with
the maximum expectancy will almost certainly be cho-
sen. The upper limit of 10 we set consistently with Ert
and Erev (2007) would make the value of parameter θ ex-
tremely large, implying a very high level of attention to
the prospects’ characteristics.

2.1.2 Prospect Theory with elements of Expectancy-
Valence Theory

In addition to PT which is commonly used in the
description-based tasks, we employ its combination with
the Expectancy-Valence theory (which in its turn is de-
scribed in detail in the next Subsection). We henceforth
refer to this model as the PT-NO-S model. Its only dif-
ference from the PT model refers to the value function,
which is assumed to be linear:

V (xai) =

{
(1−W )xai, if x ≥ 0
−W |xai|, if x < 0

(6)

where: W is a loss weight parameter which is identi-
cal to the one used in the Expectancy-Valence model.2

The idea behind applying a linear transformation for both
gains and losses is that, while a power transformation is
more flexible, it may lead to fit based on this flexibility
rather than on the similarity to the actual (true) model.3

2.2 Models of experience-based choices
Similarly to the analysis of the description-based choices,
for capturing the basic processes involved in the
experience-based tasks, we employ a model which
is commonly used for this kind of task, namely the
Expectancy-Valence theory, and its combinations with
the PT.

2.2.1 Expectancy-Valence Theory

Expectancy-Valence Theory (EVL) is an adaptive learn-
ing model initially developed by Busemeyer and Stout

2To be discussed in some more detail in the next subsection, dealing
with the Expectancy-Valence Theory.

3We have also analyzed the model similar to PT-NO-S, except for the
sensitivity parameter being added. That is, we assumed the following
value function:

V (xai) =

(
(1−W )xaa

i , if x ≥ 0

−W |xai|a, if x < 0

The model appears to perform significantly worse than PT and PT-NO-
S from the point of view of model fit, generalizability and parameter
consistency. The results, not included in this paper, are available from
the authors upon request.

(2002). According to this model, decision-makers in-
tegrate the gains and the losses experienced on each
trial into a single affective reaction, called valence. Ex-
pectancies about the valences produced by each option
are learned by an adaptive learning mechanism. The ex-
pectancies could also be described as the propensities for
selecting different alternatives based on their outcomes
histories. Finally, these expectancies serve as inputs into
a probabilistic choice mechanism that selects the choice
on each trial. After each choice, the valences and ex-
pectancies are updated on the basis of outcome of the se-
lection and of the decision-makers’ personal attributes.

The model assumes three components:

Attention to losses and/or wins: The motivational pa-
rameter. The valence (or utility) is denoted by u(t),
and calculated as a weighted average of gains and losses
for the option chosen in trial t.

u(t) = (1−W ) · win(t)−W · loss(t) (7)

where: win(t) is the amount of money won on trial t;
loss(t) is the absolute amount of money lost on trial t;
and W is a parameter which indicates the weight given
to losses versus gains. By definition, this parameter is
limited from 0, denoting attention to wins only, to 1, de-
noting attention to losses only.

Influence of recent outcomes: The recency parameter.
In experience-based tasks, decision-makers initially do
not know anything about the payoff distributions for the
different options and have to learn this information over
the choice trials.

Formally, the term expectancy (Ej(t)) is used to de-
note the accumulated expected utility for option j, or in
other words, the accumulated experience one has with
an option up to and including trial t. High relative ex-
pectancy implies that the propensity to choose the corre-
sponding option would be high. The expectancy is up-
dated by the affective response experienced when a par-
ticular option is chosen and is a function of the new va-
lence or utility of the outcome for a given trial u(t), and
also of the old valences from previous trials. A delta
learning rule (Busemeyer & Myung (1992)) is used for
updating the expectancy after each choice, so that on any
trial t, the expectancy is equal to that endowed by the
previous trial Ej(t− 1). Formally:

Ej(t) = Ej(t− 1) + I · δj(t)[u(t)− Ej(t− 1)] (8)

where: δj(t) equals 1 if the option j was chosen on
trial t, and 0 otherwise. It means that for all the op-
tions that are not chosen, the expectancy does not get
updated as the second half of the equation is multiplied
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by zero. When the option j is chosen (δj(t) = 1), then
the expectancy changes in accordance with the difference
[u(t)−Ej(t−1)]. That is, if the new outcome from option
j is higher than the stored outcomes (the old expectancy)
the expectancy is improved, and the propensity to select
the option increases. If the new outcome is lower, then
the new expectancy of the option becomes lower. I is
the recency parameter, describing the degree to which ex-
pectancies of option consequences reflect the influence of
past experiences with particular options, or rather appear
to be affected by the most recent outcome with an option.
This parameter is also bounded by 0 and 1. Small values
of I would indicate the persistence of influences of prior
trials’ outcomes over longer spans of selections and are
associated with slow forgetting, and slow incorporation
of new outcomes into expectancies, the minimal value of
0 suggesting that recent outcomes have absolutely no ef-
fect on the respective individual’s expectancy. Large val-
ues of I indicate strong recency effects, so that the most
recent trials are more influential in determining the ex-
pectancy, whereas past outcomes are discounted. In other
words, in this case, expectancies change quickly, are in-
fluenced strongly by recent outcomes, and forgotten eas-
ily. The maximal value of 1 would suggest that if option
j is chosen by the individual, then her expectancy will be
equal to the utility on the current trial, completely ignor-
ing the utilities got on previous trials.

Reliability of choice behavior: The choice consistency
parameter. Choices made on each trial are based not
only on the expectancies produced by each option, but
also on the reliability with which the decision-makers ap-
ply those expectancies when making selections. People
may be inconsistent in applying expectancies if they are
bored, impulsive, or tired. In terms of explaining risk-
taking behavior, inconsistency may add a random ele-
ment to people’s choices. According to the EVL, the
probability of choosing an option is a strength ratio of
that option relative to the sum of the strengths of all op-
tions (see Luce, 1959):

Pr[Gj(t)] =
eθ·Ej(t)

∑
k eθ·Ej(t)

(9)

Consistency, denoted by θ, is assumed to change as a
function of experience and can increase in magnitude, re-
flecting the emergence of preference, or decrease, reflect-
ing tiredness or loss of interest leading to more random
choices. The consistency is formalized by the following
function:

θ = 5c − 1 (10)

Reliability is represented by c, controlling the consis-
tency of the choice probabilities and the expectancies.
This parameter is bounded between 0 and 10. When the

value of c is low, choices are independent of the expectan-
cies. When the value of the c is high, the option with the
maximum expectancy will almost certainly be chosen on
each trial.4

The EVL was found to have good fit in several datasets
(Busemeyer & Stout, 2002; Yechiam & Busmeyer, 2006,
2008). Moreover, it was found to have much better gen-
eralizability than alternative models that are different ei-
ther in their assumptions about the learning component
(Yechiam & Busmeyer, 2008; Yechiam & Ert, 2007) or
in their assumptions about the choice rule (Yechiam &
Busmeyer, 2008).

2.2.2 Expectancy-Valence Theory with diminishing
sensitivity

As in the description-based paradigm, we examine an-
other mix of EVL and PT, which, unlike the PT-NO-S, is
based on the former. We henceforth refer to this model
as the EVL-S model. It is similar to the EVL, but for the
fact that the PT sensitivity parameter is added. That is,
the valence (utility) on trial t is calculated as:

u(t) = (1−W ) · win(t)a −W · loss(t)a (11)

where: a is a sensitivity parameter, similar to that of the
PT.

2.2.3 Expectancy-Valence Theory with elements of
Prospect Theory

This is yet another variation of the EVL, where the utility
function is similar to that of the PT, except for the loss
aversion parameter. For this model, henceforth referred
to as EVL-PT, the valence (utility) on trial t is given by:

u(t) = win(t)a − loss(t)a (12)

This model specification has similarities with that em-
ployed by Ahn et al. (2008), which in fact integrates the
PT value function in the framework of EVL.5

4Alternatively, we assumed that:

θ = (t/10)c

i.e., that θ increases with experience. All the variations of the EVL
appeared to perform worse under this assumption from the point of view
of model fit, generalizability and parameter consistency. The results, not
included in this paper, are available from the authors upon request.

5We have also repeated the analysis with another version of the util-
ity function:

u(t) = win(t)a − β · loss(t)a

The model appears to perform significantly worse than EVL, EVL-S
and EVL-PT from the point of view of model fit, generalizability and
parameter consistency. The results, not included in this paper, are avail-
able from the authors upon request.
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3 Experimental design

Our study is based on the data obtained in the comput-
erized experiment, which involved 75 undergraduate stu-
dents (45% males and 55% females) from the Technion,
Israel Institute of Technology. The participants were paid
a sum of 45-55 NIS (New Israeli Sheqel) ($12 on av-
erage), depending on their overall success in the exper-
iment.6 They performed a series of description-based
and experience-based tasks, including randomized pay-
offs, while keeping relatively small differences in ex-
pected values between the alternatives (following Ert &
Erev, 2007). The choices were non-trivial, in the sense
that there was no strict dominance (meaning that one bet
offered a higher positive payoff with higher probability
than the other) among the 40 pairs of prospects. For
all the participants, description-based tasks preceded the
experience-based ones. Altogether, the experiment took
about 40 minutes to complete.

3.1 Description-based tasks

Participants were asked to choose between two prospects
that were visually presented on the screen by means of
a pie graph. Specifically, the exact payoffs were given
explicitly while the probabilities were presented only as
graphical areas and therefore were not perfectly clear (see
examples in Appendix 1). The probabilities were visibly
depicted in order to decrease the possible effect of indi-
vidual differences in the ability to understand the mean-
ing of numerical probabilities. The prospects were di-
vided into high-payoff prospects (more similar in magni-
tude to those employed by Kahneman and Tversky, 1979,
and also identical to those employed in the experience-
based tasks described in the next subsection), and low-
payoff prospects. Participants made choices on a set of
40 pairs of prospects: 20 high-payoff and 20 low-payoff,
as presented in Table 1a (in Appendix 2).7 The pairs
of prospects were ordered randomly in two versions, the
second version presenting the prospects in the reversed
(opposite) order. Each participant was randomly assigned
to one of the versions.

6At the beginning of the experiment, each participant was endowed
with 30 NIS. To this endowment we had added or taken off the sums of
money she won or lost as a result of decisions made during the experi-
ment.

7Each prospect was a choice between two bets. Each bet included
two possible outcomes: (i) for high-payoff prospects: win a certain
amount of x/2 with probability p or lose (100− x)/2 with probability
1− p; (ii) for low-payoff prospects: win a certain amount of x/20 with
probability p or lose (100− x)/20 with probability 1− p. x was dis-
tributed uniformly between 0 and 100, and p was distributed uniformly
between 0% and 100%.

3.2 Experience-based tasks
Ten experience-based tasks were chosen randomly
from the twenty high-payoff pairs of prospects in the
description-based paradigm,8 provided that the two bets
of the same task were different enough, meaning that the
difference between the probabilities of positive payoffs
(wins) was at least 30%.9 Each of the tasks involved 100
choice trials. In all ten tasks, the probabilities and the
payoffs were initially unknown and were learned by re-
peatedly choosing alternatives and obtaining immediate
payoff feedback. Participants were not made aware that
the distributions were fixed; this too was to be learned
from the experiment (as in Barron & Erev, 2003).

The alternatives were presented on the screen as two
buttons, labeled A and B, in each of the 100 trials. The
choices were made by selecting one button on each trial.
Each button was associated with a fixed payoff distribu-
tion. The participants were randomly assigned to two ran-
domized task orders, as in description-based tasks.

4 Results
Tables 1a and 1b in Appendix 2 summarize the payoffs
in both paradigms and also report, for each pair of bets
and for each task, average proportions of choosing the
more risky option from each pair, which is defined as the
one with relatively lower probability of the more proba-
ble outcome, either gain or loss, or in other words, the
bet with probabilities closer to 50-50. The risky alter-
natives are chosen 54.8% of the time in the description-
based tasks and 41% of the time in the experience-based
tasks.10

4.1 Model fit
The main goal of our research is to find out which mod-
els best characterize individuals’ behavior. The most
widespread and popular way of evaluating models is by
calculating their fit to the specific data set. In this study,
we use this conventional method along with new selection
criteria that have been developed by Yechiam and Buse-
meyer (2005) especially for studying decision-making at
the individual level.

8Participants were not told they were facing some of the same
choices they had already been facing in the description-based tasks.

9The same choice problems were intentionally taken in order to pro-
vide possibility for further comparing the models’ performance. We
had limited the experience-based part of our experiment to ten out of
twenty choice problems, because of the natural time and participants’
effort constraints of the experiment involving 100 trials for each of the
problems.

10We also calculate the rates of choosing alternatives with higher ex-
pected payoff from each pair. These are chosen 77.5% of the time in the
description-based tasks and 67% of the time in the experience-based
tasks. The detailed results are available upon request from the authors.
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The models we analyze may be effectively used for
explaining people’s behavior either in description- or in
experience-based tasks. That is, only the EVL model
and its modifications, involving the recency parameter,
accounting for the recency effect, may be employed in
the experience-based paradigm, and only the PT model
and its modifications, involving the probability weighting
parameter, accounting for the presentation effect (over-
weighting of low probabilities), may be employed in the
description-based paradigm.

All the experience-based model evaluations are based
on a measure computed from the accuracy of the “one
step ahead” predictions generated by each model for each
individual. Specifically, we define X(t) as a sequence of
payoffs produced by an individual’s choices up to and in-
cluding trial t, and Pr[Gj(t)] as the probability that alter-
native j will be selected on trial t predicted by a model.
Each model receives X(t) as input and uses this infor-
mation to generate Pr[Gj(t + 1)|X(t)] for choice trials
t = 1 to 100 and alternatives j = 1 to 2 (gain or loss).
The accuracy of these predictions is measured using the
log likelihood criterion for each individual:

LLmodel = lnL(model|data) =
∑

t

∑

j

ln(Pr[Gj(t + 1)|X(t)]) · δj(t + 1) (13)

where: δj(t) = 1 if alternative j is chosen on trial t, and
0 otherwise.

Each learning model has a group of parameters esti-
mated from each person’s choices on the first 50 trials
(we ignore the last 50 trials since in the second half of
the task many participants reached a plateau, repeatedly
selecting from the same alternative). When fitting param-
eters, the log likelihood is optimized for each participant
and each model by a search for parameters using a robust
combination of grid-search and simplex search methods
(Nelder & Mead, 1965).

To arrive to the fit index, we compare the log likelihood
of the learning models presented above to that of a base-
line statistical model, assuming that the choices are gen-
erated by a statistical Bernoulli model (see Busemeyer &
Stout, 2002), that is, that the choice probability for each
alternative is constant and equal to the average proportion
of times this alternative was chosen by a specific subject
across the whole task11:

Pr[Gj(t)] = pj =
∑

t δj(t)
N

(14)

where: N is a number of trials in the task, with t ranging
from 1 to N.

11Since there are only two alternatives in all the tasks we use, the
baseline model has only a single parameter (P1, P2 = 1− P1) which
corresponds to the proportion of choices of alternative 1.

We evaluate all the models employed by comparing
the log likelihood score for the learning and the baseline
models:

G2 = 2 · [LLmodel − LLbaseline] (15)

Because the baseline model has only one parameter,
while the learning models have more, we make an ad-
justment in the fit score, addressing the difference in the
number of parameters, by using the Bayesian Informa-
tion Criterion (BIC; Schwartz, 1978) statistic to compare
the models. The BIC is a correction in a model fit that
penalizes models for using additional parameters:

BIC = G2 −∆k · ln(N) (16)

where: ∆k represents the difference in the number of
parameters between the learning model and the baseline
model. Positive values of the BIC statistic indicate that a
learning model performs better than the baseline model.

As opposed to the experience-based tasks, model eval-
uations in the description-based tasks are based on a mea-
sure computed from the accuracy of the same-step pre-
dictions generated by each model for each individual per-
former. The step here is defined not as an experimental
trial, but rather as a pair of prospects presented on step t,
which is simply the serial number of the pair of prospects.
As mentioned earlier, the prospects are no connected to
each other. So the log likelihood criterion for each indi-
vidual is as follows:

LLmodel = lnL(model|data) =

∑
t

∑

j

ln(Pr[Gj(t)|X(t)]) · δj(t) (17)

where: X(t) is the description of the two bets on step t.
Tables 2a and 2b in Appendix 2 summarize the learn-

ing models’ estimated parameters and BIC scores for
the description-based and experience-based tasks, respec-
tively. In the description-based paradigm, the PT model
yields mean BIC scores of 14.90 and 14.13, for the high
and low-payoff conditions, respectively, as compared to
12.87 and 12.80, yet, both differences are statistically
non-significant.12 In the experience-based paradigm, on
average (across the 10 tasks), the highest BIC of 7.26
is obtained by the EVL model. The EVL-S model, in-
volving the assumption of diminishing sensitivity, yields
the mean BIC of 6.88, which is not significantly lower
than that of the EVL, while the EVL-PT model per-
forms poorly with a significantly lower mean BIC score

12BIC scores in both PT and PT-NO-S models are positive for each
one of the 75 participants. Exact distributions of BICs and models’
parameters are available from the authors upon request.
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of 3.73.13 These results are unsurprising, since PT model
is designed specially for description-based tasks, while
EVL model is designed specially for experience-based
tasks.

4.2 Generalization at the individual level
Having compared models’ fit, we now report generaliza-
tion tests that provide an important model comparison
method. We estimate model parameters from one learn-
ing condition and subsequently use these parameters to
make predictions for another learning condition. In the
past, such generalization tests have been conducted be-
tween different groups or populations of decision mak-
ers (e.g., Rieskamp et al., 2003). Yet, a problem may
arise when using group data to perform generalization
tests. Parameters differ across individuals, and therefore
the predictions for groups must reflect the effects of pa-
rameter heterogeneity. Much stronger tests are possible
by conducting generalization tests across tasks within the
very same person. This allows one to estimate parameters
for a single individual in one learning task and then exam-
ine how well these same parameters predict performance
for the same individual in another learning task. This is
the method we employ—generalizability at the individual
level.

Following Yechiam and Busemeyer (2005), for each
individual, we employ the parameters estimated in each
one of the description-based conditions to generate pre-
dictions for the other condition, and similarly, use the pa-
rameters estimated in each experience-based task to form
predictions for the other nine tasks. The models’ predic-
tions are compared to a random prediction using the G2

index.14

Tables 3a and 3b in Appendix 2 present the average
G2 scores, standard deviations, and the average success
proportion denoting the percent of subjects with G2 > 0,
for each source condition (the task providing the param-
eters for prediction),15 separately for the two conditions
of the description-based tasks and for the 10 experience-
based tasks (averaged across tasks). All the models pro-
duce negative average G2 scores, due to some very low
scores obtained for several participants.16 Therefore, it

13EVL, EVL-S and EVL-PT models yield negative BIC scores for
2, 4 and 6 out of 75 participants, respectively. Analyzing solely par-
ticipants with positive BICs does not qualitatively change the results.
Exact distributions of BICs and models’ parameters are available from
the authors upon request.

14Clearly, the statistical baseline model is of no use in this generaliza-
tion test, because its predictions reflect the measured choice proportions
in only a given task.

15Percentages above 50% imply above-chance success in predicting
the next choice ahead (in experience-based task) and the current choice
(in the description-based task) in the generalization test.

16Detailed distributions of the G2 scores are available upon request
from the authors.

seems to be more correct to compare the models’ perfor-
mance from the point of view of generalizability based on
their success proportions. In this respect, PT-NO-S and
EVL models perform better in the description-based and
the experience-based tasks, respectively. That is, models
involving no diminishing sensitivity assumption yield pa-
rameters that may be more efficiently employed for pre-
dicting the same individuals’ behavior in similar kinds of
tasks, at least as far as mixed prospects are concerned.

4.3 Individual parameter consistency in the
same kind of tasks

We proceed to analyze another aspect of decisions made
by the same individuals in different choice tasks of same
kind, the individual parameter consistency. In other
words, we ask whether an individual who, according to
a certain model, reveals relatively high/low values of cer-
tain decision parameters in a certain task will reveal, ac-
cording to the same model, relatively high/low values of
the same parameters in other tasks of the same choice
paradigm.

Previous literature in psychology and decision-making
implies that such consistency should exist for all the pa-
rameters we analyze. First, the loss aversion parameter is
assumed to be associated with a cognitive style that can
be captured in relevant personality tests, and may be con-
sistent (within the same person) for both description and
experience-based choices. According to the regulatory-
focus theory (Higgins, 1997, 2005), people’s behavior
may be characterized either by promotion focus, which
concentrates on desired end-states or gains, such as ad-
vancement and accomplishment, or by prevention focus,
emphasizing security and safety, that is, the desire to
avoid losses. The theory suggests that individuals have
characteristic tendencies towards one of these two behav-
ioral patterns. In the context of this theory, people who
have predominantly prevention focus are expected to be
generally more loss averse, in terms of PT, or attribute
higher weights to losses, in terms of EVL. Next, both
the recency parameter, which is assumed to be associated
with memory limitations, and the choice consistency pa-
rameter, which is assumed to be associated with the abil-
ity to focus attention on a decision problem, have been
demonstrated to vary among individuals (e.g., Daneman
& Carpenter, 1980; Kane et al., 2004; Unsworth & En-
gle, 2007, for the discussion on individual differences in
memory; and Rouder & Lu, 2005; Lee & Webb, 2005,
for the discussion on individual differences in attention
in general and choice consistency in particular).

Therefore, we suggest that individual parameter con-
sistency is one of the desirable characteristics of any
model which makes an attempt to explain human behav-
ior in a number of decision tasks. In order to evaluate
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individual parameter consistency, we examine Spearman
correlations between parameter values extracted in dif-
ferent tasks of the same paradigm performed by the same
individual. For example, if the loss weight parameter W
has high individual parameter consistency, it means that
individuals exhibiting high attention to losses in one task
pay high attention to losses in other tasks of the same
kind, resulting in a high positive correlation between the
parameters estimated in the different tasks.

Tables 4a and 4b in Appendix 2 summarize two-
sided Spearman correlations between the parameter val-
ues in description-based and experience-based tasks, re-
spectively, and their statistical significance. For the
experience-based tasks, each correlation stated in Table
4b is actually an average of 45 correlations (all the possi-
ble pairs out of the ten tasks), and the respective signifi-
cance tests apply to the distributions of these correlations
(one-sample t-test).

In the description-based paradigm, the PT-NO-S model
is much more successful from the point of view of param-
eter consistency. All the correlations between the param-
eters in this model are positive and significant, compared
to only one almost-significant correlation yielded by the
PT model.

In the experience-based paradigm, EVL model per-
forms much better, yielding positive and significant cor-
relations for all the parameters. These correlations are
relatively low, yet, this result may be due to the high vari-
ability of monetary outcomes and probabilities among
different pairs of prospects which, in turn, might lead to
distinct behaviors,17 and therefore, the fact the correlation
coefficients are nevertheless positive and significant may
indicate relatively consistent behavior. On the other hand,
the evidence yielded by the EVL-S model in this respect
is quite mixed, with two out of four correlations being
negative, while the EVL-PT model once again performs
poorly, yielding negative correlations for all the coeffi-
cients.

To summarize our findings so far, the EVL model is
superior to the combined EVL-S and EVL-PT models
in predicting people’s behavior in experience-based tasks
from the point of view of the model fit, the generaliz-
ability and the individual parameter consistency, while in
the description-based tasks the PT-NO-S model seems to
outperform the classical PT model, as it is clearly supe-
rior in what concerns the generalizability and the param-
eter consistency, and just slightly and non-significantly
worse from the point of view of the model fit. That is,
we may conclude that, with mixed binary gambles, mod-
els involving linear weighting of gains and losses perform
better in both kinds of tasks. In other words, the assump-
tion of diminishing sensitivity does not improve models’

17This is a natural cost of employing non-trivial choices between dif-
ferently looking pairs of prospects.

prediction power when mixed choices are involved.

4.4 Individual parameter consistency in
different kinds of tasks

We now ask about the connection between the behavior of
the same decision-makers in description and experience-
based tasks. The mechanisms of decision-making in
these two paradigms are different. The value function of
the PT is used to assess individuals’ valuation; while the
valence (or utility) function of the EVL is employed to
assess their outcome evaluation, and these two concepts
are often regarded as two distinct systems (e.g., Rangel
et al., 2008). Still, the ultimate goal of both models
(and their possible modifications) is similar—to predict
the choices of an individual who possesses a number of
subjective decision parameters. In this context, we may
point out two parameters having the same functionality
in description- and experience-based tasks, and namely,
loss aversion/weight and choice consistency. Therefore,
in order to estimate the parameter consistency between
the two paradigms and thus to bridge between them, we
calculate Spearman correlations between these parame-
ters in different kinds of tasks. For each model, we calcu-
late average parameter values for each participant across
the different conditions in each of the two kinds of tasks.
Since EVL-PT model appears to perform significantly
worse than EVL and EVL-S, we let only the latter two
models represent the experience-based paradigm, while
the description-based paradigm is represented by PT and
PT-NO-S.

The results presented in Table 5, Appendix 2, reveal
only one significant positive correlation, the correlation
of 0.22 between the loss-weight parameters in the EVL-S
and the PT-NO-S models. Note that this parameter is pre-
dicted to be consistent by personality theories highlight-
ing the relative weight of penalties and rewards in hu-
man behavior. Possible reason for the lack of consistency
in the choice-consistency parameters may be the imper-
fection of the experience-based models. Clearly, the im-
provement of these models could be a serious challenge
for future research.

5 Conclusion

We explored behavior in two basic classes of decision
tasks: description-based tasks based on descriptions of
exact probabilities and magnitudes of outcomes, and
experience-based tasks based on people’s past experience
without the benefit of such descriptions. Our major goal
is to compare the prediction power of a number of deci-
sion learning models in both kinds of tasks, when, unlike
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most previous studies, we focused on individual, rather
than aggregate, behavioral characteristics.

Our experiment involved a number of both description-
and experience-based choices between two mixed binary
prospects made. We tested a number of formal learning
models in both choice paradigms, including the classi-
cal Prospect Theory (PT) and Expectancy-Valence model
(EVL), as well as a number of their possible combina-
tions.

First, we analyzed which models best characterized in-
dividual behavior in both kinds of decision tasks. Us-
ing the log likelihood criterion for comparing the mod-
els’ predictions to the actual decisions made by subjects,
we concluded that the PT and the EVL models are more
suitable for predicting people’s decisions in description-
and experience-based tasks, respectively. This conclusion
is not surprising, as these two models are designed spe-
cially for these kinds of tasks. On the other hand, the
advantage of the PT over PT-NO-S model, involving lin-
ear weighting of gains and losses, from the point of view
of the model fit is relatively small.

Next, we tested generalization and parameter consis-
tency at the individual level. The idea of the former is
to ask whether parameters obtained for an individual in
one task may be used for predictions of her behavior in
another task, while the latter is intended to check if, for
individuals, the model parameters are positively corre-
lated between the choice tasks, as predicted by previous
psychological literature. Both tests reveal better perfor-
mance of PT-NO-S and EVL models. Overall, our results
demonstrate superiority of the EVL model over the EVL-
S and EVL-PT models, assuming diminishing sensitivity,
from all points of view, and suggest that the PT-NO-S
model probably outperforms the classical PT model, as
it is clearly superior in what concerns the generalizabil-
ity and the parameter consistency, and just slightly worse
from the point of view of the model fit. That is, we may
conclude that models involving linear weighting of gains
and losses perform better in both kinds of tasks, involv-
ing mixed binary gambles. In other words, when both
prospects are mixed, the assumption of diminishing sen-
sitivity does not improve models’ prediction power for
individual decision-makers. In such a way, our study
contributes to the broad debate in the decision-making
literature around the question: “What is the most impor-
tant factor causing people’s behavior to deviate from ra-
tionality?” Benartzi and Thaler (1995) and Thaler et al.
(1997) argue that this is the prospect theory’s loss aver-
sion that leads to irrational behavior, while Erev et al.
(2008) suggest that diminishing sensitivity to numerical
payoffs drives the experimental results in both descrip-
tion and experience-based paradigms. Still, we should

note that the studies by both Thaler et al. (1997) and Erev
et al. (2008) involve choices between a safe (positive out-
come) and a risky (positive or negative outcome) option,
suggesting that our results based on the choices between
two mixed risky options cannot definitely support one of
the sides in this debate. Mixed binary gambles seem to be
more representative of the real-world choices, but, still,
conducting similar studies with one of the prospects pro-
viding a sure outcome, either positive or negative, may
serve an interesting direction for further research.

Finally, we make an effort to bridge between the two
choice paradigms and for the parameters describing the
weighting of gains and losses, document consistency at
the individual level between description- and experience-
based tasks.

Our findings may have a number of implications. First,
our model fit analysis once again confirms that the well-
established PT and EVL models succeed quite well in ex-
plaining description- and experience-based choices, re-
spectively, and may be, therefore, confidently used for
predicting both group and individual behavior in these
kinds of choices. Moreover, this result once again em-
phasizes the importance of the probability discounting
parameter, accounting for the presentation effect, in ex-
plaining description-based decisions, and of the recency
parameter, accounting for the same name (recency) ef-
fect, in explaining experience-based decisions. Further-
more, our findings with respect to the individual param-
eter consistency in similar kinds of tasks suggest that, in
line with previous psychological evidence, people tend to
preserve their own behavioral characteristics. From an
individual’s choices in one decision task, we may pre-
dicting her choices in other similar tasks. Finally, the
fact that the models assuming linear weighting of mone-
tary outcomes are definitely the most successful from the
point of view of individual parameter consistency, and
probably the most successful from the point of view of
generalizability, suggests that the diminishing sensitivity
assumption may potentially result in misleading conclu-
sions if we are interested in a broader perspective on a
specific individual’s behavior.

In addition to conducting a similar study letting one of
the prospects provide a sure outcome, another potential
direction for further research may be also performing a
similar experiment with greater absolute values of out-
comes, in order to verify the role of diminishing sensi-
tivity when the amounts of gains and losses are larger. It
might be also interesting to analyze some combinations
of PT and EVL with the neoclassical Expected Utility
Theory. A serious challenge could be an effort to improve
the models themselves, in order to increase the parameter
consistency between the choice paradigms.
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Appendix 1: Examples of bets pre-
sentation in description-based tasks
In each bet there is a certain chance to win and a certain
chance to loss. The chances appear as an area the bets
take in the pie. For example, in a bet,

1−1

there is a chance of fifty percent to win 1 NIS and a
chance of fifty percent to lose 1 NIS and in a bet,

−0.5

2

there is a chance of seventy percent to win 2 NIS and a
chance of thirty percent to lose 0.5 NIS.

Participants’ mission was to choose between two bets.
At the end of the experiment, one of the bets each partic-
ipant marked was chosen. By means of a lottery (similar
to roulette), a random place in the pie was chosen. Ac-
cording to this, it was determined whether the participant
won or lost.
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Appendix 2: Tables
Table 1a: Payoff distribution of the 40 description-based prospects. Win/loss amounts and probabilities in prospects:
a, and b. Prospect b is a more risky prospect in each a-b couple. R proportion is mean the risky choice proportion
(standard deviation in parenthesis).

Win a Win Loss a Loss Expected Win b Win Loss b Loss Expected R proportion
prob. a prob. a value a prob. b prob. b value b

Low payoff 0.56 (0.35)
1.54 87% −3.46 13% 0.89 1.92 77% −3.08 23% 0.77 0.60 (0.49)
1.92 97% −3.08 3% 1.77 2.12 91% −2.88 9% 1.67 0.67 (0.47)
4.32 3% −0.68 97% −0.53 2.33 88% −2.67 12% 1.73 0.81 (0.39)
0.69 78% −4.31 22% −0.41 2.28 59% −2.72 41% 0.23 0.91 (0.29)
4.44 31% −0.56 69% 0.99 0.40 63% −4.60 37% −1.45 0.17 (0.38)
4.82 23% −0.18 77% 0.97 3.48 61% −1.52 39% 1.53 0.63 (0.49)
1.98 11% −3.02 89% −2.47 0.14 82% −4.86 18% −0.76 0.75 (0.44)
0.47 92% −4.53 8% 0.07 1.33 19% −3.67 81% −2.72 0.17 (0.38)
4.44 38% −0.56 62% 1.34 3.17 89% −1.83 11% 2.62 0.31 (0.46)
2.78 70% −2.22 30% 1.28 4.13 65% −0.87 35% 2.38 0.93 (0.25)
1.45 5% −3.55 95% −3.30 0.27 38% −4.73 62% −2.83 0.60 (0.49)
0.42 59% −4.58 41% −1.63 2.19 46% −2.81 54% −0.51 0.95 (0.23)
4.10 30% −0.90 70% 0.60 2.32 67% −2.68 33% 0.67 0.45 (0.50)
2.86 46% −2.14 54% 0.16 0.52 51% −4.48 49% −1.93 0.04 (0.20)
4.80 16% −0.20 84% 0.60 4.67 65% −0.33 35% 2.92 0.99 (0.12)
4.52 89% −0.48 11% 3.97 4.79 72% −0.21 28% 3.39 0.25 (0.44)
1.67 99% −3.33 1% 1.62 1.92 51% −3.08 49% −0.53 0.04 (0.20)
4.49 94% −0.51 6% 4.19 4.90 49% −0.10 51% 2.35 0.05 (0.23)
1.05 69% −3.95 31% −0.50 4.29 35% −0.71 65% 1.04 0.87 (0.34)
3.55 15% −1.45 85% −0.70 3.29 78% −1.71 22% 2.19 0.99 (0.12)

High payoff 0.54 (0.34)
36 15% −14 85% −6.50 33 78% −17 22% 22.00 0.97 (0.16)
10 69% −40 31% −5.50 43 35% −7 65% 10.50 0.83 (0.38)
45 94% −5 6% 42.00 49 49% −1 51% 23.50 0.19 (0.39)
15 5% −35 95% −32.50 3 38% −47 62% −28.00 0.65 (0.48)
43 3% −7 97% −5.50 23 88% −27 12% 17.00 0.89 (0.31)
19 97% −31 3% 17.50 21 91% −29 9% 16.50 0.37 (0.49)

4 59% −46 41% −16.50 22 46% −28 54% −5.00 0.92 (0.27)
15 87% −35 13% 8.50 19 77% −31 23% 7.50 0.64 (0.48)
41 30% −9 70% 6.00 23 67% −27 33% 6.50 0.40 (0.49)
44 31% −6 69% 9.50 4 63% −46 37% −14.50 0.11 (0.31)
48 23% −2 77% 9.50 35 61% −15 39% 15.50 0.33 (0.47)
17 99% −33 1% 16.50 19 51% −31 49% −5.50 0.04 (0.20)
28 70% −22 30% 13.00 41 65% −9 35% 23.50 1.00 (0.00)
20 11% −30 89% −24.50 1 82% −49 18% −8.00 0.73 (0.45)
45 89% −5 11% 39.50 48 72% −2 28% 34.00 0.39 (0.49)
32 89% −18 11% 26.50 44 38% −6 62% 13.00 0.32 (0.47)
48 16% −2 84% 6.00 47 65% −3 35% 29.50 0.97 (0.16)

5 92% −45 8% 1.00 13 19% −37 81% −27.50 0.09 (0.29)
7 78% −43 22% −4.00 23 59% −27 41% 2.50 0.87 (0.34)

29 46% −21 54% 2.00 5 51% −45 49% −19.50 0.01 (0.12)
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Table 1b: Payoff distributions of the ten experience-based tasks. Each task consists of two buttons: a, and b. Button b
is a more risky button in each a-b couple. R represents the mean risky choice proportion, wimth standard deviation in
parenthesis.

Task Win a Win Loss a Loss Expected Win b Win Loss b Loss Expected R proportion

prob. a prob. a Value a prob. b prob. b Value b

1 41 30% −9 70% 6.00 23 67% −27 33% 6.50 0.45 (0.26)

2 44 31% −6 69% 9.50 4 63% −46 37% −14.50 0.22 (0.16)

3 15 5% −35 95% −32.50 3 38% −47 62% −28.00 0.44 (0.17)

4 43 3% −7 97% −5.50 23 88% −27 12% 17.00 0.83 (0.11)

5 17 99% −33 1% 16.50 19 51% −31 49% −5.50 0.12 (0.13)

6 10 69% −40 31% −5.50 43 35% −7 65% 10.50 0.85 (0.14)

7 32 89% −18 11% 26.50 44 38% −6 62% 13.00 0.45 (0.30)

8 45 94% −5 6% 42.00 49 49% −1 51% 23.50 0.24 (0.25)

9 5 92% −45 8% 1.00 13 19% −37 81% −27.50 0.18 (0.16)

10 48 23% −2 77% 9.50 35 61% −15 39% 15.50 0.36 (0.21)

Tasks average 0.41 (0.19)

Table 2a: Means and standard deviations (in parenthesis) of the BIC scores and of the estimated model parameters in
the two conditions of the description-based tasks.

Task Model BIC Loss weight Consistency Sensitivity Probability
discounting

Loss
aversion

ProspectsH PT 14.90 (6.01) NA 3.42 (3.39) 0.45 (0.35) 0.34 (0.28) 3.00 (3.23)

PT-NO-S 12.87 (6.69) 0.56 (0.29) 0.66 (1.27) NA 0.70 (0.28) NA

Equality test stat.
(2-tailed p-value)

1.955
(0.0524)

ProspectsL PT 14.13 (5.98) NA 3.69 (3.01) 0.58 (0.39) 0.47 (0.36) 1.41 (1.43)

PT-NO-S 12.80 (6.99) 0.40 (0.24) 1.65 (1.26) NA 0.74 (0.28) NA

Equality test stat.
(2-tailed p-value)

1.252
(0.2126)

Note. Equality tests (t-statistics) refer to the hypothesis that the BIC scores of PT model are greater than those of
PT-NO-S model.
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Table 2b: Means and standard deviations (in parenthesis) of the BIC scores and of the estimated model parameters
across the 10 conditions of the experience-based tasks.

Task Model BIC Recency Loss weight Consistency Sensitivity

Tasks Average EVL 7.26 (10.57) 0.34 (0.37) 0.52 (0.39) 2.93 (3.27) NA

EVL-S 6.88 (10.65) 0.31 (0.37) 0.57 (0.38) 3.99 (3.73) 0.61 (0.40)

Equality test stat.
(2-tailed p-value)

0.219
(0.8266)

EVL-PT 3.73 (7.60) 0.60 (0.42) NA 0.52 (1.20) 0.61 (0.38)

Equality test stat.
(2-tailed p-value)

2.349
(0.0204)

Note. Equality tests (t-statistics) refer to the hypothesis that the BIC score of the EVL model is equal to that of the
EVL-S model and EVS-PT model, separately.

Table 3a: Average G 2 scores, standard deviations (in parenthesis), and percent of individuals for which the general-
ization prediction is better than a random model (success proportion) in description-based tasks.

PT

Source condition Average G2 score Success proportion

ProspectsL −9.85 (24.02) 0.48

ProspectsH −1.54 (16.95) 0.63

Prospects Average −5.69 (20.48) 0.55

PT-NO-S

Source condition Average G2 score Success proportion

ProspectsL −18.54 (26.51) 0.33

ProspectsH −3.70 (6.29) 0.93

Prospects Average −7.42 (16.40) 0.63

Table 3b: AverageG 2 scores, standard deviations (in parenthesis), and percent of individuals for which the general-
ization prediction is better than a random model (success proportion) in experience-based tasks, averaged across the
10 conditions.

EVL

Average G2 score Success proportion

−43.57 (116.68) 0.51

EVL-S

Average Success proportion

−65.40 (137.40) 0.44

EVL-PT

Average Success proportion

−63.58 (104.51) 0.46
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Table 4a: Two-sided Spearman correlations between parameter values estimated in the description-based high and
low-payoff tasks.

Model Loss weight Consistency Sensitivity Probability discounting Loss aversion

PT NA 0.09 0.22 0.23* 0.20

PT-NO-S 0.33* 0.40* NA 0.56* NA

Note. Asterisks denote significance at 5% level (two-tailed p-values).

Table 4b: Average two-sided Spearman correlations between parameter values estimated in the experience-based tasks.

Model Recency Loss weight Consistency Sensitivity

EVL 0.081 (0.114)* 0.080 (0.134)* 0.092 (0.103)* NA

EVL-S 0.010 (0.190) 0.060 (0.230)* −0.060 (0.410)* −0.12 (0.60)*

EVL-PT −0.048 (0.200)* NA −0.029 (0.488) −0.03 (0.28)

Note. Standard deviations of the correlations are shown in parentheses.

Asterisks denote significance at 5% level (two-tailed p-values).

Table 5: Two-sided Spearman correlations between the values of the same or similar parameters estimated in the
description-based and the experience-based tasks.

Experience − Description model Loss weight Consistency

EVL − PT-NO-S 0.12 −0.12

EVL-S − PT-NO-S 0.22* −0.10

EVL − PT 0.03 0.07

EVL-S − PT −0.23 0.02

Asterisks denote significance at 5% level (two-tailed p-values).
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