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1. Introduction. Let � and � be the fields of rational and complex numbers,
respectively, let � be the algebraic closure of � in � and let �ab be the maximal abelian
extension of �. Fix a positive integer m. An m-Weil number is an algebraic integer
α such that |σ (α)|2 = m, for any σ ∈ Gal(�/�). A classical theorem of Kronecker
[3] shows that the 1-Weil numbers are the roots of unity. Weil numbers appear in a
variety of contexts. For example, Weil numbers arise in the study of abelian varieties, in
Honda–Tate theory (see [2], [6] and [10]) and in the representation theory of Gal(�/�),
the absolute Galois group of � (see [1]). Further examples of Weil numbers include
the eigenvalues of ρ(Frobl), where ρ is a geometric representation of Gal(�/�), and l
is a prime at which ρ is unramified (see [1]).

While, as seen above, Weil numbers appear in various contexts, there is also much
interest in the study of cyclotomic Weil numbers in particular. For instance, Gauss
and Jacobi sums are cyclotomic, as are examples coming from character tables of
finite groups. In [5], Loxton proved that modulo multiplication by roots of unity,
there are only finitely many cyclotomic m-Weil numbers. Moreover, Lemma 7 of [5]
gives an effective method for finding them all. Another approach, describing the same
phenomenon, was provided more recently in an unpublished manuscript by Kedlaya.
In [9], this result is extended to all finite extensions of �ab.

For any positive integer m, we let Hm denote the set of elements x of the
form x = xe1

1 xe2
2 . . . xen

n , where n ∈ �, x1, . . . , xn are m-Weil numbers in �ab, and
the exponents e1, . . . , en are integers and satisfy e1 + · · · + en = 0. Then, Hm is a
multiplicative subgroup of (�ab)×, and μ∞, the group of all roots of unity in �ab,
is a subgroup of Hm. From Loxton’s work it follows that the quotient group Hm/μ∞
is free of finite rank. This finite rank is called the Loxton–Kedlaya rank in [9], and we
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denote it by rm. This rank is also defined in general, for any finite extension of �ab and
the techniques of [9] are used to prove the following theorem.

THEOREM 1. For any positive integer m, the cyclotomic Loxton–Kedlaya rank rm

satisfies the following inequality (here, π (x) denotes the number of primes less than or
equal to x).

rm <

136m∑
d=1

d∏
k=1

[
21+kπ(4m2+2m−2)((2m)!

)k
(

d
k

)
+ 1

]
.

Our approach is inspired by the work of Kedlaya, to which we add two new key
ingredients. One of them is a certain norm defined on the set of algebraic numbers. Its
square, which we denote by A(·), was used in recent investigations on the classical trace
problem of Siegel ([8]). The other key tool in our approach is an effective, quantitative
p-adic lemma which enables us to obtain bounds for the p-adic valuation of the degrees
of m-Weil numbers. The link with [9] is in the methods, not in the main result, as the
present paper concerns only the case of �ab.

2. Preliminary results. For any positive integer q, we let ζq denote a primitive qth
root of unity. For any algebraic number field F , we denote by OF its ring of integers.

We consider the map A : � −→ [0,∞) given by

A (α) = 1
[F : �]

∑
σ

|σ (α)|2 ,

where F is a number field containing α and σ runs over all the embeddings of F into
�. Here, A (α) depends only on α and not on the field F containing α.

Clearly, for any non-zero algebraic integer α, if we denote by n its degree over �,
and by α1 = α, α2, . . . , αn its conjugates over �, we have

A(α) = |α1|2 + · · · + |αn|2
n

≥
( |α1| + · · · + |αn|

n

)2
≥

(
|α1| . . . |αn|

) 2
n ≥ 1.

Since any cyclotomic integer α ∈ O�ab is a sum of roots of unity, we can define the
length l(α) of α to be the smallest number l ≥ 0 such that α can be written as a sum of
l roots of unity.
Next, we collect several lemmas which will be used in the subsequent sections. We
begin by recalling the following standard result.

LEMMA 1. Let N ∈ � \ {0} and p a prime number. For any α ∈ �(ζpN), let
α0, . . . , αp−1 ∈ �(ζN) such that α = ∑p−1

0 αiζ
i
p.

(1) If p � N, then (p − 1)A(α) = ∑
0≤i<j≤p−1 A(αi − αj).

(2) If p | N, then A(α) = ∑p−1
j=0 A(αj).

LEMMA 2. Let p1, p2, . . . , pn be distinct primes. Then, A(α) ≥ l(α)
2n , for any α ∈

O�(ζp1p2 ...pn ).

Proof. This inequality is proved in [4, Lemma 9]. �
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LEMMA 3. Let q ≥ 2 be an integer, let p be a prime such that pr||q, where r ≥ 2, and
let ζ = ζpr . Then, the set {1, ζ, . . . , ζ pd−1} is an integral basis of �(ζq) over �(ζ q

pd
), for

any 1 ≤ d ≤ r − 1. Moreover, for any α ∈ �(ζq),

α =
pd−1∑
j=0

αjζ
j,

with αj ∈ �(ζ q
pd

), one has

A(α) =
pd−1∑
j=0

A(αj).

Proof. This follows by successively applying Lemma 1 and using the fact that ζ pd

is a primitive root of unity of order pr−d , for any 1 ≤ d ≤ r − 1. �

LEMMA 4. Let k ≥ 4 be an integer, p a prime larger than 6
k
2 , and a1, a2, . . . , ak

distinct elements of �/p�. Then, at least one of the differences ai − aj (1 ≤ i �= j ≤ k)
occurs only once.

Proof. This is Lemma 16 in [9]. �

3. Representations as sums of roots of unity. For any algebraic number α, we
denote by deg(α) the degree of α over �. We will need the following result on the
number of cyclotomic integers of bounded degree and length.

LEMMA 5. Let D, M ≥ 2 be integers, and let

n(D, M) = #{α ∈ O�ab : deg(α) ≤ D, l(α) ≤ M}.

Then,

n(D, M) < D
D∑

d=1

d∏
k=1

[
2
(

d
k

)
Mk + 1

]
.

Proof. Note that l(σ (α)) = l(α), for any σ ∈ Gal(�/�) and any cyclotomic integer
α ∈ O�ab .

Next, let α be a cyclotomic integer with deg(α) ≤ D and l(α) ≤ M. Then |α| ≤ M,
and l(α′) ≤ M, for any conjugate α′ of α over �. Let d = deg(α), let α1 = α, α2, . . . , αd

be the conjugates of α over �, and let f = Xd + a1Xd−1 + · · · + ad−1X + ad , where
a1, a2, . . . , ad ∈ �, be the minimal polynomial of α over �. Employing Viète’s relations,
we obtain

|ak| = |(−1)k
∑

1≤i1<i2<···<ik≤d

αi1αi2 . . . αik | ≤
(

d
k

)
Mk,

for any 1 ≤ k ≤ d. Hence, there are at most 2
(d

k

)
Mk + 1 possibilities for the integer ak.
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It follows that there are at most
∏d

k=1[2
(d

k

)
Mk + 1] such polynomials of degree d,

which have at most d
∏d

k=1[2
(d

k

)
Mk + 1] roots.

Hence,

n(D, M) <

D∑
d=1

d
d∏

k=1

[
2
(

d
k

)
Mk + 1

]
< D

D∑
d=1

d∏
k=1

[
2
(

d
k

)
Mk + 1

]
.

�
LEMMA 6. For any positive integer n ≥ 1, there is an integer kn such that any α ∈ O�ab

with A(α) ≤ n
2 has l(α) ≤ kn. One can take kn = n!2π(n2+n−2).

Proof. We prove the above statement by induction on n ≥ 1. For n = 1, or n = 2,
we can take k1 = k2 = 1. Indeed, we have seen in Section 2 that A(α) ≥ 1, for any
non-zero algebraic integer α. Thus, A(α) ≤ 1

2 implies α = 0, so we can take k1 = 1.
Similarly, A(α) ≤ 1 implies that α is 0 or a root of unity, which shows that we can take
k2 = 1 as well.

Assume that for any 1 ≤ t ≤ n, there exists a kt ≥ 1 such that any α ∈ O�ab with
A(α) ≤ t

2 has l(α) ≤ kt.
Let α ∈ O�ab such that A(α) ≤ n+1

2 . Let β ∈ {αη : η root of unity} of minimal
conductor q, in the sense that β ∈ �(ζq) and q is minimal with this property, where ζq

is a primitive qth root of unity.
Note that A(α) = A(β) and l(α) = l(β). We distinguish two cases.
Case 1. There exists a prime p such that p2|q. Then, let ζ be a primitive root

of unity of order pr||q, where r ≥ 2. Using Lemma 1, we write β = ∑p−1
j=0 βjζ

j. We
eliminate from this sum all terms which have coefficient βj = 0. We obtain

β = β1ζ
i1 + β2ζ

i2 + · · · + βkζ
ik , (1)

where k denotes the number of those j for which βj is non-zero, 0 ≤ i1 < i2 < . . . <

ik ≤ p − 1, and βj ∈ O�(ζ q
p

) \ {0}. Moreover, it follows from the minimality of q that

k ≥ 2, since for k = 1, β = β1ζ
i1 , hence βζ−i1 would belong to the smaller field �(ζ q

p
).

Since A(x) ≥ 1, for any non-zero algebraic integer x, using Lemma 1, we derive

n + 1
2

≥ A(α) = A(β) = A(β1) + A(β2) + · · · + A(βk) ≥ A(βj) + k − 1 ≥ A(βj) + 1,

for any 1 ≤ j ≤ k. Hence ,A(βj) ≤ n+1
2 − 1 = n−1

2 . By the inductive hypothesis l(βj) ≤
kn−1, for any 1 ≤ j ≤ k. We derive that

l(α) = l(β) ≤
k∑

j=1

l(βj) ≤ kkn−1 ≤ n + 1
2

kn−1.

Case 2. q is square-free.
Subcase 2.1 There exists a prime p|q such that p ≥ n2 + n − 1.
Let ζ be a primitive root of unity of order p. Using Lemma 1, we can write

β = a0 + a1ζ + a2ζ
2 + · · · + ap−1ζ

p−1, with aj ∈ �[ζ q
p
].
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Let r be the largest number of equal coefficients among a0, a1, . . . , ap−1. Then,

A(β) ≥ 1
2(p − 1)

∑
0≤i≤p−1

#{0 ≤ j ≤ p − 1 : aj �= ai}

≥ 1
2(p − 1)

∑
0≤i≤p−1

(p − r) = p(p − r)
2(p − 1)

.

Thus n+1
2 ≥ p(p−r)

2(p−1) , which implies r ≥ p − (n + 1) + n+1
p > p − (n + 1), hence r ≥

p − n. Subtracting s(1 + ζ + · · · + ζ p−1) = 0 from β, where s is the common value of
the r equal coefficients, we may assume in what follows that

β = β1ζ
j1 + β2ζ

j2 + · · · + βkζ
jk , (2)

with k ≤ n, 0 ≤ j1 < j2 < · · · < jk ≤ p − 1 and all the coefficients β1, β2, . . . , βk are
non-zero elements of �[ζ q

p
].

On the other hand, using Lemma 1, we see that

n + 1
2

≥ A(α) = A(β) = 1
p − 1

(
A(β1 − β2) + A(β1 − β3) + · · · + A(βk−1 − βk)

)

+ p − k
p − 1

(
A(β1) + A(β2) + · · · + A(βk)

)
.

This implies

n + 1
2

≥ p − k
p − 1

k∑
j=1

A(βj) ≥ p − n
p − 1

k∑
j=1

A(βj),

hence

k∑
j=1

A(βj) ≤ (p − 1)(n + 1)
2(p − n)

.

Fix j ∈ {1, 2, . . . , k}. Since each βi is a non-zero algebraic integer, we have A(βi) ≥ 1,
and we obtain

k − 1 + A(βj) ≤
∑
i �=j

A(βi) + A(βj) ≤ (p − 1)(n + 1)
2(p − n)

,

therefore

A(βj) ≤ (p − 1)(n + 1)
2(p − n)

− k + 1.

Since k ≥ 2, this further implies

A(βj) ≤ p(n − 1) + n − 1
2(p − n)

. (3)
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Since p ≥ n2 + n − 1, from (3) we have A(βj) ≤ n
2 , for any 1 ≤ j ≤ k. Then, the inductive

hypothesis implies l(βj) ≤ kn, and from (2) we obtain

l(α) = l(β) ≤
k∑

j=1

l(βj) ≤ kkn ≤ nkn.

Subcase 2.2 All the primes p in the decomposition of q are less than or equal to
n2 + n − 2.

Let p1 < p2 < · · · < pπ(n2+n−2) be the primes not exceeding n2 + n − 2, and let
N0(n) be their product. Then, β ∈ �(ζN0(n)) and Lemma 2 implies

l(β) ≤ 2π(n2+n−2)A(β) ≤ 2π(n2+n−2) n + 1
2

.

We may now take

kn+1 ≥ max
{n + 1

2
kn−1, nkn, 2π(n2+n−2) n + 1

2

}
, (4)

and then in all cases we have l(α) = l(β) ≤ kn+1. Note that if we let for each j, kj+1 =
(j + 1)!2π((j+1)2+(j+1)−2), then (4) is satisfied for all n.

This completes the proof of Lemma 6. �
REMARK 1. Looking at (4), a natural choice would be for each n to define for kn+1

to equal the third bound appearing on the right side of (4). With this choice for all n,
however, one runs into difficulty when trying to prove (4), because it is not known that
there are prime numbers in each interval of the form (n2 + n − 2, (n + 1)2 + (n + 1) −
2). For this reason, and for simplicity, we introduced the factorial j! in our choice of kj

above (notice that j! is anyway of much smaller order than the other factor, 2π(j2+j−2)).

4. p-adic bounds on the degree. Let �p be the field of p-adic numbers, and let | · |p
be the usual p-adic absolute value on �p.

LEMMA 7. For any n ≥ 2, for any prime p, and for any a1, a2, . . . , an ∈ �p, we have

max
i,j

min
(k,l)�=(i,j)

|(ai − aj) − (ak − al)|p ≥ 1

6
n−1

2

min
i �=j

|ai − aj|p.

Proof. Let N = n2 and let {1, . . . , n} × {1, . . . , n} = {(i1, j1), . . . , (iN, jN)}. For every
t, let (kt, lt) �= (it, jt) such that |(ait − ajt ) − (akt − alt )|p = min(k,l)�=(it,jt) |(ait − ajt ) −
(ak − al)|p. We must prove that maxt |(ait − ajt ) − (akt − alt )|p ≥ 1

6
n−1

2
mini �=j |ai − aj|p,

i.e. that 6
n−1

2 maxt |(ait − ajt ) − (akt − alt )|p ≥ |ai − aj|p for some i �= j.
We denote by (�n)∗ the dual of �n and for any subspaces V ⊆ �n, U ⊆ (�n)∗, we

denote by Vo ⊆ (�n)∗ and Uo ⊆ �n their annihilators, Vo = {f ∈ (�n)∗ | f (x) = 0 ∀x ∈
V} and Uo = {x ∈ �n | f (x) = 0 ∀f ∈ U}. We have Voo = V and Uoo = U .

For 1 ≤ t ≤ N and i �= j, we consider the linear functions ft, gi,j ∈ (�n)∗ given by
ft(x1, . . . , xn) = (xit − xjt ) − (xkt − xlt ) and gi,j(x1, . . . , xn) = xi − xj. Let V = ∑

t �ft.
We claim that Vo ⊆ ∪i �=j(�gi,j)o. Assume the contrary. Then, let x = (x1, . . . , xn) ∈
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Vo \ ∪i �=j(�gi,j)o. We have xi − xj = gi,j(x) �= 0 if i �= j and (xit − xjt ) − (xkt − xlt ) =
ft(x) = 0 ∀t. Since xi are mutually distinct, there are unique indices imax and imin such
that ximax = maxi xi and ximin = mini xi. We have xi < ximax if i �= imax and xi > ximin if
i �= imin. Let t be the index for which (it, jt) = (imax, imin). We have xit − xkt ≥ 0 and
xlt − xjt ≥ 0 with equalities iff kt = it and lt = jt, respectively. Then, from (xit − xkt ) +
(xlt − xjt ) = (xit − xjt ) − (xkt − xlt ) = 0, we get kt = it and lt = jt, i.e. (kt, lt) = (it, jt).
Contradiction.

From Vo ⊆ ∪i �=j(�gi,j)o, we obtain that Vo ⊆ (�gi,j)o for some i �= j. (Otherwise Vo

could be written as a finite union of subspaces of smaller dimensions, Vo = ∪i �=j(Vo ∩
(�gi,j)o).) By taking annihilators, we get V = Voo ⊇ (�gi,j)oo = �gi,j, i.e. gi,j ∈ V .

Let e1, . . . , en be the canonical basis of �n and let e∗
1, . . . , e∗

n be the dual basis of
(�n)∗. We have e∗

k(el) = δk,l so e∗
k(x1, . . . , xn) = xk. Then, ft = (e∗

it − e∗
jt ) − (e∗

kt
− e∗

lt ) =∑
k ak,te∗

k and gi,j = e∗
i − e∗

j = ∑
k bke∗

k, with ak,t, bk ∈ �. Note that the only non-zero
entries in the sequence a1,t, . . . , an,t are, in some order 1,−1,−1, 1 or 1,−2, 1 or
−1, 2,−1 or 1,−1. In all cases

∑
k a2

k,t ≤ 6.
Now f1, . . . , fN belong to the subspace of (�n)∗ spanned by e∗

2 − e∗
1, . . . , e∗

n −
e∗

1, of dimension n − 1, so d := dim V ≤ n − 1. Let 1 ≤ β1 < · · · < βd ≤ N such that
fβ1 , . . . , fβd is a basis for V . In particular, they are linearly independent so the vectors
(a1,βs , . . . , an,βs )

T with s = 1, . . . , d are linearly independent. It follows that the n × d
matrix (ak,βs )k,s has rank d and hence it has a non-zero d × d minor, i.e. there are
1 ≤ α1 < · · · < αd ≤ n such that det(aαr,βs )r,s �= 0.

Since gi,j ∈ V there are unique c1, . . . , cd ∈ � with gi,j = ∑
s csfβs . When we write

this relation in the basis e∗
1, . . . , e∗

n, we get bk = ∑
s ak,βs cs for 1 ≤ k ≤ n. In particular,

bαr = ∑
s aαr,βs cs. Hence, X = (c1, . . . , cd )T is a solution of the equation AX = b, where

A = (aαr,βs )r,s and b = (bα1 , . . . , bαd )T . Since A is non-degenerate, we get cs = 
s/
,
where 
 = det A and 
s is the determinant of the matrix obtained by replacing the sth
column of A by b. Since A, b have integer entries we have 
,
s ∈ �. But for any s, we
have

∑d
r=1 a2

αr,βs
≤ ∑n

k=1 a2
k,βs

≤ 6 so the length of each column vector of A is ≤ √
6.

By Hadamard’s inequality, we have |
| ≤ √
6

d = 6
d
2 ≤ 6

n−1
2 .

We now define the linear functions f̃t and g̃i,j ∈ (�n
p)∗ given by f̃t(x1, . . . , xn) =

(xit − xjt ) − (xkt − xlt ) and g̃i,j(x1, . . . , xn) = xi − xj. Since f̃t, g̃i,j have the same integer
coefficients as ft, gi,j and cs ∈ � from gi,j = ∑

s csfβs , we get the similar relation g̃i,j =∑
s csf̃βs .

Let a = (a1, . . . , an). Then, g̃i,j(a) = ∑
s csf̃βs (a), which implies |g̃i,j(a)|p ≤

maxs |cs|p|f̃βs (a)|p. But |cs|p = |
s/
|p ≤ |
| ≤ 6
n−1

2 . It follows that |g̃i,j(a)|p ≤
6

n−1
2 maxs |f̃βs (a)|p ≤ 6

n−1
2 maxt |f̃t(a)|p, i.e. |ai − aj|p ≤ 6

n−1
2 maxt |(ait − ajt ) − (akt −

alt )|p. �
NOTE. This proof is very similar with the proof of Lemma 4, i.e. Kedlaya’s Lemma

16 from [9]. In fact Lemma 4 can be seen as a particular case of Lemma 7. Indeed, if
a1, . . . , an ∈ � such that ai are mutually distinct in �/p� then |ai − aj|p = 1 whenever
i �= j. Then, by Lemma 7 we have

max
i,j

min
(k,l)�=(i,j)

|(ai − aj) − (ak − al)|p ≥ 1

6
n−1

2

min
i �=j

|ai − aj|p = 1

6
n−1

2

.

Hence, there is a pair (i, j) such that for any (k, l) �= (i, j), we have |(ai − aj) − (ak −
al)|p ≥ 1

6
n−1

2
. If p > 6

n−1
2 then for any integer a the only possible values of |a|p are
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1 > 1
p > 1

p2 > . . . and 0. So if |a|p ≥ 1

6
n−1

2
> 1

p then |a|p = 1, i.e. a �= 0 in �/p�. Hence,

for any (k, l) �= (i, j), we have (ai − aj) − (ak − al) �= 0 so ai − aj �= ak − al in �/p�.

5. Proof of Theorem 1. We first prove the following proposition.

PROPOSITION 1. For any positive integer m, there is a finite set Tm (consisting of
cyclotomic m-Weil numbers), with

|Tm| <

136m∑
d=1

d∏
k=1

[
21+kπ(4m2+2m−2)((2m)!

)k
(

d
k

)
+ 1

]

such that the set Wm of all cyclotomic m-Weil numbers satisfies Wm = Tmμ∞. Here,
π (x) is the number of primes less than or equal to x.

Proof. Let α ∈ O�ab be an m-Weil number. Then, αζ is an m-Weil number, for any
root of unity ζ . Let β ∈ {αζ : ζ root of unity} with minimal conductor, say β ∈ �(ζq),
where ζq is a primitive qth root of unity, and q is minimal. Note that A(β) = A(α) = m.
Before embarking on the actual proof of Proposition 1, we first outline our general
strategy. We first employ a variation of Kedlaya’s method (which successfully bounds
q in the case q is a prime), to provide in our case of a general q a uniform upper bound
for the size of each prime factor dividing q. This part of the proof also makes use of
some ideas from our proof of Lemma 6. After completing this first step, we proceed
with the second stage of the proof. This consists in providing, for each fixed prime
factor p of q, an upper bound for the exponent of p in q. Intuitively, this step is a type
of descent, via a tower of subfields of �(ζq), where the key tool is provided by the
quantitative p-adic Lemma 7. With the completion of this step, which entirely bounds
q, we will be in a position where we can view β inside a large, but fixed, cyclotomic
field. This will then immediately conclude the proof of Proposition 1, since by Lemma
6 we will have an explicit, uniform upper bound for the length of all m-Weil numbers
β, and then applying Lemma 5, we obtain the desired bound on the number of m-Weil
numbers in the above fixed cyclotomic field.

STEP I. We bound the prime factors of q.
Let now p be a prime with p|q. We distinguish two cases.
Case 1. p||q. Let ζ be a primitive pth root of unity. Then, β ∈ �(ζq) can be written

as β = a0 + a1ζ + a2ζ
2 + · · · + ap−1ζ

p−1, with aj ∈ �[ζ q
p
] and ζ = ζq.

Let r be the largest number of equal coefficients among a0, a1, . . . , ap−1. Then,
employing Lemma 1 and using the fact that A(aj − ai) ≥ 1 for all pairs (i, j) for which
aj �= ai, we deduce that

A(β) ≥ 1
2(p − 1)

∑
0≤i≤p−1

#{0 ≤ j ≤ p − 1 : aj �= ai}

≥ 1
2(p − 1)

∑
0≤i≤p−1

(p − r) = p(p − r)
2(p − 1)

.

Thus, m ≥ p(p−r)
2(p−1) , which means r ≥ p − 2m + 2m

p , hence r ≥ p − 2m. Subtracting

s(1 + ζ + · · · + ζ p−1) = 0 from β, where s is the common value of the r equal
coefficients, we may assume in what follows that β = α1ζ

j1 + α2ζ
j2 + · · · + αkζ

jk , with
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k ≤ 2m, 0 ≤ j1 < j2 < · · · < jk ≤ p − 1 and all the coefficients α1, α2, . . . , αk are non-
zero elements of �(ζ q

p
).

Here, k ≥ 1 since β is non-zero. Moreover, we have that k ≥ 2. Indeed, if k = 1, say
α1 �= 0, then β = α1ζ

j1 , hence βζ−j1 = α1 ∈ �(ζ q
p
), which contradicts the minimality

of q.
Assume now that p > 6m. Then p > 6

k
2 , and applying Lemma 4 to j1, j2, . . . , jk,

there exists a pair, say (j1, j2) such that j2 − j1 �≡ jl − js (mod p), for any (l, s) �= (2, 1).
Let i0 ∈ {0, 1, . . . , p − 1} such that i0 �≡ jm − jn (mod p), for any 1 ≤ m, n ≤ k. Such

an i0 exists as k2 < p. Indeed, one can easily prove by induction that 6k/2 > k2, for any
positive integer k, hence we obtain p > 6k/2 > k2. Then, since [�(ζq) : �(ζ q

p
)] = p − 1,

it follows that 1, ζ, . . . , ζ i0−1, ζ i0+1, . . . , ζ p−1 is a basis of �(ζq) over �(ζ q
p
).

Note that for 0 ≤ i < j ≤ p − 1, we have 1 ≤ p − (j − i) ≤ p − 1 and

ζ i−j = ζ−(j−i) = ζ p−(j−i).

One has

m = ββ̄ = (α1ζ
j1 + α2ζ

j2 + · · · + αkζ
jk )(ᾱ1ζ

−j1 + ᾱ2ζ
−j2 + · · · + ᾱkζ

−jk )

=
∑

1≤j≤k

|αj|2 +
∑

1≤l<s≤k

αsᾱlζ
js−jl +

∑
1≤u<v≤k

αuᾱvζ
ju−jv

=
∑

1≤j≤k

|αj|2 +
∑

1≤l<s≤k

αsᾱlζ
js−jl +

∑
1≤u<v≤k

αuᾱvζ
p−(jv−ju).

Since j2 − j1 �≡ jl − js (mod p), for any (l, s) �= (2, 1), the term α2ᾱ1ζ
j2−j1 on the

right side of the above equality cannot be cancelled by any other terms. It follows that
α2 = 0 or α1 = 0, a contradiction.

Hence, for any prime p such that p||q one has p < 6m.
Case 2. p2|q. Let ζ be a primitive root of unity of order pr, where pr||q. Then,

γ := ζ p ∈ �(ζ q
p
) is a primitive root of unity of order pr−1.

Using Lemma 1, β ∈ �(ζq) can be written as β = α1ζ
i1 + α2ζ

i2 + · · · + αkζ
ik , with

αj ∈ �[ζ q
p
] − {0}, for any 1 ≤ j ≤ k, with 0 ≤ i1 < i2 < · · · < ik ≤ p − 1.

Note that by the same argument as in Case 1, k ≥ 2.
On the other hand, using Lemma 1, we see that

m = A(β) = A(α1) + A(α2) + · · · + A(αk) ≥ k,

since each αj is a non-zero algebraic integer.
If p > 6

m
2 , then p > 6

k
2 , and applying Lemma 4 to i1, i2, . . . , ik, there exists a pair,

say (i1, i2) such that i2 − i1 �≡ il − is (mod p), for any (l, s) �= (2, 1).
Note that for 0 ≤ i < j ≤ p − 1, we have 1 ≤ p − (j − i) ≤ p − 1 and

ζ i−j = ζ i−j+pr = ζ p−(j−i)+p(pr−1−1) = ζ p−(j−i) · ζ p(pr−1−1) = γ pr−1−1 · ζ p−(j−i),

where γ := ζ p ∈ �(ζ q
p
).
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In a similar way as above, we write

m = ββ̄ = (α1ζ
i1 + α2ζ

i2 + · · · + αkζ
ik )(ᾱ1ζ

−i1 + ᾱ2ζ
−i2 + · · · + ᾱkζ

−ik )

=
∑

1≤j≤k

|αj|2 +
∑

1≤l<s≤k

αsᾱlζ
is−il +

∑
1≤u<v≤k

αuᾱvζ
iu−iv

=
∑

1≤j≤k

|αj|2 +
∑

1≤l<s≤k

αsᾱlζ
is−il +

∑
1≤u<v≤k

αuᾱvγ
pr−1−1ζ p−(iv−iu).

Here, 1, ζ, ζ 2, . . . , ζ p−1 is a basis of �(ζq) over �(ζ q
p
). Reasoning as before, we find

that α2ᾱ1 = 0, which is a contradiction.
Hence, for any prime p such that p2|q one has p < 6

m
2 .

Now that we have a uniform upper bound for the size of all prime factors of q, we
proceed with the second stage of the proof of Proposition 1.

STEP II. We now fix a prime divisor p of q, and bound the exponent, call it r, of
p in q.

Let ζ be a primitive root of unity of order pr, where pr||q. Consider the following
tower of r − 1 extensions, each of degree p:

�(ζ q
pr−1

) ⊂ �(ζ q
pr−2

) . . . ⊂ �(ζ q
p
) ⊂ �(ζq).

Using Lemma 3, write β ∈ �(ζq) as

β = α1ζ
i1 + α2ζ

i2 + · · · + αkζ
ik , (5)

with αj ∈ �[ζ q
pr−1

] − {0}, for any 1 ≤ j ≤ k, with 0 ≤ i1 < i2 < · · · < ik < pr−1.

Note that for 0 ≤ i < j ≤ pr−1 − 1, we have 1 ≤ pr−1 − (j − i) ≤ pr−1 − 1 and

ζ i−j = ζ i−j+pr = ζ pr−1−(j−i)+pr−1(p−1) = ζ pr−1−(j−i) · ζ pr−1(p−1) = δp−1 · ζ pr−1−(j−i),

where δ := ζ pr−1 ∈ �(ζ q
pr−1

).

One has

m = ββ̄ = (α1ζ
i1 + α2ζ

i2 + · · · + αkζ
ik )(ᾱ1ζ

−i1 + ᾱ2ζ
−i2 + · · · + ᾱkζ

−ik )

=
∑

1≤j≤k

|αj|2 +
∑

1≤l<s≤k

αsᾱlζ
is−il +

∑
1≤u<v≤k

αuᾱvζ
iu−iv

=
∑

1≤j≤k

|αj|2 +
∑

1≤l<s≤k

αsᾱlζ
is−il +

∑
1≤u<v≤k

αuᾱvδ
p−1ζ pr−1−(iv−iu).

Note that 1, ζ, . . . , ζ pr−1−1 is an integral basis of �(ζq) over �(ζ q
pr−1

).

If there exists a pair (ia, ib) such that ia − ib �≡ il − is (mod pr), for all (l, s) �= (a, b)
then αaᾱb = 0, so αa = 0 or αb = 0, contradiction.

Hence, for any a, b ∈ {1, 2, . . . , k} there exist l, s ∈ {1, 2, . . . , k} such that ia − ib ≡
il − is (mod pr). This means |(ia − ib) − (il − is)|p ≤ 1

pr . It follows that

1
pr

≥ max
a,b

min
l,s

|(ia − ib) − (il − is)|p.
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Lemma 7 implies that 1
pr ≥ 1

6
k−1

2
mina�=b |ia − ib|p. Then, there exist a0, b0 ∈

{1, 2, . . . , k} such that |ia0 − ib0 |p ≤ 6
k−1

2 · 1
pr .

Fix a positive integer ck,p such that 6
k−1

2 < pck,p . Note that we can take ck,p = 2k − 1
(independent of p). Then

|ia0 − ib0 |p <
1

pr−ck,p
. (6)

If r ≤ ck,p + 1 = 2k, we are done. In this case, we have r ≤ 2k ≤ 2m, since Lemma
3 and relation (5) imply m = A(β) = A(α1) + A(α2) + · · · + A(αk) ≥ k.

If r > ck,p + 1, then relation (6) is equivalent to ia0 ≡ ib0

(
mod pr−ck,p

)
. Let t be an

integer such that ia0 = ib0 + pr−ck,p t. We may assume, without loss of generality, a0 = 1,
b0 = 2, and thus we obtain i1 = i2 + pr−ck,p t. We deduce

α1ζ
i1 + α2ζ

i2 = ζ i2 (α2 + α1ζ
i1−i2 ) = ζ i2 (α2 + α1ζ

pr−ck,p t).

Note that

ζ pr−ck,p ∈ �(ζ q
pr−1

)(ζpck,p ) ⊆ �
(
ζ q

p
r−1−ck,p

)
, so

γ2 := α2 + α1ζ
pr−ck,p t ∈ �

(
ζ q

p
r−1−ck,p

)
.

Hence, β = γ2ζ
i2 + γ3ζ

i3 + · · · + γkζ
ik , where γj := αj, for any 3 ≤ j ≤ k.

For each l, 2 ≤ l ≤ k, we use the division algorithm to write il = alpr−1−ck,p + bl,
for some positive integers al, bl with 0 ≤ bl < pr−1−ck,p . It follows that

γlζ
il = γlζ

alp
r−1−ck,p

ζ bl = δlζ
bl , where δl := γlζ

alp
r−1−ck,p ∈ �

(
ζ q

p
r−1−ck,p

)
.

Hence,

β = δ2ζ
b2 + δ3ζ

b3 + · · · + δkζ
bk . (7)

Note that (7) is the representation of β in the basis 1, ζ, ζ 2, . . . , ζ pr−1−ck,p −1. In
conclusion, β can be uniquely written as

β = η1ζ
j1 + η2ζ

j2 + · · · + ηsζ
js ,

with 0 ≤ j1 < j2 < · · · < js < pr−1−ck,p , s < k and ηi ∈ �
(
ζ q

p
r−1−ck,p

)
, for any 1 ≤ i ≤ s.

This shows that the representation of β in the basis corresponding to �
(
ζ q

p
r−1−ck,p

)

is strictly shorter than the representation corresponding to �
(
ζ q

pr−1

)
.

Let Lβ(j) be the length of the representation of β in the basis 1, ζ, . . . , ζ pj−1 of
�(ζq) over �(ζ q

pj
). We proved that k2 := Lβ(r − 1 − ck1,p) < Lβ(r − 1) = k =: k1.

Repeating this argument, we obtain k3 := Lβ(r − 1 − ck1,p − ck2,p) < Lβ(r − 1 −
ck1,p) = k2, for a certain positive integer ck2,p.

Continuing in this way, there are two possibilities:

https://doi.org/10.1017/S0017089516000586 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000586


108 CONSTANTIN N. BELI, FLORIN STAN AND ALEXANDRU ZAHARESCU

Either 1. There is a d ≥ 1 such that Lβ(r − 1 − ck1,p − ck2,p − · · · − ckd ,p) = 1. This
contradicts the minimality of q.

Or 2. There is an e ≥ 1 such that r − 1 − ck1,p − ck2,p − · · · − cke,p ≤ cke+1,p. This

implies rp := r ≤ 1 +
m∑

i=2
ci,p (where ci,p = 0, if i /∈ {k1, k2, . . . , ke+1}). In this case, we

have

rp ≤ 1 +
m∑

i=2

(2i − 1) = m2.

STEP III. Constructing the set Tm.
Recall that we proved that if p||q then p < 6m, and that if p2|q one has p < 6

m
2 .

We have

q =
∏
p|q

prp =
(∏

p||q
p
)(∏

p2|q
prp

)
.

Let

T =
( ∏

p<6m

p
)( ∏

p<6
m
2

p
)m2

.

Then q | T and log T = A + B, where

A := log
( ∏

p<6m

p
)

=
∑
p<6m

log p <
∑
p<6m

m log 6 = m log 6
∑
p<6m

1 < m(log 6)π (6m) and

B := m2 log
( ∏

p<6
m
2

p
)

= m2
∑

p<6
m
2

log p < m2(
m
2

log 6)
∑

p<6
m
2

1 <
m3

2
(log 6)π (6

m
2 ).

Using the inequality π (x) < C0
x

log x , where C0 = 1.25506 valid for x > 1 (see [7]), we
derive

log T = A + B < C06m + C0m26
m
2 = C06

m
2 (6

m
2 + m2) < C06

m
2 (6

m
2 + 6

m
2 ) = 2C06m ,

hence T < e2C06m
< 136m

.
Now, since A(β) = A(α) = m, using Lemma 6, we obtain

l(β) ≤ k2m = (2m)! · 2π(4m2+2m−2) =: M.

On the other hand, β ∈ �(ζq) ⊂ �(ζT ) implies deg β ≤ φ(T) < T < 136m
. Applying

Lemma 5, we conclude that there are at most n(T, M) such numbers β, where n(T, M) <

T
∑T

d=1

∏d
k=1[2

(d
k

)
Mk + 1].

Let {u1, u2, . . . , uL} ⊂ Wm ∩ �(ζT ) be such that Wm = {u1, u2, . . . , uL}μ∞ and ui
uj

/∈
μ∞ for any i �= j. Since ui

uj
/∈ μT for any i �= j, the sets uiμT , 1 ≤ i ≤ L, are disjoint. Since⊔n

i=1 uiμT ⊂ �(ζT ) ∩ Wm, we derive

LT ≤ |Wm ∩ �(ζT )| ≤ n(T, M) < T
T∑

d=1

d∏
k=1

[
2
(

d
k

)
Mk + 1

]
.
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Therefore

L <

T∑
d=1

d∏
k=1

[
2
(

d
k

)
Mk + 1

]
<

136m∑
d=1

d∏
k=1

[
2
(

d
k

)(
(2m)! · 2π(4m2+2m−2))k + 1

]
,

hence

L <

136m∑
d=1

d∏
k=1

[
21+kπ(4m2+2m−2)((2m)!

)k
(

d
k

)
+ 1

]
,

so we can take Tm = {u1, u2, . . . , uL}, which completes the proof of Proposition 1. �
We now prove Theorem 1.

Let m ≥ 1 be an integer and let

Hm = {xe1
1 xe2

2 . . . xen
n : n ∈ �, xi ∈ Wm, ei ∈ �,∀1 ≤ i ≤ n and e1 + e2 + · · · + en = 0}.

For any finitely generated abelian group G, let d(G) denote the minimum number of
generators of G.

Let {u1, u2, . . . , uL} ⊂ Wm be such that Wm = {u1, u2, . . . , uL}μ∞ and ui
uj

/∈ μ∞ for
any i �= j. Then, { u1

u2
, u1

u3
, . . . , u1

uL
} provides a set of generators for the quotient group

Hm/μ∞.
We know from [9] that G = Hm/μ∞ is a finitely generated, torsion-free abelian

group, hence rm = rank(Hm/μ∞) = d(Hm/μ∞) ≤ L − 1. Thus,

rm < L <

136m∑
d=1

d∏
k=1

[
21+kπ(4m2+2m−2)((2m)!

)k
(

d
k

)
+ 1

]
.
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