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ABSTRACT. In this paper, the transient response of an ice sheet subjected 
to sudden uplift is investigated. The ice sheet is modeled as an infinite thin plate 
undergoing small deflections that is being pushed vertically upwards by a rigid flat­
ended cylinder. The water underneath the ice sheet is modelcd using incompressible 
potential flow theory. For a given motion of the cylinder, the current problem is 
reduced to a Volterra integral equation of the first kind for the indentation force. 
It is solved by transforming the governing equation into an integro-differential 
equation. For the physical quantities of interest, comparisons are made with related 
experiments. 

INTRODUCTION 

Many of the civilian and military operations in the Arc­
tic and Antarctic regions, as well as on inland lakes and 
rivers, subject floating ice covers to dynamic loading con­
ditions, corresponding to the impact loads of landing air­
planes, submarine surfacings, moving surface loads and 
pulsating loads of heavy machinery. The problem in 
the title is germane to the submarine surfacing prob­
lem and is motivated by recent experiments at the U.S. 
Army Cold Regions Research and Engineering Labora­
tory (CRREL) in Hanover, NH (Sodhi, 1989; McGilvary 
and others, 1(90). The objective of this study is to inves­
tigate the transient response for a given dynamic uplift. 
The ice sheet is modeled as a thin plate undergoing small 
deflections, which is pushed vertically upwards by a flat­
ended cylinder of radius c'. It is assumed that the ice 
sheet is at rest prior to contact. The cylinder is assumed 

to contact the bottom surface of the ice sheet on the cir­

cular edge of the flat end only (Fig. 1), and the water is 
modeled using incompressible potential flow theory. 

In the case of forced vibrations or dynamic load­
ing, an additional bottom-surface pressure is imparted 
by the water as the water mass is accelerated. Holl 

(1950) considered the forced vibration of thin plates rest­
ing on elastic foundations of the Winkler type, but did 
not include the effects of the acceleration of the water. 
Kheysin (1967) and Nevel (1070) considered the vibra­
tion of a floating ice sheet, including the acceleration of 
the water. The latter analysis treated a time-varying 

load uniformly distributed over a circular area of un­

changing radius. Soclhi (1989) recently conducted a se­
ries of small-scale tests in which floating ice sheets were 
pushed vertically upwards by vertical cyclinders having 
different end shapes (flat, truncated-conical and conical) 
and different diameters (76, 152 and 305 mm). In this 
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series of tests, the ice sheets were subjected to vertical 
uplift and indentation at essentially constant velocity. 
The experiments reported by Sodhi (1989) are interest­
ing in that the form of the dynamic loading is amenable 
to an analytical treatment, if only for short time periods. 

The loading by the flat-ended cylinders can be idealized 
as a ring load, and the simplifying advantages ofaxisym­
metry can be utilized. In this paper, the expressions for 
the imposed motion of the ice sheet - see Equation (3) 
- are the same as those used by McGilvary and others 
(1990). 

Note that the simple model of Cl Winkler foundation 
has often been used to analyze the strength and deflec­
tion of floating ice sheets. In this type of foundation, t he 
pressure on the underside of the ice sheet is assumed to 
be direct ly proportional to the downward deflection of 
the ice sheet (the first term in Equat ion (7)). However, 
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the resisting force due to buoyancy is, in fact, rigorously 
represented by the Winkler model only for the case of 
static or quasi-static loading conditions. 

Urea model ice was used in the basin by Sodhi (1089) . 
This particular model ice is used to represent sea ice 
since it has a very similar microstructure but, by design , 
for modeling purposes it is very weak. Urea model ice 
is, with fair surety, substantially more plastic and de­
formable than real sea ice. The use in this paper, there­
fore, of an undamped non-viscoelastic model is more of 
an idealization than if the tests were done with fresh­
water ice, for instance. However , the model presented 
should still be a close approximation to reality up to 
times for which the small deflection thin-plate theory 
solution is valid. 

A major difficulty confronted by analysts in attempt­
ing to compare theoretical predictions with experimental 
results is the importance of the characteristic length I. 
- see Equation (Sc) - and the fact that it is measured 
under quasi-static loading conditions whilst the experi­
ments are rapid. A further complication is the fact that 
an infinite ice sheet subjected to axisymmetric deforma­
tions is discussed in this paper, whereas the basin in 
which Sodhi's experiments were conducted is, in fact, 
not only finit e but also rectangular (the finite in-plane 
dimensions would also possibly influence the characteris­
tic length measurements). However , since the lowest ra­
tio of the half-basin width to the measured characteristic 
length is 3.GG, note the comment by Sodhi (1089) that 
"This ratio, being more than 3, means that the effect of 
the basin walls is negligible on the results of our experi­
n1ents ." 

FORMULATION 

In the problem under consideration, the ice sheet is as­
sumed to be at rest prior to contact, and there is no 
applied force prior to contact. Furthermore, the uplift 
force must b e positive or zero (no tension at the contact 
line is allowed). The motion of the ice sheet is therefore 
governed by 

02W' P' (t) 
Pih~ + D'::r1w' + p~ = --8(1.' - c') , (1) 

ut- 27rc 

where Pi is the mass density of the ice sheet, h is its thick­
ness , w' its vertical displacement and \72 = {}2/D1.12 + 
(1jT')D/01"; furthermore \74 = \72 \72

, D is the flexural 
rigidity, F'(t) the unkown time-varying force uniformly 
distributed on the circle 1,1 = c' (a ring load) , 80 the 
Dirac delta function and p~ the pressure exerted by the 
water reaction. The initial and boundary conditions are 

w' = 0 and tu' = 0, for t ::; 0, 0::; 1" < =; (2a, b) 

P'(t) = 0, for t < 0; P'(t) ;::: 0 for t ;::: O. (2c, d) 

In the experiments by Sod hi (1989), the cylinders were 
moving upwards at a constant velocity before contact. 
Conservation of momentum requires that the cylinders 
experience some decelaration, albeit slight. The forced 
displacement of the plate, upwards in this study, is there­
fore expressed in terms of t he imposed velocity using the 
expressions adopted by McGilvary and others (1990) 
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" { -h[(t/to)~ - 0.5(t/tO)4] (to/T), 
w(c,t)= 

- h[(t/ to) - 0.5] (to/T), 

in which 

T = h/voo , to = 0.05 s, 

h = 0.070m, Voo = 0.038ms- 1 

o ::; t ::; to , 

T;::: t 2: to , 
(317. ) 

o ::; t ::; to , 

T 2: t ;::: to , 
(31!) 

( 417., b) 

(4c, d) 

and v is the velocity of the cylinder prior to contact. 
The time constant T = h /voo is the time taken by the 
cylinder to traverse the plate thickness if no deceleration 
on contact takes place. Since the cylindrical indentors 
in the physical experiments attempt to move upwards 
at a constant velocity voo , T is a useful parameter for 
the solution obtained in this paper. With the limita­
tions of thin-plate theory being operative (small defor­
mations), the solutions presenteci are therefore necessar­
ily restricted to time t < T. 

The bottom-surface pressure due to the acceleration 
of the water is treated by assuming that the motion of 
the water is governed by potential flow theory (Kheysin, 
10G7; Nevcl, 1970) . To this end, let <P' be the correspond­
ing water potential function. Assuming that the water is 
incompressible, conservation of water mass requires that 

(5) 

~? .) .) '2 
where \7- = \7- + 0- /Oz . The water velocity vector v 

is the gradient of the potential function <p'. At the de­
formed ice- water interface z' = w' + h/ 2, and the verti­
cal velocity of the water is equal to the vertical velocity 
of the ice. Assuming that the depth H' of the water 
under the ice sheet is a constant, the vertical velocity at 
z' = (H' + 11. / 2) is zero. As 1,1 approaches infinity, the 
velocity is also i:ero. Since <p' is only determined up to et 

constant, <p' is set equal to i:ero as '/' approaches infinity. 
<p' must therefore satisfy the conditions 

Orf/ I Dw' 
Oz' ='=w'+h/2 = Ot ' 

iJ<p' I --:---f = 0, 
Dz ='= I1 '+h/2 

( Ga, b) 

<p'I,.,-oo = O. (Gc) 

The expression for <p' is determined in the next sec­
t ion from Equations (5) and (G) using Hankel trans­
forms. The pressure p~ in Equation (1) may t hen be 
determined from I3ernoulli's equation, assuming that the 
water has no viscosity and that, as ".' approaches infinity, 
v . v = 0, p~ = fJ\\,gw', and <p' = 0, 

, , 1 'L D<P'I Po = P\\'!Jw - - fJw V - PII' - r - . 

2 iJt ='=w'+h/2 
(7) 

The second term on the righthand side is usually omitted 
because of its nonlinearity and because, for problems of 
this type, the resulting approximation is accurate. 
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SOLUTION 

Equations (1) and (5), and their initial and boundary 
conditions (Equations (2), (3), and (6)) are best cast 
in terms of non-dimens ional quantitie!::i and coord inates. 
Therefore, let 

(z,w) = (z',w')/h, (H 'r (') = (H' .,.' e')/l' , , • " 1 (8a) 

Po = p~/ Pwgh, fl = Pi"'/ Pw l, 

P(T) = P'(T)27rpwgl2h, and 

T = tJriji; (8b) 

l = (D/p\\,g)l /~. (8c) 

In Equation (8c) , l denote!::i the characteri!::itic length. The 
use of this length parameter dates back to Hertz (1884) 
and especially Westergaard (1926); the importance of its 
use in ice engineering is illustrated by the fact that it is 
one of the few variables consistently and independently 
measured in model basin tests (Sodhi and others, 1982). 
In model basin testing, the characterist ic length is mea­
sured instead of the modulus of elasticity or the fl exural 
rigidity. In Equation (8), the length normalizations are 
carried out in terms of either the ice thickness h or char­
acteristic length l. 

The solution procedure requires the introduction of a 
zeroth order Hankel transform with respect to 7', viz., 

H {J} = lb, T) = 1 00 'rf(-r, T)Job'f')d1', (9a) 

H - 1 U} = f Cr, T) = 100 ,],('1', T) Ju( -'('I·)d,. (9/;) 

Using Hankel transfonm Equations (9a and b), Equa­
tions (5) and (6) are solved for the case that H' » h . 
The Hankel transform of the linearized Equation (7) now 
gives 

a2U I 1 
fio = 'lJ1 + --, . 

aT2 ,tanh , H 
(10) 

Applying the same Hankel transform to Equation (1), 
and inserting Equation (10), the governing equation is 
reduced to 

The solution of Equation (11) for w is a Duhamel in­
tegral. Using the inverse Hankel transform, the general 
expression for the displacement follows as 

( ) 100(3 Job c) JobT)d 
W1'T = "V 'V 

, 0 / 1 + yl / 

1T P(v,) sin[f3(T - 'll)]du, (12) 

where 

If the ice sheet is pushed up by a cylinder with the 
velocity as defined in Equation (3b), the dynamic inden­
tation problem is reduced to a Volterra integral equation 
of the first kind. Numerical solutions of such equations 
are difficult to obtain; a solution P( T) may not exist 
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for every form of uplift velocity that could be specified, 
and when onc attempts to construct onc, it may not be 
unique , or it may be difficult to determine it accurately 
(Baker, 1977). Fortunately, t he form of w(c, T) specified 
by McGilvary and others (HJUO) i!::i such that w(c, 0) = 0 
and w(c,O) = O. The origina l integral equation is thu!::i 
transformable into an integro-differential equat ion, viz., 

- 1T iJP('II) -
w(e, T) = P(T )[( (T, T) - U O;;-[( (T, u)d'U, (14) 

where 

(15 ) 

Employing a direct quadrature method, Equation (14) 
can be solved for P (T). Once the load P(T) is evaluated, 
the temporal and spatial distributions of the displace­
ment can be calculated from Equation (12) . The moment 
can be found from 

11/1'l2 V _ 1' _ == -('ru,/'} . + -lU,I')' 
hD 'r 

M'l" 1 

I
OD = -(VW .'T + - 111,,.), 

/. 'I' 
(lGa,b) 

where 0.1' represents the derivative with respect to ·r. 
Once the temporal and spatial distribution of displace­
ment is obtained, 1111:(.,.' , t) and M~( 'r', t) can be evaluated 
numerically. The maximum bending stresses follow as 

eJ,. (17n, /;) 

Similarly, the shear force can be evaluated from 

Q'l3 cl 1 
-- = - - ('till''' + -'Ill ,.) . 
hD cl7" 1" 

(18) 

To avoid convergence problems, Equation (IS) is ex­
pressed in the alternative form 

Q'lJ 

hD 

[2 d , , 
I D( ) -I (M,. + Mo) , /. 1 + v ('{' 

(IQ) 

which can be evaluated numerically using finite difFer­
ences. 

RESULTS AND DISCUSSION 

The velocity of the inclentor is fixed at 'Uoo = 0.038 m 5- 1 

as in Sodhi's experiments (HJ89). The ratio of water 
depth to the thickness of the ice sheet is set to be 
H' / h = 40. At this velocity, if the thickness of the ice 
sheet is 0.076 m, the deflection 'tiI' (c', t) approaches the 
thickness h at approximately I. = 2 s. Within the limi ta­
tions of small deflection thin-plate theory, 'tiI' (c', t) ::; h/2 
is recommended. The characteristic lengths (Equation 
(Se)) are reduced to 85% of the values found in Sodhi 's 
experiments (McG ilvary and others , 1(90). 

Figure 2 shows the uplift load versus time, corre­
sponding to test numbers 02, 63 and 93 in Sodhi's experi-
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10.---------------------~ 
C') # l/h c'/h ....c:: 

0) 62 , '.3 0.55 
;3 63 '0.2 0 .99 
~ 

--- 93 '0.8 '.79 ,,--... 
-+-> 

5 '---' 

~ 
C'l 

I 
0 
..-I 

acceleration excluded 

0 
0.0 0.5 1.0 

tVrY:>/h 

Fig. 2. UpLift l.oad 'v er-sus time cO"Tesponding 
to the test Tt'Umbers 62, 63 a'l1d 93 in Sod/t'i's 
expel"iments. TILe dotted Lines CL'l'e appLicabl.e 
if th.e h'yd7'od'ynCLmic l'ea,ction 'i,$ exd-u ded. TILe 
foundcLt'ion is then o,pp'J'Oximated as (I, vV'i'll,kle7' 
medium. 

ments. The non-dimensional time and the uplift load are 
expressed as tVoo/h and 10-2 F'(t)/ Pwglt.J , respectively. 
In these three cases the displacement of the indentor 
reaches 0.43, O.4G and 0.43h, corresponding to the test 
numbers G2, 63 and 93, respectively. The theoretically 
determined uplift loads then equal the respective fail­
ure loads found by Sodhi (1080) in the associated ex­
periments. However, the associated deHections recorded 
by Sodhi (1£)89) were much higher than either 0.43h or 
O.4Gh. 

If the inertia of the ice sheet is deleted from the gov­
erning equation, the results are very nearly the same as 
when the mass of the ice sheet is included, and the corre­
sponding curves are in fact identical for the above three 
cases. In other words, the inertial fo rce of the ice sheet 
is negligible compared to the inertial force of the water 
underneath the ice sheet. Therefore, the ice sheet can 
effectively be treated as a mass less plate with flexural 
rigidity, D. On the other hand, if the dynamic water 
reaction is excluded, i.e. the water underneath the ice 
sheet is treated as a Vlinkler foundation, the correspond­
ing results are shown in Figure 2 with dotted lines. For 
short times (tvoolh s: 0.5), the dotted lines are separated 
from the short ones, for later times (tvoolh --> 1.0), when 

16~----------------~~--~ 

C') c'/h=O.55. 
....c:: 
0) 12 ;3 
~ 
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,,--... 

8 -+-> 
'---' 

~ 
C'l 

4 I 
0 
..-I 

0 
0.0 0.5 1.0 

Fig . 3. Infi,uence of the chamcteTistic length 
on the uplift load. 
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12~--------------------~ 

l/h=f '.3. H'/h=40 

O~~--~~~--.-,--,--.-,-~ 

0.0 0.5 1.0 

Fig. 4. Infi,uence oJ tiLe indent01' 'meLius on the 
upl.iJt I,oad. 

fail ure has already occurred, these two sets of curves co­
incide. The results including the dynamic water reaction 
forecast a significant ly higher uplift load than those ex­
cluding it, particularly at early times. 

Given the degree of uncertainty regarding the true 
value for the characteristic length under the dynamic 
conditions in Sodhi's tests, Figure 3 shows the influence 
of the characteristic lengt.h on the uplift load. The load 
is steadily increasing as I1 h increases. For a given thick­
ness 11., 11 larger value of I1 h corre!:>ponds to a higher value 
of Young's modulus, which therefore correlates with a 
larger uplift load . 

The influence of the cylinder radius on the uplift load 
is shown in Figure 4. For c' 1 11. s: 1.0, the difference in the 
uplift load for various value!:> of c' 1 h is negligible and the 
results are very close to the solution under a concentrated 
load; whereas for c' / h > 1.0, the difference becomes sig­
nificant. In Sodhi's experiments, three indentor radii , 
0.038,0.076 a nd 0.152 m were used. The influence of the 
relative water depth on the uplift load hm; been men­
tioned previously; only if the ratio H' / h i!:> large enough 
will the above formulation be accurate. In Sodhi's ex­
periments, the range of H' / It. is 30 45. The numerical 
results presented here are accurate for H' / h > 5. 

Figure 5 shows the maximum bending stresses at 
.,. = 0 versus time for three test numbers 62, 63 and 
93. The maximum stress occurs at the center of the flat­
ended cylinder. At l' = 0, the maximum bending stresses 

,,--... 
-.. 

1.5 
# 
62 0) 

;3 
~ 1.0 

63 
93 

o 
11 
I-

b ::=:: 0.5 
-., 
CD 
-.......... 
....c:: 
'---' 

0.0 
0.00 

l/h c'/h 

, '.3 0.55 

'0.2 0.99 H'/h=40 

'0.8 '.79 

0.25 0.50 

Fig . 5. Maxiw:u:rn. "'(I(L'i(ti, bencLi.ng str-csses at 
r' = 0 'versus h 'm c Jo',' test ',mmJ)c','s 62, 63 aneL 
93 in SoeLhi's CX1)C""im c'll,t s . 
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are approximately 582, 481 and 409 kPa, corresponding 
to test number 62 (tvoo/h = 0.43) , 63 (t voo/h = 0.46) 
and 93 (tvoo/h = 0.43). The associated flexural strengths 
found through cantilever tests in Sodhi 's experiments 
were 60, 60 ann 67 kPa, respect ively. Unfortunately, the 
ma.ximum bending stresses seem to be over-predicted 
by an order of magnitude for the case of concentrated 
loadings . Nute , however , that the experimenta lly deter­
mined maximum bending st resses are fuund via quasi­
stat ic uniaxial bending experiments. These could well 
be expected to differ significantly from strengths opera­
tive under conditions of sudden biaxial loadings. 

An additional possibility, given the magnitudes of the 
differences observed, is that the plasticity of the ice sheet 
is affecting the results significantly. This was not ex­
pected, given the short times being considered. In this 
context, remember that the theoretically determined de­
flections (~ 0.45h) corresponding to the uplift failure 
loads for three pa rticular tests were much lower than the 
associated deflections recorded by Sodhi (1989). 

An alternative possibility, supported by t he physi­
cal evidence, invu lves Cl sequential bending failure mode. 
Since the theoretical solution indicates that the bending 
strengths arc exceeded very early on at T = 0, it is highly 
likely that the bending strengths are then exceeded at 
some radius greater than that of the uplift ing cylinder. 
This supposition is further supported by the deflected 
shapes plotted by Sodhi (1989) starting with times cor­
responding closely to deflections at 7.1 = c' of half the 
ice-shee t thickness (the deflected shapes drawn by Sodhi 
exhibit what looks like the formation of a circumferential 
hinge). 

Figure U shuws the average shear s tresses versus radial 
distance in different times fur three test numbers. The 
average shear st resses at 'r' = c' are approximately GI , 38 
and 24 kPa corresponding to test number 62 (tvoo / h = 

0.43), G3 (tvoo/h = 0.46) and 93 (tvoo/h = 0.43). Using 
a static formulation for the average shear stress at 1.1 = c' 

(20) 

the corresponding values for the above three cases would 
be 80, 47 and 31 kPa, respectively. The shear st rengths 
recorded by Sodhi's quasi-stat ic shear experiments are 
very close to the results from Equation (20). The aver-

10 
...--... # l/h c'/h 
...t:: 62 11.3 0.55 H'/h=40 ~ 

;3 63 10.2 0.99 
~ 93 f O.8 f.79 

-............ 
<..> 5 
11 

-~ .. 
'--' ...--... -.. 
-............ 
...t:: 
'--' 0 

0.00 0.25 0.50 

Fig. 6. A verage shear stTesses at 1" = c'versus 
time faT t est numbers 62, 63 an d 93 'in Sodhi's 
exper·irn,en,ts. 
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age shear st resses predicted by the present solution are 
smaller than the static solutiun since a certain part of 
the uplift load is balanced by hydrodynamic forces. 

CONCLUSIONS 

The transient response of an infinite ice shee t subj ected 
to sudden axisymmetric uplift has been determined . For 
early times, the critical time duration , there is no val id­
ity to approximating the hydrodynamic plate foundation 
as a \iVinkler foundation . The bottom-surface pressure 
must be approximated by using incompressible potential 
flow theory. The theoretical solution in itself is useful 
as a guide for experimentalists as to the influence of the 
uplift rate, the characteristic length, the radi us of the 
uplifting device and the thickness of the ice sheet. Com­
parisons with Sodhi's experiments revealed qualitatively 
similar behavior; quantitat ive comparisons suffered be­
cause: 
• urea model ice was used in the test basin at CRREL 

by Sodhi (1089): th is ice ty pe is not ideally described 
by an unclamped time-i ndependent formulation; 

• the characteristic length L plays an influential role in 
the analysis, ye t it is measured under quasi-static COD­

ditions onl y; 
• the analys is treats an infinite ice sheet subjected to 

axisymmetric deformations , whereas the experiments 
were conducted in a finite and rectangular tank this 
disparity, however, is not expected to be significant ; 

• the loading by the fla t-ended cylinder is ap proximated 
by a time-dependent ring load, which is highly ideal­
ized for very early times; 

• not only was the bending st rengt h exceeded at the 
cent er of the loaded regiun prior tu uplift break­
through, but also the former failure was followed by a 
circumferential bending failure at some radius greater 
than that of the cylinder radius; 

• the average peak shear stresses were lower than the 
quasi-static strengths and , therefore, true shear fail­
ure probably never uccurred since higher st rengths 
would be expected for transient load ing conditions; 
ins tead , the circumfe rential bending radius simply 
drifted cluser to .,.' = c' as the uplifting cyl inder radius 
was made smaller. 
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