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Transient sub-surface uplift of a floating
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ABSTRACT. In this paper, the transient response of an ice sheet subjected
to sudden uplift is investigated. The ice sheet is modeled as an infinite thin plate
undergoing small deflections that is being pushed vertically upwards by a rigid flat-
ended cylinder. The water underneath the ice sheet is modeled using incompressible
potential flow theory. For a given motion of the cylinder, the current problem is

reduced to a Volterra integral equation of the first kind for the indentation force.
It is solved by transtorming the governing equation into an integro-differential
equation. For the physical quantities of interest, comparisons are made with related

experiments.

INTRODUCTION

Many of the civilian and military operations in the Arc-
tic and Antarctic regions, as well as on inland lakes and
rivers, subject floating ice covers to dynamic loading con-
ditions, corresponding to the impact loads of landing air-
planes, submarine surfacings, moving surface loads and
pulsating loads of heavy machinery. The problem in
the title is germane to the submarine surfacing prob-
lem and is motivated by rccent experiments at the U.S.
Army Cold Regions Research and Engincering Labora-
tory (CRREL) in Hanover, NH (Sodhi, 1989; McGilvary
and others, 1990). The objective of this study is to inves-
tigate the transient response for a given dynamic uplift.
The ice sheet is modeled as a thin plate undergoing small
deflections, which is pushed vertically upwards by a flat-
ended cylinder of radius ¢, It is assumed that the ice
sheet is at rest prior to contact. The cylinder is assumed
to contact the bottom surface of the ice sheet on the cir-
cular edge of the flat end only (Fig. 1), and the water is
modeled using incompressible potential flow theory.

In the case of forced vibrations or dynamic load-
ing, an additional bottom-surface pressure is imparted
by the water as the water mass is accelerated. Holl
(1950) considered the forced vibration of thin plates rest-
ing on elastic foundations of the Winkler type, but did
not include the effects of the acceleration of the water.
Kheysin (1967) and Nevel (1970) considered the vibra-
tion of a floating ice sheet, including the acceleration of
the water. The latter analysis treated a time-varying
load uniformly distributed over a circular area of un-
changing radius. Sodhi (1989) recently conducted a se-
ries of small-scale tests in which floating ice sheets were
pushed vertically upwards by vertical cyclinders having
different end shapes (flat, truncated-conical and conical)
and different diameters (76, 152 and 305mm). In this
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Fig. 1. Problem coordinates and loading con-
figuration. The uplift force ewerted by the flat
end of the eylinder is approximated by a time-
dependent ring load.

series of tests, the ice sheets were subjected to vertical
uplift and indentation at essentially constant velocity.
The experiments reported by Sodhi (1989) are interest-
ing in that the form of the dynamic loading is amenable
to an analytical treatment, if only for short time periods.
The loading by the flat-ended cylinders can be idealized
as a ring load, and the simplifying advantages of axisym-
metry can be utilized. In this paper, the expressions for
the imposed motion of the ice sheet — see Equation (3)
- are the same as those used by McGilvary and others
(1990).

Note that the simple model of a Winkler foundation
has often been used to analyze the strength and deflec-
tion of floating ice sheets. In this type of foundation, the
pressure on the underside of the ice sheet is assumed to
be directly proportional to the downward deflection of
the ice sheet (the first term in Equation (7)). However,
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the resisting force due to buoyancy is, in fact, rigorously
represented by the Winkler model only for the case of
static or quasi-static loading conditions.

Urea model ice was used in the basin by Sodhi (1989).
This particular model ice is used to represent sea ice
since it has a very similar microstructure but, by design,
for modeling purposes it is very weak. Urea model ice
is, with fair surety, substantially more plastic and de-
formable than real sea ice. The use in this paper, there-
fore, of an undamped non-viscoclastic model is more of
an idealization than if the tests were done with fresh-
water ice, for instance. However, the model presented
should still be a close approximation to reality up to
times for which the small deflection thin-plate theory
solution is valid.

A major difficulty confronted by analysts in attempt-
ing to compare theoretical predictions with experimental
results is the importance of the characteristic length [
~ see Equation (8c) ~ and the fact that it is measured
under quasi-static loading conditions whilst the experi-
ments are rapid. A further complication is the fact that
an infinite ice sheet subjected to axisymmetric deforma-
tions is discussed in this paper, whercas the basin in
which Sodhi’s experiments were conducted is, in fact,
not only finite but also rectangular (the finite in-plane
dimensions would also possibly influence the characteris-
tic length measurements). However, since the lowest ra-
tio of the half-basin width to the measured characteristic
length is 3.66, note the comment by Sodhi (1989) that
“This ratio, being more than 3, means that the cffect of
the basin walls is negligible on the results of our experi-
ments.”

FORMULATION

In the problem under consideration, the ice sheet is as-
sumed to be at rest prior to contact, and there is no
applied force prior to contact. Furthermore, the uplift
forece must be positive or zero (no tension at the contact
line is allowed). The motion of the ice sheet is therefore
governed by

&' ; P'(t
pihw o= DVlw' i p:} = 2750‘,)6(7"’ = Cf) ) (1)

where p; is the mass density of the ice sheet, h is its thick-
ness, w' its vertical displacement and V* = 8%/9r'* +
(1/r")8/0r"; furthermore V* = V*V#, D is the flexural
rigidity, P'(t) the unkown time-varying force uniformly
distributed on the circle 7 = ¢ (a ring load), &() the
Dirac delta function and p{, the pressure cxerted by the
water reaction. The initial and boundary conditions are

=0andw' =0, fort <0, 0<+ <o0; (2a,b)

P'(t) =0, for§ < 03 P'(t) 2 O fort 2 0. (2¢, d)

In the experiments by Sodhi (1989), the cylinders were
moving upwards at a constant velocity before contact.
Conservation of momentum requires that the cylinders
experience some decelaration, albeit slight. The forced
displacement of the plate, upwards in this study, is there-
fore expressed in terms of the imposed velocity using the
expressions adopted by McGilvary and others (1990)
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w'ile t) =
— h.[(‘ﬁ/tu) — UE‘I] (f-[]/T), e b Ty
(3a)
— e [3(t/10)* — 2(t/t0)’]; 0<t<ty,

abilE ) =
-1, T2 02 T
(30)

in which

= h‘/"”o‘w g = 0.05 S, (4(}., b)
h=0076m, vy =0.038ms" (4e¢,d)

and v, is the velocity of the cylinder prior to contact.
The time constant T = hi/v,, is the time taken by the
cylinder to traverse the plate thickness if no deceleration
on contact takes place. Since the cylindrical indentors
in the physical experiments attempt to move upwards
at a constant velocity ve, T is a useful parameter for
the solution obtained in this paper. With the limita-
tions of thin-plate theory being operative (small defor-
mations), the solutions presented are therefore necessar-
ily restricted to time t < T

The bottom-surface pressure due to the acceleration
of the water is treated by assuming that the motion of
the water is governed by potential flow theory (Kheysin,
1967; Nevel, 1970). To this end, let ¢’ be the correspond-
ing water potential function. Assuming that the water is
incompressible, conservation of water mass requires that

V¢ =0, (5)

where V2 = V2 + 0°/02'*. The water velocity vector v
is the gradient of the potential function ¢'. At the de-
formed ice-water interface 2’ = w' + h/2, and the verti-
cal velocity of the water is equal to the vertical velocity
of the ice. Assuming that the depth H' of the water
under the ice sheet is a constant, the vertical velocity at
z/ = (H' + h/2) is zero. As r' approaches infinity, the
velocity is also zero. Since ¢ is only determined up to a
constant, ¢’ is set equal to zero as 1 approaches infinity.
¢’ must therefore satisty the conditions

a¢’ w'  9¢'
a—qb’ =—, —('6, =0 (Ga, b)
2 acwiny O 02 Laspinge
& oo = (Ge)
The expression for ¢’ is determined in the next scc-

tion from Equations (5) and (6) using Hankel trans-

forms. The pressure pj in Equation (1) may then be
determined from Bernoulli’s equation, assuming that the
water has no viscosity and that, as 7 approaches infinity,
v v =0,p,=pwgw’, and ¢' =0,

/

i) ;
Py = pwgw’ — Epw'tf - pw— ! (7)
Ot | o giy2

The second term on the righthand side is usually omitted
because of its nonlincarity and because, for problems of
this type, the resulting approximation is accurate.
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SOLUTION

Equations (1) and (5), and their initial and boundary
conditions (Equations (2), (3), and (6)) are best cast
in terms of non-dimensional quantities and coordinates.
Therefore, let

(z,w) = (2, w')/h, (H,r,c)=(H ', )l; (8a)
po=po/pwgh, w=phlpdd, T=t\/g/l;  (8D)

P(1) = P'(7)2mpugl®h, and 1= (D/p.g)"*. (8¢)

In Equation (8c), I denotes the characteristic length. The
use of this length parameter dates back to Hertz (1884)
and especially Westergaard (1926); the importance of its
use in ice engineering is illustrated by the fact that it is
one of the few variables consistently and independently
measured in model basin tests (Sodhi and others, 1982),
In model basin testing, the characteristic length is mea-
sured instead of the modulus of clasticity or the flexural
rigidity. In Equation (8), the length normalizations are
carried out in terms of either the ice thickness h or char-
acteristic length L.

The solution procedure requires the introduction of a
zeroth order Hankel transform with respect to », viz.,

(7,7)='[D‘ rf(r,7)Jo(yr)dr, (9a)
H{F} = f(r,7) = f " af )y ). (98)

Using Hankel transforms Equations (9a and b), Equa-
tions (5) and (6) are solved for the case that H' >> h.
The Hankel transform of the linearized Equation (7) now
gives

9w 1

po = @ e 10
FE=HS d7% ytanhyH (10)

Applying the same Hankel transtorm to Equation (1),
and inserting Equation (10), the governing equation is
reduced to

" 1 J%D "
e e
: ytanhvyH / 072

The solution of Equation (11) for @ is a Duhamel in-
tegral. Using the inverse Hankel transform, the general
expression for the displacement follows as

77_ f By J()’)‘L)Jo(’)”)

1444
/ (u) sin[B(T — w)]du,
0

(1+9")@ = Jo(ve) P(r). (11)

—dy
(12)

where

B =1+ 1y, y =+ 1/ytanh(vH ). (13a,b)

If the ice sheet is pushed up by a cylinder with the
velocity as defined in Equation (3b), the dynamic inden-
tation problem is reduced to a Volterra integral equation
of the first kind. Numerical solutions of such equations
are difficult to obtain; a solution P(7) may not exist
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for every form of uplift velocity that could be specified,
and when one attempts to construct one, it may not be
unique, or it may be difficult to determine it accurately
(Baker, 1977). Fortunately, the form of w(e, 7) specified
by McGilvary and others (1990) is such that w(e,0) = 0
and (e, 0) = 0. The original integral equation is thus
transformable into an integro-differential cquation, viz.,

w(e,7) = P(1)K(7, / P (u) — K (7, u)du, (14)

where

= G 2('?“-')
Rl = f icl 1

Employing a direct quadrature method, Equation (14)
can be solved for P(7). Once the load P(7) is evaluated,
the temporal and spatial distributions of the displace-
ment can be calculated from Equation (12). The moment
can be found from

s[B(r — u)|dy. (15)

M1 (o L)
= — (W pp —w, ],
hiD y g
M2
% = — (v —i— w -p (16a, b)
1
where (), represents the derivative with respect to .

Once the temporal and spatial distribution of displace-
ment is obtained, M (+',t) and Mj(+',t) can be evaluated
numerically. The maximum bending stresses follow as

GM! 6M]

R ap 2 (17a, b)

i —

Similarly, the shear force can be evaluated from

QY  d. 1 .
T_'D- = E(“ b i .J_.“’"')' {18)

To avoid convergence problems, Equation (18) is ex-
pressed in the alternative form

Qrzli 3 [2

d
T e M
hD  hD(1+wv) dr T M+ My,

(19)

which can be evaluated numerically using finite differ-
ences.

RESULTS AND DISCUSSION

The velocity of the indentor is fixed at vy, = 0.038 ms™!
as in Sodhi’s experiments (1989).
depth to the thickness of the ice sheet is set to be
H'/h = 40. At this velocity, if the thickness of the ice
sheet is 0.076 m, the deflection w'(¢/,¢) approaches the
thickness i at approximately f = 2s. Within thc limita-
tions of small deflection thin-plate theory, w'(¢/,t) < h/2
is recommended. The characteristic lengths (Equatlon
(8¢c)) are reduced to 85% of the values found in Sodhi’s
experiments (McGilvary and others, 1990).

Figure 2 shows the uplift load versus time, corre-
sponding to test numbers 62, 63 and 93 in Sodhi’s experi-

The ratio of water
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Fig. 2. Uplift load versus time corresponding
to the test numbers 62, 63 and 93 in Sodhi’s
experiments. The dotted lines are applicable
if the hydrodynamic reaction is excluded. The
foundation is then approwimated as o Winkler
mediumnt.

ments. The non-dimensional time and the uplift load are
expressed as tuy,/h and 1072P'(t)/pegh®, respectively.
In these three cases the displacement of the indentor
reaches 0.43, 0.46 and 0.430, corresponding to the test
numbers 62, 63 and 93, respectively. The theoretically
determined uplift loads then equal the respective fail-
ure loads found by Sodhi (1989) in the associated ex-
periments. However, the associated deflections recorded
by Sodhi (1989) were much higher than either 0.43h or
0.46h.

If the inertia of the ice sheet is deleted from the gov-
erning equation, the results are very ncarly the same as
when the mass of the ice sheet is included, and the corre-
sponding curves are in fact identical for the above three
cases. In other words, the inertial force of the ice sheet
is negligible compared to the inertial force of the water
underneath the ice sheet. Therefore, the ice sheet can
effectively be treated as a massless plate with flexural
rigidity, D. On the other hand, if the dynamic water
reaction is excluded, i.e. the water underncath the ice
sheet is treated as a Winkler foundation, the correspond-
ing results are shown in Figure 2 with dotted lines. For
short times (tvs /h < 0.5), the dotted lines are separated
from the short ones, for later times (tvy /h — 1.0), when
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Fig. 4. Influence of the indentor radius on the
uplift load.

failure has already occurred, these two sets of curves co-
incide. The results including the dynamic water reaction
forecast a significantly higher uplift load than those ex-
cluding it, particularly at early times.

Given the degree of uncertainty regarding the true
value for the characteristic length under the dynamic
conditions in Sodhi’s tests, Figure 3 shows the influence
of the characteristic length on the uplift load. The load
is steadily increasing as !/l increases. For a given thick-
ness N, a larger value of [/l corresponds to a higher value
of Young’s modulus, which thercfore correlates with a
larger uplift load.

The influence of the cylinder radius on the uplift load
is shown in Figure 4. For ¢/ /I < 1.0, the difference in the
uplift load for various values of ¢/ /I is negligible and the
results are very close to the solution under a concentrated
load; whercas for ¢ /I > 1.0, the difference becomes sig-
nificant. In Sodhi’s experiments, three indentor radii,
0.038, 0.076 and 0.152 m were used. The influence of the
relative water depth on the uplift load has been men-
tioned previously; only if the ratio H'/h is large enough
will the above formulation be accurate. In Sodhi's ex-
periments, the range of H'/h is 30-45. The numerical
results presented here are accurate for H'/h > 5.

Figure 5 shows the maximum bending stresses at
r = 0 versus time for three test numbers 62, 63 and
93. The maximum stress occurs at the center of the flat-
ended cylinder. At r = 0, the maximum bending stresses

1
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o
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=
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~
o

e
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2
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Fig. 3. Influence of the characteristic length

on the uplift load.
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Fig. 5. Mazimum radial bending stresses at

1 = 0 wversus time for test numbers 62, 63 and
93 in Sodhi’s experiments.
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are approximately 582, 481 and 409 kPa, corresponding
to test number 62 (tve/h = 0.43), 63 (tvs/h = 0.46)
and 93 (tvs/h = 0.43). The associated flexural strengths
found through cantilever tests in Sodhi’s experiments
were 60, 60 and 67 kPa, respectively. Unfortunately, the
maximum bending stresses seem to be over-predicted
by an order of magnitude for the case of concentrated
loadings. Note, however, that the experimentally deter-
mined maximum bending stresses are found via quasi-
static uniaxial bending experiments. These could well
be expected to differ significantly from strengths opera-
tive under conditions of sudden biaxial loadings.

An additional possibility, given the magnitudes of the
differences observed, is that the plasticity of the ice sheet
is affecting the results significantly. This was not ex-
pected, given the short times being considered. In this
context, remember that the theoretically determined de-
flections (~ 0.45h) corresponding to the uplift failure
loads for three particular tests were much lower than the
associated deflections recorded by Sodhi (1989).

An alternative possibility, supported by the physi-
cal evidence, involves a sequential bending failure mode.
Since the theoretical solution indicates that the bending
strengths are exceeded very carly on at » = 0, it is highly
likely that the bending strengths are then exceeded at
some radius greater than that of the uplifting cylinder.
This supposition is further supported by the deflected
shapes plotted by Sodhi (1989) starting with times cor-
responding closely to deflections at 7' = ¢' of half the
ice-sheet thickness (the deflected shapes drawn by Sodhi
exhibit what looks like the formation of a circumferential
hinge).

Figure 6 shows the average shear stresses versus radial
distance in different times for three test numbers. The
average shear stresses at 1’ = ¢ are approximately 61, 38
and 24 kPa corresponding to test number 62 (tus/h =
0.43), 63 (tve/h = 0.46) and 93 (tvs,/h = 0.43). Using
a static formulation for the average shear stress at »' = ¢/

Tinax = -Pf'ail(gﬂc h‘J—l\ (20)
the corresponding values for the above three cases would
be 89, 47 and 31kPa, respectively. The shear strengths
recorded by Sodhi’s quasi-static shear experiments are
very close to the results from Equation (20). The aver-
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Fig. 6. Average shear stresses at v’ = ¢’ versus
time for test numbers 62, 63 and 93 in Sodhi’s
exrperiments.
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age shear stresses predicted by the present solution are
smaller than the static solution since a certain part of
the uplift load is balanced by hydrodynamic forces.

CONCLUSIONS

The transient response of an infinite ice sheet subjected
to sudden axisymmetric uplift has been determined. For
carly times, the critical time duration, there is no valid-
ity to approximating the hydrodynamic plate foundation
as a Winkler foundation. The bottom-surface pressure
must be approximated by using incompressible potential
flow theory. The theoretical solution in itself is useful
as a guide for experimentalists as to the influence of the
uplift rate, the characteristic length, the radius of the
uplifting device and the thickness of the ice sheet. Com-
parisons with Sodhi’s experiments revealed qualitatively
similar behavior; quantitative comparisons suffered be-
cause:

e urca model ice was used in the test basin at CRREL
by Sodhi (1989): this ice type is not ideally described
by an undamped time-independent formulation;

o the characteristic length ! plays an influential role in
the analysis, yet it is measured under quasi-static con-
ditions only;

e the analysis treats an infinite ice sheet subjected to
axisymmetric deformations, whereas the experiments
were conducted in a finite and rectangular tank  this
disparity, however, is not expected to be significant;

e the loading by the flat-ended cylinder is approximated
by a time-dependent ring load, which is highly ideal-
ized for very early times;

e not only was the bending strength exceeded at the
center of the loaded region prior to uplift break-
through, but also the former failure was followed by a
circumferential bending failure at some radius greater
than that of the cylinder radius;

e the average peak shear stresses were lower than the
quasi-static strengths and, therefore, true shear fail-
ure probably never occurred since higher strengths
would be expected for transient loading conditions;
instead, the circumferential bending radius simply
drifted closer to +' = ¢ as the uplifting cylinder radius
was made smaller.
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