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Dynamics of domain walls

In this chapter we discuss the dynamics of kinks and domain walls first in the zero
thickness approximation, and then briefly in the full field theory. The zero thickness
approximation can be expected to be valid in the case when all other length scales,
such as the radii of curvature of a domain wall, are much larger than the wall
thickness.1 We start by deriving the action for a kink in 1 + 1 dimensions as this
is the simplest case and contains the essential features of the higher dimensional
cases. Then we derive the action for a domain wall in 3 + 1 dimensions and some
consequences. In this chapter we ignore gravitational effects which can be quite
important in certain situations (see Chapter 8).

7.1 Kinks in 1 + 1 dimensions

In 1 + 1 dimensions, if we ignore the structure of the kink, then we expect the kink
to behave simply as a massive point particle. Its dynamics are then given by the
usual action for a massive point particle

S1+1 = −M
∫

dτ (7.1)

where M is the mass of the kink and dτ is the line element which may also be
written as

dτ = dt

(
gµν

dXµ

dt

dX ν

dt

)1/2

(7.2)

where gµν is the metric of the space-time background and Xµ(t) is the location of
the kink at time t .

While the action in Eq. (7.1) seems reasonable on physical grounds, there should
be a systematic way to derive it starting from the original field theory action of which

1 This expectation is not completely correct since the wall velocity is also important [183, 73].
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Figure 7.1 The world-line of the kink is represented by the curve. The kink frame
coordinates ya = (τ, ξ ) are defined in the instantaneous rest frame of the kink and
are functions of the background coordinates xµ = (t, x).

the kink is a solution. Such a derivation should lead to Eq. (7.1) plus corrections
that depend on the internal structure of the kink.

To derive the effective action (Eq. (7.1)), the key assumption is that the field
profile of the kink is well-approximated by that of the known static kink solution in
the instantaneous rest frame of the kink. To proceed with the derivation, we work in
“kink frame coordinates” which are denoted by ya = (τ, ξ ), a = 0, 1, as illustrated
in Fig. 7.1 (τ is also called the kink world-line coordinate). These coordinates are
functions of the background coordinates that are denoted by xµ = (t, x), µ = 0, 1.

The kink world-line is given by the position 2-vector Xµ = (t, X (t)). Therefore
the vector tangent to the world-line is T µ = NT (1, ∂t X ) where NT is a normalization
factor chosen to enforce

gµνT µT ν = 1 (7.3)

The unit vector, Nµ(τ ), orthogonal to the world-line is found by solving

gµνT µN ν = 0 (7.4)

together with the normalization condition

gµν NµN ν = −1 (7.5)

In the special case of a Minkowski background, gµν = ηµν = diag(1, −1), we find
T µ = γ (1, V ) where V ≡ ∂t X , and Nµ = γ (V, 1) where γ = 1/

√
1 − V 2.

The coordinate τ is along T µ and ξ is along Nµ. Therefore, in the neighborhood
of some fixed point on the world-line, any space-time point can be written as

xµ = Xµ

0 + τT µ

0 + ξ Nµ

0 ≡ Xµ(τ ) + ξ Nµ(τ0) (7.6)
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7.1 Kinks in 1 + 1 dimensions 115

where the subscript 0 refers to the fixed point on the world-line. Since the energy
density in the fields vanishes far from the kink, only the neighborhood of the world-
line is relevant for deriving the effective action. Hence ξ is small and to lowest order
we can replace τ0 in the last term by τ to get

xµ = Xµ(τ ) + ξ Nµ(τ ) (7.7)

With the coordinate transformation in Eq. (7.7), the world-line metric can be
written in the ya coordinate system

hab = gµν∂axµ∂bxν (7.8)

Therefore

h00 = gµν(∂τ Xµ + ξ∂τ Nµ)(∂τ X ν + ξ∂τ N ν)

= gµν∂τ Xµ∂τ X ν + O(ξ )

h01 = gµν(∂τ Xµ + ξ∂τ Nµ)N ν = O(ξ )

h11 = gµν NµN ν = −1

where we have used the orthogonality of ∂τ Xµ ∝ T µ and Nµ, and the normalization
of Nµ. So the determinant of hab is

h = −gµν(Xµ)∂τ Xµ∂τ X ν + O(ξ ) (7.9)

where we have also expanded the background metric around the kink location.
Next we write,

φ(xµ) = φ0(ya) + ψ(ya) (7.10)

where φ0 is the static kink profile function in the kink frame coordinates. For
example, in the case of the Z2 kink, φ0 = η tanh(

√
λ/2 ηξ ) (see Eq. (1.9)). The

field ψ is the departure of the true field configuration from the static kink profile
φ0. The assumption is that the contribution of ψ to the action is small and hence ψ

can be used as a parameter for a perturbative expansion.
Now the field theory action is

S =
∫

d2x
√−gL[φ, φ̇; gµν] (7.11)

in terms of the Lagrangian density L and g = Det(gµν). The metric is taken to be
a fixed background and the gravitational effects of the wall are ignored. The full
problem of gravitating domain walls is significantly more complicated at a technical
level [21].

Now we write this action in the kink frame coordinates to get

S = S0 + O(ξ, ψ) (7.12)
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116 Dynamics of domain walls

with

S0 =
∫

dτdξ
√

|h| L[φ0(ξ ), φ̇0(ξ ); hab]

=
∫

dτ
√

|h|
∫

dξ L[φ0(ξ ), 0; hab]

= −M
∫

dτ
√

|h| (7.13)

where M is the mass of the kink. The last equality follows since the solution is
static and hence the Lagrangian density equals the energy density up to a sign.
The integration of the Lagrangian density then gives the −M factor. The effective
action is therefore the action for a point particle, simply given by the length of the
world-line. This result can easily be extended to walls (and strings) propagating in
higher dimensions, and the leading term in the effective action is proportional to the
world volume. Such geometric effective actions are often referred to as “Nambu-
Goto actions.” Even if the self-gravity of the domain wall is taken into account, the
dominant contribution to the effective action is still the Nambu-Goto action [21].

The next-to-leading order terms in the effective action, denoted by O(ξ, ψ) in
Eq. (7.12), have been discussed for domain walls in [138, 21, 73, 28], building on
the earlier analysis for strings [57, 105, 72]. The first-order corrections in both ψ

and ξ vanish because the field φ0 is a solution of the equation of motion and hence
the action is an extremum at φ0. The lowest non-trivial corrections come at second
order in ξ and ψ . An alternative approach to studying domain wall dynamics has
been developed in [9].

Finally we remark that the parameter τ can be chosen arbitrarily. Any other
world-line coordinate, τ ′(τ ), leaves the effective action invariant. This fact is called
“reparametrization invariance” of the action.

7.2 Walls in 3 + 1 dimensions

The location of a domain wall, Xµ(τ, ζ, χ), is described by three world-volume
coordinates ya = (τ, ζ, χ). Any point, xµ, can now be written in terms of the “wall
frame coordinates” (see Eq. (7.6) and Fig. 7.2)

xµ = Xµ(τ, ζ, χ) + ξ Nµ(τ, ζ, χ) (7.14)

where Nµ is the normal to the wall.
The derivation of the Nambu-Goto action proceeds exactly as in the kink case

of the last section and we get

S0 = −σ

∫
d3ρ

√
|h| (7.15)
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Figure 7.2 A curved section of a domain wall is shown. The world-sheet coordi-
nates are (τ, ζ, χ, ξ ) while those in the ambient space (“bulk”) are (t, x, y, z).

where σ is the energy per unit area (tension) of the wall, the integral is over the
wall world volume, h = Det(hab), and the world-volume metric is

hab = gµν(Xρ)∂a Xµ∂b X ν (7.16)

where a, b = τ, ζ, χ . Note that the determinant of hab is positive for the kink in
1 + 1 dimensions and also the domain wall in 3 + 1 dimensions.

The major difference between the kink in 1 + 1 dimensions and the domain wall
is that the wall can be curved, and so the profile φ0, which only applies to planar
walls, does not solve the equation of motion. For example, as the wall moves, it
accelerates and emits radiation. The radiation part must be treated as a perturbation.
However, the analysis is conceptually the same as for the kink and the derivation
may be found in [138, 21, 73, 28].

From the Nambu-Goto action for the domain wall, we can derive the equations
of motion. The variation of S0 involves the variation of h = Det(hαβ). This follows
from the identity (see Appendix E)

δlnDetM = Tr(M−1δM) (7.17)

valid for any invertible matrix M. Applying this identity to the matrix hab we get

δh = hhabδhab (7.18)

where hab is the inverse of hab so that

habhbc = δa
c (7.19)

Therefore the variation of S0 is

δS0 = −σ

2

∫
d3ρ

√
|h|habδhab (7.20)
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118 Dynamics of domain walls

We obtain the wall equation of motion by requiring δS0 = 0 together with the
definition of hab in Eq. (7.16)

1√|h|∂a(
√

|h|hab∂b Xσ ) = �σ
µνhab∂a Xµ∂b X ν (7.21)

where the Christoffel symbol is defined by the background metric gµν

�σ
µν = gσρ

2
(∂νgρµ + ∂µgρν − ∂ρgµν) (7.22)

In the special case of a Minkowski background metric, the Christoffel symbol
vanishes and

1√|h|∂a(
√

|h|hab∂b Xσ ) = 0 (7.23)

Using Eq. (7.17), the determinant h can be eliminated and the equation of motion
can be written as

∂a(hab∂b Xσ ) + 1

2
hcd∂ahcd hab∂b Xσ = 0 (7.24)

The equation of motion for a wall is highly non-linear because hab itself is
defined as a quadratic in derivatives of Xµ. One way to simplify the equations is to
choose convenient coordinates. This is possible because the equations of motion
of the wall are reparametrization invariant, i.e. we are free to choose any world-
volume coordinates (τ, ζ, χ). A similar situation occurs for strings that have a 1 + 1
dimensional world sheet. There, by a choice of coordinates, the equation of motion
can be converted to a simple wave equation in 1 + 1 dimensions together with some
quadratic constraints that can be solved quite generally. In the case of the domain
wall, however, no such convenient choice of coordinates is known and the equations
have not been solved in general. Only a few special solutions are known. Of these,
static solutions subject to suitable boundary conditions have minimal surface area,
and these have been extensively studied in the mathematics literature e.g. [115].

In a realistic setting, the dynamics of the walls are affected by inter-kink forces,
by the interaction of any surrounding particles, the gravitational field of the wall, and
the evolution of the background space-time. In addition, there are collisions between
different walls, leading to intercommuting (Section 3.8), and annihilation of walls
and antiwalls. If there are zero modes on the walls as described in Chapter 5, they
could also carry charges and currents and this would introduce other interactions.

7.3 Some solutions

In 1 + 1 dimensions the kink moves like a point particle of mass M . The dynamics
are richer in 3 + 1 dimensions where a closed domain wall can oscillate and move
in complicated ways. The Nambu-Goto action is valid when the radii of curvature of
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7.3 Some solutions 119

the wall and the separation of different sections of wall are both large compared to
the thickness of the wall. In addition, the velocity of the wall (in the center of mass
frame) should be small. (See Section 7.3.3 for the criterion in the case of collapsing
spherical domain walls.) When these conditions are not met, the only way to proceed
is to consider the dynamics using the underlying field theory. In this section, we
ignore field theory effects and describe some solutions to the Nambu-Goto action.

7.3.1 Planar solutions: traveling waves

A planar domain wall in the z = 0 plane is given by

Xµ(τ, ζ, χ) = (τ, ζ, χ, 0) (7.25)

Next consider a planar domain wall with some ripples

Xµ(τ, ζ, χ) = (τ, ζ, χ, z(τ, ζ, χ)) (7.26)

The function z describes the ripples and we would like solutions for z.
For the wall in Eq. (7.26), the world-volume metric is

hab = ηab − ∂az∂bz (7.27)

where

ηab = diag(1, −1, −1) (7.28)

Inverting hab is not simple, but inverting ηab is. So consider the “trial” inverse
metric

h̃bc = ηbc + ηbd∂d z ηce∂ez (7.29)

Then by evaluating habh̃bc, it can be seen that h̃bc is the correct inverse metric
provided

ηab∂az∂bz = 0 (7.30)

Now we can use Eq. (7.24) and the constraint (7.30) to get the equation of motion
for the function z(τ, ζ, χ)

∂a∂az = 0 (7.31)

Hence any function that satisfies Eqs. (7.31) and (7.30) extremizes the Nambu-Goto
action for a domain wall.

Solutions of Eqs. (7.31) and (7.30) have been discussed in [58]. The constraint
condition implies that the solution must necessarily be time-dependent. A class of
solutions is obtained by noting, for example, that z = f (τ − ζ ) solves the equation
of motion and also the constraint for any choice of function f . This corresponds
to a pulse of arbitrary shape on a planar domain wall that propagates in the +x
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120 Dynamics of domain walls

c

Figure 7.3 Sketch of a traveling wave on a planar domain wall. The pulse propa-
gates at the speed of light along the wall.

direction at the speed of light. Similarly

z = f (τ ± (n1ζ + n2χ )), n2
1 + n2

2 = 1 (7.32)

is a solution for any unit vector (n1, n2). These solutions are known as “traveling
waves” (see Fig. 7.3).

Other solutions of the wave equation (Eq. (7.31)) are also known – for exam-
ple, circular waves – but these do not satisfy the constraint equation and/or have
singularities.

7.3.2 Axially symmetric walls

Here we look for a static wall solution in a Minkowski background. The (Cartesian)
coordinates of the wall take the form

Xµ(τ, θ, λ) = (τ, R(λ) cos θ, R(λ) sin θ, λ) (7.33)

with ηµν = diag(1, −1, −1, −1). The wall metric is seen to be

hab = diag(1, −R2, −(1 + R′2)) (7.34)

where R′ is the derivative of R with respect to λ. The equation of motion, Eq. (7.21),
then leads to

d

dλ

(
R√

1 + R′2

)
= 0,

d

dλ

(
R R′√

1 + R′2

)
=

√
1 + R′2 (7.35)

with the solution

R(λ) = 1

α
cosh(αλ) (7.36)

https://doi.org/10.1017/9781009290456.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290456.008


7.3 Some solutions 121

d
a −1

D

Figure 7.4 Sketch of a catenoid solution.

where α is a parameter, τ = t , λ = z and θ is the angle in cylindrical coordinates.
Equation (7.36) describes a one-parameter family of static, axially symmetric, do-
main wall solutions (see Fig. 7.4).

The solution in Eq. (7.36) is a catenoid that is seen in soap films which, like
domain walls, also minimize their surface area [23]. Experiments with soap films
are done with two parallel circular rings, each of diameter D, placed a certain
distance, d, apart. Then the soap film forms a catenoid for d/D < 0.66 [117].
Actually there are two catenoid solutions for d/D < 0.66 since the relation αD =
cosh(αd/2) has two solutions for α for fixed values of D and d in this regime. A
third solution, which consists of two disconnected disks circumscribed by each of
the circular rings also exists. For larger values of the separation-to-diameter ratio,
d/D, the two-disk solution has less surface area than the catenoid solutions, and
the catenoid can pinch off and minimize its area by transforming to the two disks.
It seems reasonable to assume that the soap film analysis also applies to the domain
wall.

The catenoid is a static solution of the Nambu-Goto equations of motion. It
could happen that the catenoid is not a solution of the field equations. A simple
example of a solution to the Nambu-Goto equations that does not solve the field
equations can be constructed quite easily. Two parallel planar walls (a wall and
an antiwall) form a solution to the Nambu-Goto equations but, since these walls
have an exponentially small attractive force, they do not form a solution to the
field equations. However, by fixing the boundary conditions (as in the soap film
case by the rings), the catenoid solution for domain walls has been constructed
numerically by solving the equations of motion for the scalar field in the Z2 model
(Sutcliffe, P., 2005, private communication). The stability of the catenoid solution
to the Nambu-Goto equations is an open question (Section 7.7).
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122 Dynamics of domain walls

Quite complicated static domain wall solutions have also been studied in the
context of quasicrystals [137] and microemulsions [70].

In addition to static solutions, we could seek time-dependent solutions with axial
symmetry. The simplest such case would be a cylindrical domain wall whose radius
is a function of time. The radius would contract, pass through zero, and then grow
again. A similar solution is obtained for spherical walls which we discuss more
explicitly in the next section.

To obtain the cylindrical solution, we note that energy is conserved during col-
lapse. The energy per unit length of a cylindrical wall is

� = σ2π R√
1 − Ṙ2

= constant (7.37)

where σ is the energy per unit area of the wall, R is the radius of the cylinder at
time t , and an overdot denotes differentiation with respect to t . The square root
factor in the denominator takes care of the Lorentz boost.

The conservation of energy (i.e. constancy of �), immediately leads to the
solution

R(t) = R0 cos

(
t

R0

)
(7.38)

where R0 = �/σ2π is the radius when the wall is at rest.

7.3.3 Spherical walls

Our final example of domain wall solutions is with a spherical ansatz

Xµ(τ, θ, φ) = (τ, R(τ )r̂) (7.39)

where

τ = t, r̂ = (sin θ cos φ, sin θ sin φ, cos θ ) (7.40)

and θ, φ are spherical angular coordinates. The space-time metric is ηµν =
diag(1, −1, −1, −1).

We now find

hab = diag(1 − Ṙ2, −R2, −R2 sin2 θ ) (7.41)

where overdots denote derivatives with respect to τ . After some algebra, from
Eq. (7.21) we obtain the equation of motion

R̈ = − 2

R
(1 − Ṙ2) (7.42)
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R

t

Figure 7.5 Radius of a collapsing spherical domain wall against time in the thin
wall approximation. The coordinates in the plot are in units of the maximum radius
of the wall.

For R �= 0, Ṙ2 �= 0, 1 this can also be written as

d

dτ

(
R2√

1 − Ṙ2

)
= 0 (7.43)

which implies

4πσ
R2√

1 − Ṙ2
= M (7.44)

where M is a constant of motion, to be identified with the mass of the spherical
domain wall (σ is the mass per unit area of the wall).

The solution can be written in terms of the elliptic integral of the first kind∫ x

x∗

dx√
1 − x4

= ±τ − τ0

R0
(7.45)

where

R2
0 ≡ M

4πσ
, x ≡ R

R0
(7.46)

R0 has the interpretation of being the radius when the wall is at rest and x∗ is the
value of x at some initial time τ0. The sign in Eq. (7.45) is chosen according to
whether one is interested in the expanding or contracting solution. The radius of a
collapsing spherical domain wall is plotted in Fig. 7.5.

The behavior of perturbations on the spherical domain wall has been studied in
[182]. The result is that at late times the ratio of the perturbation amplitude divided
by the radius of the spherical wall, grows as 1/R as the wall collapses.
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124 Dynamics of domain walls

In the Nambu-Goto description, the spherical domain wall oscillates about the
center. However, the solution is only valid as long as the thin wall approximation
holds. By comparing various terms in the field equations of motion, the thin wall
approximation is seen to break down when [183, 73]

R

R0
∼

(
w

R0

)1/3

(7.47)

where w is the wall thickness. This relation is also confirmed by numerically solving
the equation of motion in the field theory [183]. In [73], the leading order corrections
owing to the thickness and gravity of the spherical domain wall are included, with the
conclusion that both these effects tend to slow down the dynamics. The Nambu-Goto
action also becomes inadequate owing to radiative losses. As the wall collapses, we
expect energy losses owing to radiation and eventually annihilation of the domain
wall into radiation. We discuss these processes further in Section 7.5.

The collapse of a zero thickness spherical domain wall is prevented if the back-
ground space-time is expanding. Static solutions are obtained if the background is
expanding at a constant rate, as in de Sitter space. In a particular coordinate system,
the line element for de Sitter space becomes time independent

ds2 = f (r )dt2 − f −1(r )dr2 − r2(dθ2 + sin2 θdφ2) (7.48)

where f (r ) = 1 − H 2r2 and H is a constant corresponding to the expansion rate.
Following the analysis of [16] for a circular string, the action for a spherical domain
wall in the zero thickness limit is

S = −4πσ

∫
dt R2

√
f − Ṙ2

f
(7.49)

where R(t) is the radius of the spherical wall and f = f (R). Extremization of this
action leads to the first integral

Ṙ2 − f 2 + ε−2 R4 f 3 ≡ Ṙ2 + V (R) = 0 (7.50)

where ε = E/4πσ and E is a constant (the first integral). For a static solution we
need both V (R) = 0 and V ′(R) = 0 where prime denotes derivative with respect
to R. These conditions give the static solution

R = H−1

√
2

3
(7.51)

with

E = 4πσ

H 2

2

3
√

3
(7.52)
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7.4 Solutions in field theory: traveling waves 125

The potential V (R) is a maximum at the location of this solution and therefore
the solution is unstable. The instability can be understood without calculation. If the
radius of the wall is perturbed to be a little smaller than the value at the solution,
the effects of Hubble expansion are weaker while the force owing to curvature is
stronger, and so the wall collapses. On the other hand, if the radius is perturbed to
be a little larger than the solution value, the expansion effect is stronger while the
curvature force is weaker, and the wall expands to yet greater radii.

Planar and spherical domain walls in de Sitter space have been considered in the
full field theory in [17, 18]. It is found [17] that instanton solutions describing the
nucleation of spherical domain walls exist only when the thickness of the wall is
less than H−1/

√
2. This result is also relevant to the problem of finding static thick

spherical domain walls in de Sitter space, since an instanton solution can exist only
if the static domain wall solution exists (though the converse may not hold). Hence
spherical domain wall solutions of the field theory in de Sitter space exist if the
domain wall thickness is less than H−1/

√
2.

7.4 Solutions in field theory: traveling waves

The traveling wave solutions discussed in Section 7.3.1 in the zero thick-
ness approximation are also exact solutions to the field equations of motion
[160, 161].

Consider the field

φ(t, x) = φ0(z − z0(t, x, y)) (7.53)

where φ0(z) is the classical solution for a domain wall in the z = 0 plane. We now
insert this ansatz in the field theory equation of motion. A little algebra shows that
the ansatz is a solution provided

∂a∂
az0 = 0, (∂az0)2 = 0 (7.54)

where a = t, x, y. These are the same equations obtained above for planar solu-
tions to the Nambu-Goto equations (Eqs. (7.31) and (7.30)). As discussed there,
the only non-singular solutions to these equations have the form of traveling
waves e.g.

z0(t, x, y) = f (t ± x, y) (7.55)

Hence traveling waves are solutions to the field equations and do not dissipate
owing to radiation.2

2 It can be shown that traveling waves do not dissipate even when they are considered in quantum field theory
[46].
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Figure 7.6 Collapse of a spherical sine-Gordon domain wall. The curves in the
left-hand plots show the field as a function of radial distance for several different
times. The right-hand plot shows the corresponding energy density distributions.
[Figure reprinted from [183].]

7.5 Spherical domain walls: field theory

We have seen in Section 3.7 that the collision of a kink and an antikink in 1 + 1
dimensions leads to chaotic dynamics. The kinks bounce back for certain velocities
while for other velocities, both smaller and larger, they annihilate. So we might
expect the dynamics of a collapsing spherical domain wall to show similar features.
Numerical simulations of the sine-Gordon model show that a collapsing spherical
domain wall does not radiate very much energy until it becomes very small (of order
the thickness of the wall), then emits a large amount of radiation, then bounces back
to form an expanding spherical domain wall (though with less energy than the initial
configuration), which then reverses and collapses again (see Fig. 7.6). Simulations
of a λφ4 spherical domain wall, however, do not show any bounce back [183].

7.6 Kink lattice dynamics (Toda lattice)

In Section 6.6.2 we have seen that a phase transition can lead to the formation of a
lattice of kinks (Fig. 6.7). What happens if one of the kinks in a lattice collides with
a neighboring kink? The interaction potential between neighboring kinks decays
exponentially with distance and energy conservation implies that the collision is
perfectly elastic. The momentum of the incoming kink is transferred to the target
kink [123]. These properties are exactly those assumed for a chain of masses in
what is called a “Toda lattice” [155]. The many beautiful properties of a Toda
lattice apply to the (one-dimensional) lattice of kinks as well. For example, there
are soliton solutions that run along the Toda lattice. So there are also solitons in the
dynamical modes of the kink lattice i.e. solitons in the dynamics of solitons!
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7.7 Open questions

1. Are there closed domain walls in three dimensions that do not self-intersect as they
oscillate? What happens in higher dimensions?

2. Can one show analytically that walls must intercommute on intersection?
3. When traveling waves on domain walls collide, they dissipate some of their energy. Find

the energy radiated. Find the energy that goes into excitations of the bound state in the
case of the Z2 wall.

4. Analyze the catenoid domain wall solution and its stability.
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