ON JOINT EIGENVALUES OF COMMUTING MATRICES

R. BHATIA AND L. ELSNER

Abstract

A spectral radius formula for commuting tuples of operators has been proved in recent years. We obtain an analog for all the joint eigenvalues of a commuting tuple of matrices. For a single matrix this reduces to an old result of Yamamoto.

1. Introduction, formulation of the result. Let $T=\left(T_{1}, \ldots, T_{s}\right)$ be an s-tuple of complex $d \times d$-matrices. The joint spectrum $\sigma_{\mathrm{pt}}(T)$ is the set of all points $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ $\in C^{s}$ (called joint eigenvalues) for which there exists a nonzero vector $x \in C^{d}$ (called joint eigenvector) satisfying

$$
\begin{equation*}
T_{j} x=\lambda_{j} x \text { for } j=1, \ldots, s \tag{1}
\end{equation*}
$$

If the T_{i} 's are commuting then $\sigma_{\mathrm{pt}}(T) \neq \emptyset$. The joint spectrum can be read off the diagonal of the common triangular form: There exists a unitary $d \times d$-matrix U such that

$$
U^{H} T_{j} U=\left(\begin{array}{cccc}
\lambda_{1}^{(j)} & \ldots & \cdots & \cdots \tag{2}\\
0 & \lambda_{2}^{(j)} & \cdots & \cdots \\
0 & 0 & \ddots & \vdots \\
0 & 0 & 0 & \lambda_{d}^{(j)}
\end{array}\right) \text { for } j=1, \ldots, s
$$

Then

$$
\sigma_{\mathrm{pt}}(T)=\left\{\lambda_{i}=\left(\lambda_{i}^{(1)}, \ldots, \lambda_{i}^{(s)}\right): i=1, \ldots, d\right\} .
$$

We order the joint eigenvalues according to their norms

$$
\begin{equation*}
\left\|\lambda_{1}\right\| \geq \cdots \geq\left\|\lambda_{d}\right\| . \tag{3}
\end{equation*}
$$

Here $\|\cdot\|$ denotes the Euclidean norm in C^{r} and later on also will denote the associated operator norm for matrices. We omit the reference to the dimensions.

The s-tuple T can be identified with a linear operator mapping C^{d} into $C^{s d}$. If $S=$ $\left(S_{1}, \ldots, S_{m}\right)$ is another m-tuple of $d \times d$-matrices, we define as $T S$ the $s m$-tuple of matrices, whose entries are $T_{i} S_{j}, i=1, \ldots, s, j=1, \ldots, m$, ordered lexicographically. Continuing in this way we define T^{m}, consisting of s^{m} entries, each of which is a product of m of the T_{i} 's. Identifying again T^{m} with an operator mapping C^{d} into $C^{\mathrm{s}^{m} d}, T^{m}$ has d singular values

$$
\begin{equation*}
s_{1}\left(T^{m}\right) \geq s_{2}\left(T^{m}\right) \geq \cdots \geq s_{d}\left(T^{m}\right) \tag{4}
\end{equation*}
$$

In this note we will prove

Theorem 1. For any s-tuple $T=\left(T_{1}, \ldots, T_{s}\right)$ of commuting $d \times d$-matrices

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(s_{j}\left(T^{m}\right)\right)^{\frac{1}{m}}=\left\|\lambda_{j}\right\| \quad j=1, \ldots, d \tag{5}
\end{equation*}
$$

For $j=1$ this has been proved in [2]; hence we know

$$
\begin{equation*}
\left\|\lambda_{1}\right\|=\lim _{m \rightarrow \infty}\left(s_{1}\left(T^{m}\right)\right)^{\frac{1}{m}} \tag{6}
\end{equation*}
$$

We also remark that (6) has been proved in [1] for l_{p}-norms and in [5] for infinitedimensional Hilbert spaces. If $s=1$ then T^{m} is the usual m-th power of $T=T_{1}$, and the joint spectrum is the usual spectrum. For this case (5) has been proved by Yamamoto [6], who showed that for a $d \times d$ matrix T with eigenvalues λ_{i} ordered according to their moduli

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(s_{j}\left(T^{m}\right)\right)^{\frac{1}{m}}=\left|\lambda_{j}\right| \quad j=1, \ldots, d \tag{7}
\end{equation*}
$$

We will prove Theorem 1 in the following section.
2. Proof of the Theorem. It is convenient to introduce a Kronecker-type matrix product " $区$ " in the following way:

Let A and B be two (r, s) and (t, u) block matrices

$$
A=\left(A_{i j}\right)_{i=1, \ldots, r, j=1, \ldots, s} \quad B=\left(B_{i j}\right)_{i=1, \ldots, t, j=1, \ldots, u}
$$

where the $A_{i j}$ and $B_{i j}$ are $d \times d$ matrices. Define

$$
A_{i j} B=\left(A_{i j} B_{k l}\right)_{k=1, \ldots,, t, l=1, \ldots, u}
$$

and the $r t \times s u$-block matrix

$$
A \widetilde{\otimes} B=\left(\begin{array}{ccc}
A_{11} B & \ldots & A_{1 s} B \tag{8}\\
\vdots & & \vdots \\
A_{r 1} B & \ldots & A_{r s} B
\end{array}\right)
$$

of dimension $r t d \times$ sud . This product is associative. For $d=1$ this is the usual Kronecker product, which we will denote by " \otimes ", following the customary notation (see, e.g., [4]). Except for $d=1$, however, $A \widetilde{\otimes} B$ is different from $A \otimes B$ which is an $r t d^{2} \times s u d^{2}$ matrix. So the product depends on d. However in order to avoid an overload of indices and as we keep d fixed throughout, we refrained from stressing this fact in the notation.

The main relation for \otimes carries over to $\widetilde{\otimes}$, namely

$$
\begin{equation*}
(A \widetilde{\otimes} B)(C \widetilde{\otimes} D)=A C \widetilde{\otimes} B D \tag{9}
\end{equation*}
$$

if all the blocks in B commute with those in C, and the dimensions are fitting. For this it suffices that $A C$ and $B D$ can be formed. We observe that T^{m}, as defined in the first section, has the representation

$$
T^{m}=T \widetilde{\otimes} \cdots \widetilde{\otimes} T
$$

as the m-fold product of T with itself.
First we show that we can transform T to a simpler form without changing the magnitudes involved in (5). Then we prove the theorem for this simple form using (6) and (7).

Let S be a nonsingular $d \times d$ matrix,

$$
\tilde{T}_{i}=S T_{i} S^{-1} \quad i=1, \ldots, s,
$$

and

$$
\tilde{T}=\left(\tilde{T}_{1}, \ldots, \tilde{T}_{s}\right)
$$

Obviously the \tilde{T}_{i} 's commute too, and $\sigma_{\mathrm{pt}}(\tilde{T})=\sigma_{\mathrm{pt}}(T)$. We show

$$
\begin{equation*}
s_{i}\left(\tilde{T}^{m}\right) \leq\|S\|\left\|S^{-1}\right\| s_{i}\left(T^{m}\right) \quad i=1, \ldots, d \tag{10}
\end{equation*}
$$

which implies that the lefthand side of (5) is not changed if we replace T^{m} by \tilde{T}^{m}.
T^{m} consists of s^{m} blocks of $d \times d$ matrices $C_{i}, i=1, \ldots, s^{m}$, each of which is a product of m of the T_{i} 's. Hence the corresponding block \tilde{C}_{i} of \tilde{T}^{m} satisfies $\tilde{C}_{i}=S C_{i} S^{-1}$. Thus

$$
\begin{align*}
\left(\tilde{T}^{m}\right)^{H} \tilde{T}^{m} & =\sum_{i=1}^{s^{m}} \tilde{C}_{i}^{H} \tilde{C}_{i} \tag{11}\\
& =\left(S^{-1}\right)^{H}\left(\sum_{i=1}^{s^{m}} C_{i}^{H} S^{H} S C_{i}\right) S^{-1} \tag{12}\\
& \leq\|S\|^{2}\left(S^{-1}\right)^{H}\left(T^{m}\right)^{H} T^{m} S^{-1} \tag{13}
\end{align*}
$$

Here " \leq " is the Loewner partial ordering. Let $z \in C^{d}$ and $x=S z$. The last inequality implies

$$
\begin{equation*}
\frac{x^{H}\left(\tilde{T}^{m}\right)^{H} \tilde{T}^{m} x}{x^{H} x} \leq\|S\|^{2}\left\|S^{-1}\right\|^{z^{H}\left(T^{m}\right)^{H} T^{m} z} \frac{z^{H} z}{.} \tag{14}
\end{equation*}
$$

Using the Courant-Fischer representation of the eigenvalues $\mu_{1} \geq \cdots \geq \mu_{d}$ of a hermitean $d \times d$ matrix B (e.g., [4])

$$
\mu_{i}=\min _{\operatorname{dim} V=d+1-i} \max _{x \in V, x \neq 0} \frac{x^{H} B x}{x^{H} x}
$$

for $B=\left(\tilde{T}^{m}\right)^{H} \tilde{T}^{m}$ and then for $B=\left(T^{m}\right)^{H} T^{m}$ and taking (14) into account, (10) follows.
Another transformation of T which doesn't change the numbers $\left\|\lambda_{i}\right\|$ is the following:
Given a unitary $s \times s$ matrix $U=\left(u_{i j}\right)$, let $W=U \otimes I_{d}$, where I_{d} is the unit matrix of dimension d, and

$$
\begin{equation*}
\hat{T}=W T \tag{15}
\end{equation*}
$$

i.e.,

$$
\hat{T}_{i}=\sum_{j=1}^{s} u_{i j} T_{j} \quad i=1, \ldots, s
$$

Then it is obvious that the joint spectrum of \hat{T} is given by the vectors $\hat{\lambda}_{i}=U \lambda_{i}, i=$ $1, \ldots, d$, where $\lambda_{i} \in \sigma_{\mathrm{pt}}(T)$. Hence $\left\|\hat{\lambda}_{i}\right\|=\left\|\lambda_{i}\right\|, i=1, \ldots, d$. Also by using (9) we get

$$
\begin{align*}
\hat{T}^{m} & =(W T) \widetilde{\otimes} \cdots \widetilde{\otimes}(W T) \tag{16}\\
& =(W \widetilde{\otimes} \cdots \widetilde{\otimes} W)(T \widetilde{\otimes} \cdots \widetilde{\otimes} T) \tag{17}\\
& =: W^{m} T^{m} . \tag{18}
\end{align*}
$$

Again by (9) we see that W^{m} defined in the last equation is a unitary mapping of $C^{s^{m} d}$ into itself, hence

$$
s_{i}\left(\hat{T}^{m}\right)=s_{i}\left(T^{m}\right), \quad i=1, \ldots, d
$$

Having now assembled our tools, we invoke a result in ([3], Vol. I, p. 224), by which there exists a nonsingular $d \times d$ matrix S and positive integers s_{1}, \ldots, s_{t} with $\sum_{i=1}^{t} s_{i}=d$, such that

$$
\tilde{T}_{i}=S T_{i} S^{-1}=\operatorname{diag}\left(\tilde{T}_{i}^{1}, \ldots, \tilde{T}_{i}^{t}\right) \quad i=1, \ldots, s
$$

where

$$
\tilde{T}_{i}^{\nu}=\left(\begin{array}{ccc}
\tilde{\lambda}_{i}^{\nu} & \ldots & \ldots \tag{19}\\
0 & \ddots & \ldots \\
0 & 0 & \tilde{\lambda}_{i}^{v}
\end{array}\right) \text { for } i=1, \ldots, s \quad \nu=1, \ldots, t
$$

is an $s_{\nu} \times s_{\nu}$ matrix, upper triangular with constant diagonal. Observe also that $\left(\tilde{T}^{m}\right)^{H} \tilde{T}^{m}$ is block diagonal with $s_{\nu} \times s_{\nu}$ blocks. This shows that we have to prove (5) only for T_{i} 's of the form (19). Clearly then $\left\|\lambda_{1}\right\|=\cdots=\left\|\lambda_{d}\right\|$. Also by applying a suitable transformation of the form (15), we can assume that T_{2}, \ldots, T_{d} have zero diagonals, while the diagonal of T_{1} is $\left\|\lambda_{1}\right\|$.

Now from

$$
\left(T^{m}\right)^{H} T^{m} \geq\left(T_{1}^{m}\right)^{H} T_{1}^{m}
$$

we get

$$
\left(s_{1}\left(T^{m}\right)\right)^{\frac{1}{m}} \geq\left(s_{i}\left(T^{m}\right)\right)^{\frac{1}{m}} \geq\left(s_{d}\left(T_{1}^{m}\right)\right)^{\frac{1}{m}} \quad i=1, \ldots, d
$$

But the leftmost term converges to $\left\|\lambda_{1}\right\|$ by (6), while the rightmost term converges to $\min \left|\lambda_{i}\left(T_{1}\right)\right|=\left\|\lambda_{1}\right\|$ by (7). Hence (5) holds for $i=1, \ldots, d$.

This finishes the proof.

References

1. R. Bhatia and T. Bhattacharyya, On the joint spectral radius of commuting matrices, Studia Math. 114 (1995), 29-38.
2. M. Cho and T. Huruya, On the joint spectral radius, Proc. Roy. Irish Acad. Sect. A 91(1991), 39-44.
3. F. R. Gantmacher, The Theory of Matrices, Chelsea, 1977.
4. M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix inequalities, Prindle, Weber and Schmidt, Boston, 1964.
5. V. Müller and A. Soltysiak, Spectral radius formula for commuting Hilbert space operators, Studia Math., 103(1992), 329-333.
6. T. Yamamoto, On the extreme values of the roots of matrices, J. Math. Soc. Japan 19(1967), 173-178.

Indian Statistical Institute	Fakultät für Mathematik
Delhi centre,	Universität Bielefeld
7, SJS Sansanwal Marg	Postfach 100131
New Delhi 110016	D-33501 Bielefeld
India	Germany

